名古屋大学 大学院多元数理科学研究科・理学部数理学科
住所: 〒464-8602 愛知県名古屋市千種区不老町

教育・就職 - 2024年度 - 少人数クラスシラバス - 吉田 伸生

  • WELCOME
  • 行事予定
  • 交通案内
  • 進学案内
  • 教育・就職
  • 研究情報
  • 人々
  • ジャーナル
  • 名古屋大学 理学図書室
  • 採用情報
  • 社会連携
  • 名古屋大学数理科学同窓会
  • アーカイブ
  • リンク

ファイル更新日:2024年03月06日

教育・就職

少人数クラスシラバス


吉田 伸生

学部・大学院区分
Undergraduate / Graduate
多・博前
時間割コード
Registration Code
科目区分
Course Category
B類(講究) C類(実習)/Category B Category C
科目名【日本語】
Course Title
確率論講究1
確率論講究2
確率論講究3
確率論講究4
確率論実習1
確率論実習2
確率論実習3
確率論実習4
科目名【英語】
Course Title
Seminar on Probability Theory 1
Seminar on Probability Theory 2
Seminar on Probability Theory 3
Seminar on Probability Theory 4
Practical Class on Probability Theory 1
Practical Class on Probability Theory 2
Practical Class on Probability Theory 3
Practical Class on Probability Theory 4
コースナンバリングコード
Course Numbering Code
担当教員【日本語】
Instructor
吉田 伸生
担当教員【英語】
Instructor
Nobuo Yoshida
単位数
Credit
B類4単位 C類1単位
開講期・開講時間帯
Term / Day / Period
未定
授業形態
Course style
セミナー
学科・専攻
Department / Program
多元数理科学研究科
必修・選択
Compulsory / Selected
選択必修
授業の目的【日本語】
Goals of the Course(JPN)
テーマ:「ブラウン運動と確率解析」.
ブラウン運動,確率解析は,物理学,工学,数理経済学において重要な役割を果たしている.この少人数クラスでは,ブラウン運動・確率解析の基礎を学習する.
授業の目的【英語】
Goals of the Course
Title: "Brownian motion and stochastic calculus"
The Brownian motion and the stochastic calculus play important roles in physics, engineering, and mathematical economics. In this class, we get acquainted to the basics of the Brownian motion and the stochastic calculus.
到達目標【日本語】
Objectives of the Course(JPN)
この少人数クラスでは,ブラウン運動・確率解析の基礎を学習する. 2年間のコースとし,ブラウン運動・確率解析の基本的言語・手法に慣れ親しむことを目標とする.
到達目標【英語】
Objectives of the Course
To be acquinted with the basics of Brownian motions and stochastic calclus
授業の内容や構成
Course Content / Plan
原則週1回の開講で,受講者自身が教科書[1]に基づき黒板で発表を行う.数学書の十分な理解には,ただ字面を追うだけでなく,自分なりの理解に基づいてテキストを書き換えるくらいの能動的関わりが必要である.従って,発表に際してはテキストに何が書いてあるかでなく,発表者がそれをどう消化したかを問う.また,発表内容について「更に一般化するには,どうするのが自然か?」また逆に「面白い具体例はどのようなものか?」等の議論を,発表者,参加者を交えて行ってゆく.

The course consists of presentations by the students based on the textbook.
Intensive preparations are required. To really understand a textbook of mathematics, a careful reading is not enough. The reader should reconstruct the contents of the book, based on his/her own understanding. The students are required to present the results of this reconstruction.
履修条件
Course Prerequisites
このクラスの受講には,4年生までに養った確固たる学力と,綿密な事前学習が要求される.レベル1の知識の中でも特にルベーグ積分(例えば参考書[4]の第6章まで)を使いこなせることは必須である.さらに,測度論的確率論の初歩(大数の法則,中心極限定理など)は既知とする.学部における該当講義(名古屋大学理学部数理学科では「解析学要論II」,「確率論I」,「確率論II」)での成績を, 適格性を自己判定する際の基準とされたい.

This course is provided in Japanese.
関連する科目
Related Courses
解析学要論II, 確率論I,確率論II.
成績評価の方法と基準
Course Evaluation Method and Criteria
セミナーにおける発表内容で評価する.
教科書・テキスト
Textbook
[1]Moeters, P., Peres, Y. ``Brownian Motion''
Cambridge University Press (2010).

[2] Le Gall, J.-F.:``Brownian Motion, Martigales and Stochastic Calculus'',
Springer Verlag (2016).
参考書
Reference Book
[1]Moeters, P., Peres, Y. ``Brownian Motion''
Cambridge University Press (2010).

[2] Le Gall, J.-F.:``Brownian Motion, Martigales and Stochastic Calculus'',
Springer Verlag (2016).
課外学習等 (授業時間外学習の指示)
Study Load(Self-directed Learning Outside Course Hours)
なし
注意事項
Notice for Students
このクラスの受講には,4年生までに養った確固たる学力と,綿密な事前学習が要求される.レベル1の知識の中でも特にルベーグ積分(例えば参考書[3]の第7章まで)を使いこなせることは必須である.さらに,測度論的確率論の初歩(大数の法則,中心極限定理など)は既知とする.学部における該当講義(名古屋大学では「解析学要論II」,「確率論I」,「確率論II」)の成績を, 適格性を自己判定する際の基準とされたい.なお,事前連絡なしの受講は認めない.
質問への対応方法
How to Ask Questions
メール(noby (at) math.nagoya-u.ac.jp), オフィスアワー(Zoom)
他学科聴講の可否
Propriety of Other department student’s attendance
他学科聴講の条件
Conditions for Other department student’s attendance
レベル
Level
2
キーワード
Keyword
履修の際のアドバイス
Advice
授業開講形態等
Lecture format, etc.
対面セミナー
遠隔授業(オンデマンド型)で行う場合の追加措置
Additional measures for remote class (on-demand class)