Graduate School of Mathematics, Nagoya University
ADDRESS: Furocho, Chikusaku, Nagoya, Japan / POSTAL CODE: 464-8602

People - Faculty

  • Welcome
  • Directions
  • Admission
  • EDUCATION
  • Research
  • People
  • Journal
  • The Science Library
  • Job Opportunity
  • Links

Update: 2025/05/24

People

Faculty

Tomoki Nakanishi Professor
OFFICE Rm 406 in Math. Bldg.
PHONE +81 (0)52-789-5575 (ext. 5575)
E-MAIL
WEBSITE https://www.math.nagoya-u.ac.jp/~nakanisi/
PROFILE [DOWNLOAD] nakanishi_tomoki_en.pdf [PDF/76KB]
RESEARCH
  • quantum groups
  • integrable models
  • their interaction
PAPERS
[1]A. Kuniba and T. Nakanishi. The Bethe equation at $q=0$, the Möbius inversion formula, and weight multiplicities II. The $X_n$ case, J. Algebra 251 (2002), no. 2, 577–618.
[2]A. Kuniba, T. Nakanishi and Z. Tsuboi. The canonical solutions of the $Q$-systems and the Kirillov–Reshetikhin conjecture. Comm. Math. Phys. 227 (2002), no. 1, 155–190.
TOP
Makoto Nakashima Associate Professor
OFFICE Rm 453 in Sci. Bldg. A
PHONE +81 (0)52-789-2421 (ext. 2421)
E-MAIL
WEBSITE https://www.math.nagoya-u.ac.jp/~nakamako/
PROFILE [DOWNLOAD] nakashima_makoto_en.pdf [PDF/88KB]
RESEARCH
  • probability
  • branching processes
  • interacting particle systems
PAPERS
[1]M. Nakashima. Branching random walks in random environment and super-Brownian motion in random environment. Ann. Inst. Henri Poincar Probab. Stat. 51 (2015), no. 4, 12511289.
[2]M. Nakashima. A remark on the bound for the free energy of directed polymers in random environment in $1+2$ dimension. J. Math. Phys. 55 (2014), no. 9
[3]M. Nakashima. Minimal position of branching random walks in random environment. J. Theoret. Probab. 26 (2013), no. 4, 11811217
TOP
Shin Nayatani Professor
OFFICE Rm 429 in Sci. Bldg. A
PHONE +81 (0)52-789-2814 (ext. 2814)
E-MAIL
PROFILE [DOWNLOAD] nayatani_shin_en.pdf [PDF/87KB]
RESEARCH
  • conformal geometry
  • nonpositively curved spaces
  • rigidity of discrete groups
  • harmonic maps
  • buildings
PAPERS
[1]H. Izeki and S. Nayatani. Combinatorial harmonic maps and discrete-group actions on Hadamard spaces. Geom. Dedicata 114 (2005), 147–188.
[2]S. Nayatani. Patterson-Sullivan measure and conformally flat metrics. Math. Z. 225 (1997), no. 1, 115–131.
PRIZES
2004, MSJ Geometry Prize
“Construction of invariant metrics in the ideal boundaries of real and complex hyperbolic spaces”
TOP
Toru Ohira Professor / Dean
OFFICE Rm 341 in Sci. Bldg. A
PHONE +81 (0)52-789-2824 (ext. 2824)
E-MAIL
WEBSITE [Other site] https://sites.google.com/site/ohiratorue/home/
PROFILE [DOWNLOAD] ohira_toru_en.pdf [PDF/89KB]
RESEARCH
  • delayed stochastic systems
  • chases and escapes
  • mathematical biology and physiology
PAPERS
[1]T. Ohira and A. Kamimura. Group chase and escape. New J. Phys. 12 (2010), 053013.
[2]T. Ohira and Y. Yamane. Delayed stochastic systems. Phys. Rev. E 61 (2000), 1247–1257.
[3]T. Ohira and Y. Sato. Resonance with noise and delay. Phys. Rev. Lett. 82 (1999), 2811–2815.
TOP
Shun Ohkubo Lecturer
OFFICE Rm 351 in Sci. Bldg. A
PHONE +81 (0)52-789-2431 (ext. 2431)
E-MAIL
PROFILE [DOWNLOAD] ohkubo_shun_en.pdf [PDF/81KB]
RESEARCH
  • p-adic representation
  • p-adic differential equation
  • ramification theory
PAPERS
[1]S. Ohkubo. The $p$-adic monodromy theorem in the imperfect residue field case. Algebra Number Theory 7 (2013), no. 8, 1977–2037.
[2]S. Ohkubo. A note on logarithmic growth Newton polygons of $p$-adic differential equations. Int. Math. Res. Not. IMRN 2015, no. 10, 2671–2677.
[3]S. Ohkubo. On differential modules associated to de Rham representations in the imperfect residue field case. arXiv:1307.8110.
TOP
Hiroshi Ohta Professor
OFFICE Rm 325 in Sci. Bldg. A
PHONE +81 (0)52-789-2543 (ext. 2543)
E-MAIL
PROFILE [DOWNLOAD] ohta_hiroshi_en.pdf [PDF/86KB]
RESEARCH
  • geometry
  • topology
  • gauge theory
  • symplectic geometry
  • Floer theory
  • mirror symmetry
PAPERS
[1]H. Ohta and K. Ono. Simple singularities and symplectic fillings. J. Differential Geom. 69 (2005), 1–42.
[2]H. Ohta and K. Ono. Symplectic fillings of the link of simple elliptic singularities. J. Reine Angew. Math. 565 (2003), 183–205.
[3]H. Ohta. Obstruction to and deformation of Lagrangian intersection Floer cohomology. in Proccedings of symplectic geometry and mirror symmetry, World Scientific, 2001, pp. 281–309.
TOP
Soichi Okada Professor
OFFICE Rm 427 in Sci. Bldg. A
PHONE +81 (0)52-789-5596 (ext. 5596)
E-MAIL
PROFILE [DOWNLOAD] okada_soichi_en.pdf [PDF/87KB]
RESEARCH
  • algebraic and enumerative combinatorics
  • combinatorial representation theory
PAPERS
[1]S. Okada. Applications of minor summation formulas to rectangular-shaped representations of classical groups. J. Algebra 205 (1998), no. 2, 337–367.
[2]S. Okada. Algebras associated to the Young–Fibonacci lattice. Trans. Amer. Math. Soc. 346 (1994), no. 2, 549–568.
TOP
Kento Osuga Assistant Professor
OFFICE Rm 320 in Sci. Bldg. A
PHONE +81 (0)52-789-2822 (ext. 2822)
E-MAIL
RESEARCH
  • enumerative geometry
  • physical mathematics
  • string theory
PAPERS
[1]K. Osuga. Refined Topological Recursion Revisited: Properties and Conjectures. Commun. Math. Phys. 405 (2024) no. 12, 296.
[2]O. Kidwai and K. Osuga. Quantum curves from refined topological recursion: The genus 0 case. Adv. Math. 432 (2023), 109253.
TOP