Tomoki Nakanishi
Professor
Graduate School of Mathematics
Nagoya University
home
List of Pulicatications
Last updated on 2024/7/28
Statement (2012/2/2):
Since 2008, I maintain the position of not publishing, not refereeing, and not doing editorial work in any Elsevier journal
unless they radically change how they operate.
For the background, see
http://thecostofknowledge.com/
(The Cost of Knowledge)
http://gowers.wordpress.com/2012/01/21/elsevier-my-part-in-its-downfall/ (Gowers's Weblog on 2012/1/21).
Monographs in English
[2] Tomoki Nakanishi,
Cluster algebras and dilogarithm identities,
arXiv:2407.06668,
204 pp.
[1] Tomoki Nakanishi,
Cluster algebras and scattering diagrams,
MSJ Mem. 41 (2023), 279 pp; ISBN:978-4-86497-105-8.
Preface and contents (2023/2/3)
Part I. Basics in cluster algebras,
arXiv:2201.11371,
v3:85 pp. (2023/2/3)
Part II. Cluster patterns and scattering diagrams,
arXiv:2103.16309,
v5:89 pp. (2023/2/3)
Part III. Cluster scattering diagrams,
arXiv:2111.00800,
v6:110 pp. (2023/2/3)
Correction (2024/7/28)
Ariticles in English
(in the order of appearance in arXiv after 1992)
[56] Tomoki Nakanishi,
Pentagon relation in quantum cluster scattering diagrams,
arXiv:2202.01588,
33 pp.
[55] Feiyang Lin, Gregg Musiker, Tomoki Nakanishi,
Two formulas for \(F\)-polynomials,
Int. Math. Res. Not. 2024 (2024) 613--634; DOI:10.1093/imrn/rnad074.
arXiv:2112.11839,
15 pp.
[54] Tomoki Nakanishi,
Dilogarithm identities in cluster scattering diagrams,
Nagoya Math. J. 253 (2024) 1--22; DOI:10.1017/nmj.2023.15
arXiv:2111.09555,
20 pp.
[53] Tomoki Nakanishi,
Synchronicity phenomenon in cluster patterns,
J. London Math. Soc. 103 (2021) 1120--1152;
DOI:10.1112/jlms.12402.
arXiv:1906.12036,
39 pp.
[52] Michael Gekhtman, Tomoki Nakanishi,
Asymptotic sign coherence conjecture,
Experimental Mathematics 31 (2022) 497--505; DOI:10.1080/10586458.2019.1650401.
arXiv:1904.00971,
13 pp.
[51] Michael Gekhtman, Tomoki Nakanishi, Dylan Rupel,
Hamiltonian and Lagrangian formalisms of mutations in cluster algebras
and application to dilogarithm identities,
J. Integrable Syst. 2 (2017) 1--35
, (open access);
DOI:10.1093/integr/xyx005.
arXiv:1611.02813,
31 pp.
[50] Tomoki Nakanishi,
Rogers dilogarithms of higher degree and generalized cluster algebras,
J. Math. Soc. Japan 70 (2018) 1269--1304;
DOI:10.2969/jmsj/75767576.
arXiv:1605.0477,
32 pp.
[49] Tomoki Nakanishi, Dylan Rupel,
Companion cluster algebras to a generalized cluster algebra,
Travaux mathématiques 24 (2016) 129--149
, (open access).
arXiv:1504.06758,
14 pp.
[48] Tomoki Nakanishi,
Quantum generalized cluster algebras and quantum dilogarithms of higher degrees,
Theor. Math. Phys. 185 (2015) 1759--1768; DOI:10.1007/s11232-015-0377-9.
arXiv:1410.0584,
10 pp.
[47] Tomoki Nakanishi,
Structure of seeds in generalized cluster algebras,
Pacific J. Math. 277 (2015) 201--218; (open access) DOI:10.2140/pjm.2015.277.201.
arXiv:1409.5967,
15 pp.
Addendum to "Structure of seeds in generalized cluster algebras",
arXiv:2406.07582,
1 pp.
[46] Kohei Iwaki, Tomoki Nakanishi,
Exact WKB analysis and cluster algebras II:
simple poles, orbifold points, and generalized cluster algebras,
Int. Math. Res. Not. 2016 (2016) 4375--4417
; DOI:10.1093/imrn/rnv270.
arXiv:1409.4641,
34 pp.
[45] Kohei Iwaki, Tomoki Nakanishi,
Exact WKB analysis and cluster algebras,
J. Phys. A: Math. Theor. 47 (2014) 474009; DOI:10.1088/1751-8113/47/47/474009.
arXiv:1401.7094,
104 pp.
[44] Tomoki Nakanishi, Salvatore Stella,
Wonder of sine-Gordon \(Y\)-systems,
Trans. Amer. Math. Soc. 368 (2016) 6835--6886; DOI:10.1090/tran/6505.
arXiv:1212.6853,
53 pp.
[43] Tomoki Nakanishi, Salvatore Stella,
Diagrammatic description of \(c\)-vectors and \(d\)-vectors of cluster algebras of finite type,
Electron. J. Combin. 21 (2014) #P1.3, 107 pp. (open access)
arXiv:1210.6299,
108 pp.
[42] Tomoki Nakanishi,
Note on dilogarithm identities from nilpotent double affine Hecke algebras,
SIGMA 8 (2012) 104, 5 pp. (open access)
arXiv:1210.0226,
5 pp.
[41] Tomoki Nakanishi,
Tropicalization method in cluster algebras,
Contemp. Math. 580 (2012) 95--115.
arXiv:1110.5472,
21 pp.
[40] Rinat M. Kashaev, Tomoki Nakanishi,
Classical and quantum dilogarithm identities,
SIGMA 7 (2011) 102, 29 pp. (open access)
arXiv:1104.4630,
29 pp.
[39] Tomoki Nakanishi, Andrei Zelevinsky,
On tropical dualities in cluster algebras,
Contemp. Math. 565 (2012) 217--226.
arXiv:1101.3736,
10 pp.
[38] Rei Inoue, Tomoki Nakanishi,
Difference equations and cluster algebras I:
Poisson bracket for integrable difference equations,
RIMS Kokyuroku Bessatsu B28 (2011) 63--88. (open access)
arXiv:1012.5574,
21 pp.
[37] Atsuo Kuniba, Tomoki Nakanishi, Junji Suzuki,
\(T\)-systems and \(Y\)-systems in integrable systems,
J. Phys. A: Math. Theor. 44 (2011) 103001 (146pp).
arXiv:1010.1344,
156 pp.
[36] Tomoki Nakanishi,
Periodicities in cluster algebras and dilogarithm identities,
(title chaged from the ealier version:
Periodic cluster algebras and dilogarithm identities)
in Representations of algebras and related topics (A. Skowronski and K. Yamagata, eds.),
EMS Series of Congress Reports, European Mathematical Society, 2011, pp.407-444,
arXiv:1006.0632,
37 pp.
[35] Tomoki Nakanishi, Roberto Tateo,
Dilogarithm identities for sine-Gordon and reduced sine-Gordon \(Y\)-systems,
SIGMA 6 (2010) 085, 34 pp. (open access)
arXiv:1005.4199,
34 pp.
[34] Tomoki Nakanishi,
\(T\)-systems, \(Y\)-systems, and cluster algebras: Tamely laced case,
in New Trends in Quantum Integrable Systems
(B. Feigin et al., eds.),
World Scientific, Singapore, 2011, pp. 325--355.
arXiv:1003.1180,
31 pp.
[33] Rei Inoue, Osamu Iyama, Bernhard Keller, Atsuo Kuniba, Tomoki
Nakanishi,
Periodicities of \(T\) and \(Y\)-systems, dilogarithm identities, and cluster
algebras II: Types \(C_r\), \(F_4\), and \(G_2\),
Publ. RIMS. 49 (2013) 43--85. (open access)
arXiv:1001.1881,
36 pp.
[32] Rei Inoue, Osamu Iyama, Bernhard Keller, Atsuo Kuniba, Tomoki
Nakanishi,
Periodicities of \(T\) and \(Y\)-systems, dilogarithm identities, and cluster
algebras I: Type \(B_r\),
Publ. RIMS. 49 (2013) 1--42. (open access)
arXiv:1001.1880,
35 pp.
[31] Tomoki Nakanishi,
Dilogarithm identities for conformal field theories and cluster algebras:
simply laced case,
Nagoya Math. J. 202 (2011) 23--43. (open access)
arXiv:0909.5480,
16 pp.
[30] Atsuo Kuniba, Tomoki Nakanishi, Junji Suzuki,
\(T\)-systems and \(Y\)-systems for quantum affinizations of quantum
Kac-Moody algebras,
SIGMA 5 (2009) 108, 23 pp. (open access)
arXiv:0909.4618,
23 pp.
[29] Rei Inoue, Osamu Iyama, Atsuo Kuniba, Tomoki Nakanishi, Junji Suzuki,
Periodicities of \(T\)-systems and \(Y\)-systems,
Nagoya Math. J. 197 (2010) 59--174. (open access)
arXiv:0812.0667,
83 pp.
[28] Wakako Nakai, Tomoki Nakanishi,
On Frenkel-Mukhin algorithm for \(q\)-character of quantum affine algebras,
Adv. Stud. Pure Math. 61 (2011) 327--347. (open access)
arXiv:0801.2239,
19 pp.
[27] Wakako Nakai, Tomoki Nakanishi,
Paths and tableaux descriptions of Jacobi-Trudi determinant associated with quantum affine algebra of type \(C_n\),
SIGMA 3 (2007) 078, 20 pp. (open access)
arXiv:math/0604158,
20 pp.
[26] Wakako Nakai, Tomoki Nakanishi,
Paths and tableaux descriptions of Jacobi-Trudi determinant associated with quantum affine algebra of type \(D_n\),
J. Alg. Combin. 26 (2007) 253-290.
arXiv:math/0603160,
38 pp.
[25] Wakako Nakai, Tomoki Nakanishi,
Paths, tableaux, and \(q\)-characters of quantum affine algebras: the \(C_n\) case,
J. Phys. A: Math. Gen. 39 (2006) 2083-2115.
arXiv:math/0502041,
38 pp.
[24] Atsuo Kuniba, Tomoki Nakanishi, Zengo Tsuboi,
The canonical solutions of the \(Q\)-systems and the Kirillov-Reshetikhin conjecture,
Commun. Math. Phys. 227 (2002) 155--190.
arXiv:math/0105145,
38 pp.
[23] Atsuo Kuniba, Tomoki Nakanishi, Zengo Tsuboi,
The Bethe equation at \(q=0\), the Mobius inversion formula, and weight multiplicities III: The \(X^{(r)}_n\) case,
Lett. Math. Phys. 59 (2002) 19--31.
arXiv:math/0105146,
11 pp.
[22] Atsuo Kuniba, Tomoki Nakanishi,
The Bethe equation at \(q=0\), the Mobius inversion formula, and weight multiplicities II: The \(X_n\) case,
J. Algebra 251 (2002) 577--618.
arXiv:math/0008047,
32 pp.
[21] Atsuo Kuniba, Tomoki Nakanishi,
The Bethe equation at \(q=0\), the Mobius inversion formula, and weight multiplicities I: The \(sl(2)\) case,
Progr. in Math. 191 (2000) 185--216.
arXiv:math/9909056,
35 pp.
[20] Anatol N. Kirillov, Atsuo Kuniba, Tomoki Nakanishi,
Skew Young diagram method in spectral decomposition of integrable lattice models II: Higher levels,
Nucl. Phys. B529 [PM] (1998) 611--638.
arXiv:q-alg/9711009,
27 pp.
[19] Anatol N. Kirillov, Atsuo Kuniba, Tomoki Nakanishi,
Skew Young diagram method in spectral decomposition of integrable lattice models,
Comm. Math. Phys. 185 (1997) 441--465.
arXiv:q-alg/9607027,
27 pp.
[18] Tomoyuki Arakawa, Tomoki Nakanishi, Kazuyuki Oshima, Akihiro Tsuchiya,
Spectral decomposition of path space in solvable lattice models,
Comm. Math. Phys. 181 (1996) 157--182.
arXiv:q-alg/9507025,
27 pp.
[17] Tomoki Nakanishi,
Fusion, mass, and representation theory of the Yangian algebra,
Nucl. Phys. B439 (1995) 441--459.
arXiv:hep-th/9405200,
21 pp.
[16] Atsuo Kuniba, Tomoki Nakanishi, Junji Suzuki,
Functional relations in solvable lattice models II: Applications,
Int. J. Mod. Phys. A9 (1994) 5267--5312.
arXiv:hep-th/9310060,
47 pp.
[15] Atsuo Kuniba, Tomoki Nakanishi, Junji Suzuki,
Functional relations in solvable lattice models I: Functional relations and representation theory,
Int. J. Mod. Phys. A9 (1994) 5215--5266.
arXiv:hep-th/9309137,
57 pp.
[14] Atsuo Kuniba, Tomoki Nakanishi, Junji Suzuki,
Characters in conformal field theories from thermodynamic Bethe ansatz,
Mod. Phys. Lett. A8 (1993) 1649--1659.
arXiv:hep-th/9301018 (TeX compling problem, not recommended).
preprint pdf file (recommended),
12 pp.
[13] Atsuo Kuniba, Tomoki Nakanishi,
Rogers dilogarithm in integrable systems,
in Differential Geometric Methods in Theoretical Physics:
Proceedings of the XXI International Conference (M.-L. Ge et al., eds.),
World Scientific, Singapore, 1993, pp.419--422.
arXiv:hep-th/9210025,
5 pp.
[12] Atsuo Kuniba, Tomoki Nakanishi,
Spectra in conformal field theories from the Rogers dilogarithm,
Mod. Phys. Lett. A7 (1992) 3487--3494.
arXiv:hep-th/9206034,
10 pp.
[11] Boris L. Feigin, Tomoki Nakanishi, Hirosi Ooguri,
The annihilating ideals of minimal models,
Int. J. Mod. Phys. A7, Suppl. 1A (1992) 217--238.
(available upon request)
[10] Atsuo Kuniba, Tomoki Nakanishi,
Fusion RSOS models and rational coset models,
in Quantum Groups (P. P. Kulish, ed.),
Lecture Notes in Math.1510 (1992) 303--311.
(available upon request)
[9] Tomoki Nakanishi, Akihiro Tsuchiya,
Level-rank duality in WZW models in conformal field theory,
Commun. Math. Phys. 144 (1992) 351--372. (open access)
[8] Rinat Kashaev, Vladimir V. Mangazeev, Tomoki Nakanishi,
Yang-Baxter equation for the \(sl(n)\) chiral Potts model,
Nucl. Phys. B362 (1991) 563--582.
(available upon request)
[7] Frederick M. Goodman, Tomoki Nakanishi,
Fusion algebras in integrable systems in two dimensions,
Phys. Lett. B262 (1991) 259-264.
(available upon request)
[6] Atsuo Kuniba, Tomoki Nakanishi, Junji Suzuki,
Ferro- and antiferro-magnetization in RSOS models,
Nucl. Phys. B356 (1991) 750--774.
(available upon request)
[5] Atsuo Kuniba, Tomoki Nakanishi,
Level-rank duality in fusion RSOS models,
in International Colloquium on Modern Quantum Field Theory (S. Das et al., eds.),
World Scientific, Singapore, 1991, pp.344--374, Errata p.567.
preprint pdf file.
[4] Tomoki Nakanishi,
Non-unitary minimal models and RSOS models,
Nucl. Phys. B334 (1990) 745--766.
(available upon request)
[3] Akishi Kato, Tomoki Nakanishi,
Differential equations in \(g \geq 2\) conformal field theory,
Mod. Phys. Lett. A4 (1989) 1773--1782.
(available upon request)
[2] Tomoki Nakanishi,
Radical root structure of conformal algebra,
Prog. Theor. Phys. 82 (1989) 207--214 . (open access)
[1] Tomoki Nakanishi,
Generalized supersymmetry on Riemann surfaces and the associated string models,
Mod. Phys. Lett. A3 (1988) 1507--1519.
(available upon request)