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Preface

As the title suggests, the theme of this monograph is the relation between
cluster algebras and scattering diagrams. The former was introduced by
Fomin and Zelevinsky as an algebraic and combinatorial structure originated
in Lie theory, while the latter was introduced by Kontsevich and Soibelman,
and also by Gross and Siebert in the study of homological mirror symmetry.

The text consists of three parts.

e Part I is a first step guide to the theory of cluster algebras for readers
without any knowledge on cluster algebras. We especially focus on basic
notions, techniques, and results concerning seeds, cluster patterns, and
cluster algebras.

e Part II is considered as the main part of the monograph, where we
focus on the column sign-coherence of C-matrices and the Laurent pos-
itivity for cluster patterns, both of which were conjectured by Fomin
and Zelevinsky and proved by Gross, Hacking, Keel, and Kontsevich
based on the scattering diagram method. We also give a detailed ac-
count of the correspondence between the notions of cluster patterns and
scattering diagrams.

e Part III is a self-contained exposition of several fundamental proper-
ties of cluster scattering diagrams which are admitted and used in Part
IT without proof. In particular, detailed proofs are presented for the
construction, the mutation invariance, and the positivity of theta func-
tions of cluster scattering diagrams with emphasis on the roles of the
dilogarithm elements and the pentagon relation. This is regarded as a
supplement to Part II, but also it may be read as an introductory text
to cluster scattering diagrams.

More detailed introductions will be found in each part.

As a specific feature of this monograph, each part is written without
explicitly relying on the other parts. Thus, readers can start reading from
any part depending on their interest and knowledge as suggested below.

e If the reader is new to cluster algebras, simply start from Part I.

e If the reader is already familiar with basic notions in cluster algebras,
skip Part I and start from Part II or III depending on the reader’s
interest.

Both cluster algebras and scattering diagrams are still young subjects.
Therefore, it is likely that their notions and formulations would be drasti-
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cally altered in near future. In fact, the proofs of the sign-coherence and
the Laurent positivity in Part II suggest that a cluster pattern and a cluster
scattering diagram are regarded as one inseparable object, so that they will
be eventually integrated. On the other hand, the usefulness of the current
formulation of cluster algebras has been already established in various ap-
plications; therefore, the current formulation should also remain to be used
especially in practical applications to various subjects due to its efficiency
and simplicity. It is my hope that this monograph serves as a useful guide
in both perspectives.

We thank Ryota Akagi, Riku Fushimi, Mark Gross, Yasuaki Gyoda, Ko-
dai Matsushita, Nathan Reading, and Takamasa Yoshida for careful reading
of the draft, useful comments, and discussions. We also thank anonymous
referees for numerous comments and suggestions. This work is supported in
part by JSPS Grant No. JP16H03922, JP22H01114.

The errata and update will be posted on arXiv and the following webpage:

http://www.math.nagoya-u.ac.jp/ "nakanisi/index.html

Tomoki Nakanishi
December, 2022, Nagoya
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