Tomoki Nakanishi Professor |
 |
OFFICE |
Rm 406 in Math. Bldg. |
PHONE |
+81 (0)52-789-5575 (ext. 5575) |
E-MAIL |
nakanisi (at) math.nagoya-u.ac.jp |
WEBSITE |
https://www.math.nagoya-u.ac.jp/~nakanisi/ |
PROFILE |
nakanishi_tomoki_en.pdf [PDF/76KB] |
RESEARCH |
- quantum groups
- integrable models
- their interaction
|
PAPERS |
[1] | A. Kuniba and T. Nakanishi. The Bethe equation at $q=0$, the Möbius inversion formula, and weight multiplicities II. The $X_n$ case, J. Algebra 251 (2002), no. 2, 577–618. |
[2] | A. Kuniba, T. Nakanishi and Z. Tsuboi. The canonical solutions of the $Q$-systems and the Kirillov–Reshetikhin conjecture. Comm. Math. Phys. 227 (2002), no. 1, 155–190. |
|
 |
Makoto Nakashima Associate Professor |
 |
OFFICE |
Rm 453 in Sci. Bldg. A |
PHONE |
+81 (0)52-789-2421 (ext. 2421) |
E-MAIL |
nakamako (at) math.nagoya-u.ac.jp |
WEBSITE |
https://www.math.nagoya-u.ac.jp/~nakamako/ |
PROFILE |
nakashima_makoto_en.pdf [PDF/88KB] |
RESEARCH |
- probability
- branching processes
- interacting particle systems
|
PAPERS |
[1] | M. Nakashima. Branching random walks in random environment and super-Brownian motion in random environment. Ann. Inst. Henri Poincar Probab. Stat. 51 (2015), no. 4, 12511289. |
[2] | M. Nakashima. A remark on the bound for the free energy of directed polymers in random environment in $1+2$ dimension. J. Math. Phys. 55 (2014), no. 9 |
[3] | M. Nakashima. Minimal position of branching random walks in random environment. J. Theoret. Probab. 26 (2013), no. 4, 11811217 |
|
 |
Shin Nayatani Professor |
 |
OFFICE |
Rm 429 in Sci. Bldg. A |
PHONE |
+81 (0)52-789-2814 (ext. 2814) |
E-MAIL |
nayatani (at) math.nagoya-u.ac.jp |
PROFILE |
nayatani_shin_en.pdf [PDF/87KB] |
RESEARCH |
- conformal geometry
- nonpositively curved spaces
- rigidity of discrete groups
- harmonic maps
- buildings
|
PAPERS |
[1] | H. Izeki and S. Nayatani. Combinatorial harmonic maps and discrete-group actions on Hadamard spaces. Geom. Dedicata 114 (2005), 147–188. |
[2] | S. Nayatani. Patterson-Sullivan measure and conformally flat metrics. Math. Z. 225 (1997), no. 1, 115–131. |
|
PRIZES |
2004, | MSJ Geometry Prize “Construction of invariant metrics in the ideal boundaries of real and complex hyperbolic spaces” | |
 |
Toru Ohira Professor / Dean |
 |
OFFICE |
Rm 341 in Sci. Bldg. A |
PHONE |
+81 (0)52-789-2824 (ext. 2824) |
E-MAIL |
ohira (at) math.nagoya-u.ac.jp |
WEBSITE |
https://sites.google.com/site/ohiratorue/home/ |
PROFILE |
ohira_toru_en.pdf [PDF/89KB] |
RESEARCH |
- delayed stochastic systems
- chases and escapes
- mathematical biology and physiology
|
PAPERS |
[1] | T. Ohira and A. Kamimura. Group chase and escape. New J. Phys. 12 (2010), 053013. |
[2] | T. Ohira and Y. Yamane. Delayed stochastic systems. Phys. Rev. E 61 (2000), 1247–1257. |
[3] | T. Ohira and Y. Sato. Resonance with noise and delay. Phys. Rev. Lett. 82 (1999), 2811–2815. |
|
 |
Shun Ohkubo Lecturer |
 |
OFFICE |
Rm 351 in Sci. Bldg. A |
PHONE |
+81 (0)52-789-2431 (ext. 2431) |
E-MAIL |
shuno (at) math.nagoya-u.ac.jp |
PROFILE |
ohkubo_shun_en.pdf [PDF/81KB] |
RESEARCH |
- p-adic representation
- p-adic differential equation
- ramification theory
|
PAPERS |
[1] | S. Ohkubo. The $p$-adic monodromy theorem in the imperfect residue field case. Algebra Number Theory 7 (2013), no. 8, 1977–2037. |
[2] | S. Ohkubo. A note on logarithmic growth Newton polygons of $p$-adic differential equations. Int. Math. Res. Not. IMRN 2015, no. 10, 2671–2677. |
[3] | S. Ohkubo. On differential modules associated to de Rham representations in the imperfect residue field case. arXiv:1307.8110. |
|
 |
Hiroshi Ohta Professor |
 |
OFFICE |
Rm 325 in Sci. Bldg. A |
PHONE |
+81 (0)52-789-2543 (ext. 2543) |
E-MAIL |
ohta (at) math.nagoya-u.ac.jp |
PROFILE |
ohta_hiroshi_en.pdf [PDF/86KB] |
RESEARCH |
- geometry
- topology
- gauge theory
- symplectic geometry
- Floer theory
- mirror symmetry
|
PAPERS |
[1] | H. Ohta and K. Ono. Simple singularities and symplectic fillings. J. Differential Geom. 69 (2005), 1–42. |
[2] | H. Ohta and K. Ono. Symplectic fillings of the link of simple elliptic singularities. J. Reine Angew. Math. 565 (2003), 183–205. |
[3] | H. Ohta. Obstruction to and deformation of Lagrangian intersection Floer cohomology. in Proccedings of symplectic geometry and mirror symmetry, World Scientific, 2001, pp. 281–309. |
|
 |
Soichi Okada Professor |
 |
OFFICE |
Rm 427 in Sci. Bldg. A |
PHONE |
+81 (0)52-789-5596 (ext. 5596) |
E-MAIL |
okada (at) math.nagoya-u.ac.jp |
PROFILE |
okada_soichi_en.pdf [PDF/87KB] |
RESEARCH |
- algebraic and enumerative combinatorics
- combinatorial representation theory
|
PAPERS |
[1] | S. Okada. Applications of minor summation formulas to rectangular-shaped representations of classical groups. J. Algebra 205 (1998), no. 2, 337–367. |
[2] | S. Okada. Algebras associated to the Young–Fibonacci lattice. Trans. Amer. Math. Soc. 346 (1994), no. 2, 549–568. |
|
 |
Kento Osuga Assistant Professor |
 |
OFFICE |
Rm 320 in Sci. Bldg. A |
PHONE |
+81 (0)52-789-2822 (ext. 2822) |
E-MAIL |
osuga (at) math.nagoya-u.ac.jp |
RESEARCH |
- enumerative geometry
- physical mathematics
- string theory
|
PAPERS |
[1] | K. Osuga. Refined Topological Recursion Revisited: Properties and Conjectures. Commun. Math. Phys. 405 (2024) no. 12, 296. |
[2] | O. Kidwai and K. Osuga. Quantum curves from refined topological recursion: The genus 0 case. Adv. Math. 432 (2023), 109253. |
|
 |