Graduate School of Mathematics, Nagoya University
ADDRESS: Furocho, Chikusaku, Nagoya, Japan / POSTAL CODE: 464-8602

People - Faculty

  • Welcome
  • Directions
  • Admission
  • EDUCATION
  • Research
  • People
  • Journal
  • The Mathematics Library
  • Job Opportunity
  • Archives
  • Links

Update: 2024/05/23

People

Faculty

Kazuhiko Minami Associate Professor
OFFICE Rm 347 in Sci. Bldg. A
PHONE +81 (0)52-789-5578 (ext. 5578)
E-MAIL
WEBSITE https://www.math.nagoya-u.ac.jp/~minami/
PROFILE [DOWNLOAD] minami_kazuhiko_en.pdf [PDF/84KB]
RESEARCH
  • statistical physics
  • lattice models
  • integrable systems
  • magnetic materials
  • statistical mechanics of equilibrium and non-equiliburium systems
PAPERS
[1]K. Minami. The susceptibility in arbitrary directions and the specific heat in general Ising-type chains of uniform, periodic and random structures. J. Phys. Soc. Jpn. 67 (1998), 2255–2269.
[2]K. Minami and M. Suzuki. Non-universal critical behaviour of two-dimensional Ising systems. J. Phys. A 27 (1994), no. 22, 7301–7311.
TOP
Ryuhei Mori Associate Professor
OFFICE Rm 402 in Math. Bldg.
PHONE +81 (0)52-789-5604 (ext. 5604)
E-MAIL
RESEARCH
  • quantum information
  • information theory
  • statistical physics
  • computational complexity
PAPERS
[1]Y. Kondo, R. Mori, and R. Movassagh. Quantum supremacy and hardness of estimating output probabilities of quantum circuits. IEEE 62nd Annual Symposium on Foundations of Computer Science—FOCS2021, 1296–1307.
[2]K. Shimizu and R. Mori. Exponential-time quantum algorithms for graph coloring problems. Algorithmica 84 (2022), 3603–3621.
[3]R. Mori. Periodic Fourier representation of Boolean functions. Quantum Inf. Comput. 19 (2019), no. 5–6, 392–412.
PRIZES
2010, 32nd SITA Encouragement Award (by Society of Information Theory annd Its Applications)
2012, 14th Ericsson Best Student Award (by Ericsson Japan)
TOP
Hitoshi Moriyoshi Professor / Dean
OFFICE Rm 504 in Math. Bldg.
PHONE +81 (0)52-789-4746 (ext. 4746)
E-MAIL
PROFILE [DOWNLOAD] moriyoshi_hitoshi_en.pdf [PDF/138KB]
RESEARCH
  • topology
  • differential geometry
  • noncommutative geometry
  • index theorem
PAPERS
[1]H. Moriyoshi and T. Natsume. The Godbillon–Vey cyclic cocycle and longitudinal Dirac operators. Pacific J. Math. 172 (1996), no. 2, 483–539.
[2]H. Moriyoshi. Operator algebras and the index theorem on foliated manifolds, in Foliations: geometry and dynamics (Warsaw, 2000), World Scientific, 2002, pp. 127–155.
[3]H. Moriyoshi and T. Natsume. Operator algebras and geometry. Transl. Math. Monogr. 237, American Mathematical Society, Providence, 2008.
TOP
Taro Nagao Professor
OFFICE Rm 508 in Math. Bldg.
PHONE +81 (0)52-789-5392 (ext. 5392)
E-MAIL
WEBSITE https://www.math.nagoya-u.ac.jp/~nagao/nagaoeng.html
PROFILE [DOWNLOAD] nagao_taro_en.pdf [PDF/74KB]
RESEARCH
  • theory of random matrices
  • quantum field theory and disordered systems
  • semiclassical theory of quantum mechanics
PAPERS
[1]T. Nagao. Dynamical correlations for vicious random walk with a wall. Nuclear Phys. B 658 (2003), no. 3, 373–396.
[2]T. Nagao. Correlation functions for multi-matrix models and quaternion determinants. Nuclear Phys. B 602 (2001), no. 3, 622–637.
PRIZES
2011, Ryogo Kubo Memorial Prize (by Inoue Foundation for Science)
“Random matrix theory and its applications to physics”
TOP
Hisashi Naito Professor
OFFICE Rm 408 in Math. Bldg.
PHONE +81 (0)52-789-2415 (ext. 2415)
E-MAIL
WEBSITE https://www.math.nagoya-u.ac.jp/~naito/naito-e.html
PROFILE [DOWNLOAD] naito_hisashi_en.pdf [PDF/372KB]
RESEARCH
  • differential geometry
  • variational problem
  • paritial differential equation on Riemannian manifolds
PAPERS
[1]H. Kozono, Y. Maeda and H. Naito. Global solution for the Yang–Mills gradient flow on $4$-manifolds. Nagoya Math. J. 139 (1995), 93–128.
[2]H. Naito. Finite time blowing-up for the Yang–Mills gradient flow in higher dimensions. Hokkaido Math. J. 23 (1994), 451–464.
[3]H. Naito. A stable manifold theorem for a quasi-linear parabolic equations and asymptotic behavior of the gradient flow for geometric variational problems. Compositio Math. 68 (1988), 221–239.
TOP
Yusuke Nakamura Associate Professor
OFFICE Rm 431 in Sci. Bldg. A
PHONE +81 (0)52-789-2815 (ext. 2815)
E-MAIL
WEBSITE [Other Site] https://sites.google.com/site/ynakamuraagmath/
RESEARCH
  • algebraic geometry
  • birational geometry
  • minimal model theory
  • singularity theory
PAPERS
[1]Y. Nakamura, On semi-continuity problems for minimal log discrepancies. J. Reine Angew. Math. 711 (2016), 167–187.
[2]Y. Nakamura and M. Mustaţă, A boundedness conjecture for minimal log discrepancies on a fixed germ. Contemp. Math., 712 (2018), 287–306.
[3]Y. Gongyo, Y. Nakamura and H. Tanaka, Rational points on log Fano threefolds over a finite field. J. Eur. Math. Soc. (JEMS) 21 (2019), no. 12, 3759–3795.
PRIZES
2018, MSJ Takebe Katahiro Prize for Encouragement of Young Researchers (by MSJ)
“Studies of minimal log discrepancy and the minimal model theory over a finite field”
TOP
Tomoki Nakanishi Professor
OFFICE Rm 406 in Math. Bldg.
PHONE +81 (0)52-789-5575 (ext. 5575)
E-MAIL
WEBSITE https://www.math.nagoya-u.ac.jp/~nakanisi/
PROFILE [DOWNLOAD] nakanishi_tomoki_en.pdf [PDF/74KB]
RESEARCH
  • quantum groups
  • integrable models
  • their interaction
PAPERS
[1]A. Kuniba and T. Nakanishi. The Bethe equation at $q=0$, the Möbius inversion formula, and weight multiplicities II. The $X_n$ case, J. Algebra 251 (2002), no. 2, 577–618.
[2]A. Kuniba, T. Nakanishi and Z. Tsuboi. The canonical solutions of the $Q$-systems and the Kirillov–Reshetikhin conjecture. Comm. Math. Phys. 227 (2002), no. 1, 155–190.
TOP
Hiroyuki Nakaoka Associate Professor
OFFICE Rm 345 in Sci. Bldg. A
PHONE +81 (0)52-789-2545 (ext. 2545)
E-MAIL
PROFILE [DOWNLOAD] nakaoka_hiroyuki_en.pdf [PDF/171KB]
RESEARCH
  • homological algebra
  • representation theory of algebras
  • category theory
PAPERS
[1]H. Nakaoka and Y. Palu. Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Géom. Différ. Catég. 60 (2019), no. 2, 117–193.
[2]H. Nakaoka. A simultaneous generalization of mutation and recollement on a triangulated category. Appl. Categ. Structures 26 (2018), no. 3, 491–544.
[3]H. Nakaoka. General heart construction on a triangulated category (I): unifying t-structures and cluster tilting subcategories. Appl. Categ. Structures 19 (2011), no. 6, 879–899.
TOP