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1. INTRODUCTION

Integrable systems in two-dimensional statistical mechanics and quantufi field
theories have been a subject of active research!). Considerable amount of such
sysiems have been found in boih fields as well as their interrelations. Among
these accumulations, restricted solid-on-solid (RSOS) models form an important
class in the realm of solvable lattice models. They possess remarkable structures
related to quanium groups at ¢ a root of unity, representation theory of affine Lie
algebras and rational conformal field theories, etc.

The AE}_’l face models?) are the RSOS models of such sort basicallly charac-
lenized by a triad (Afbl_)l, Y,£). Here n and £ are integexs not less than 2. We call
n the rank and { the level of the model. The Y is a Young diagram with the depth
< n and the width < £ It specifies the irreducible representation of the classical
part sl(n, C) of Ailjl in the usual way on the finite dimensional space which we
write as Vy. The model is an (generalized) interaction round face model in the
sense of Baxter®) having the following features.

(1) The site variables range over the level £ dominant integral weights of AS:_)I.
(11} A domiant integral weight b is allowed to occupy the right or lower neighbor

site of another one a only if

Ngy 2 1,

Niy = min [V(o(a)) ® Vy : V(a(b))), (1.1)

o : cyclic Dynkin diagram automorphism of A,(.Ll_)r
Here V(o (a)), for example, stands for the irreducible sl(n, C)— module whose
highest weight is the classical part o(a) of ¢(a). The symbol [ : ] denotes the
multiplicity of V(o(b)) in the irreducible decomposition of V(c(a)) ® Vy. In the
case the decomposition is not multiplicity free, the corresponding degree of freedom
is taken into account as the edge variable. Under these conditions a solution of
the Yang-Baxter equation has been obtained?). The construction uses the fusion
procedure®) piling the simplest case ¥ = (1) (a Young diagram with a single node)
up to the ¥ in question. The resulting solution provides elliptic parametrization of
the Boltzmann weights as the function of the speciral parameter u. At the critical

point the parametrization reduces to the trigonometric one originating from the



representation theory of the quantized universal enveloping algebra U,{(sl(n, C))
at g= e—':-"-?i .

In this paper, we propose a duality between the pair of the models correspond-
- ing to (AE,I_)l,Y,f) and (Agf_)l,‘Y, n). Here 'Y denotes the transposition of the ¥
along the NW-SE diagonal. We claim that the two models are equivalent to each
other with the spectral parameter u replaced by —u. Under some assumptions
“each configuration in one model can be mapped to that in the duality counterpart

having the equal statistical weight. A key to the configuration correspondence is

the following property of N}
NY =N, (1.2)

The left and the right sides are referring to the datas (Asll_zl, Y,£) and (Agl_)1 'Y, n),
respectively. See section 3 for the precise description of the level n dominant
integral weights ‘a and ‘b of Agl_)l. We note that the'quantity NY (1.1) also
appears as the fusion rule in A&l_)l level £ Wess-Zumino-Witien model. Therefore
(1.2) implies an equivalence of the fusion rule to the one with the level £ and the
rank n interchanged. Our proof of (1.2) actually relies on Verlinde’s formula®®)
expressing VY, in texms of modular transformation matrices.

By the consiruction, the duality naturally extends to the case of non-unitary
models where the relevant ¢ becomes ¢ = e+ with ¢ coprime to n + £. Based
on these facts, we explain curious phenomena concerning the 1-point functions

obsexrved so far in various cases®11:12},

These are physical consequences of the
complementary role of the level and the rank in the representation theory of affine

Lie algebras (cf. ref.7).

The paper is organized as follows. In the next section we recall the construc-
tion of the AS}_)I face models following ref. 2. The duality is formulated in section 3
between the models for the datas (Asll_)l, Y, £) and (AEI_)I, *Y,n). Their equivalence
follows from two assertions, i.e., the configuration correspondence and the propor-
tionality of the statistical weights. The latier is yet to be verified except for ¥
representing the N —symmetric (Y = (N)) and the N —antisymmetric (¥ = (1V))

tensors. Seclion 4 demonstrates the examples of the duality for some small values



of n and {. We depict the correspondence of the configurations between the dual-
ity pairs. In seclion 5 we discuss some consequences of the duality on the RSOS
I-point functions. Appendix is devoted to the proof of (1.2). We note that in the

simplest case ¥ = (1), our duality reduces to that found in ref. 8, which was a

motivation of our study.



2. THE A", FACE MODELS

Let us recall the construction of the RSOS model corresponding to (AS,‘_)IY,z)’).
Let P (n,{) be the set of level £ dominant integral weights of the affine Lie algebra
AE,I_)I. We shall call an element of Py(n,f) a stale. We set L = n + £. A state

a € Py(n,{) is wrilten as
a = (L-{-an_l —dg — l)Ao +(au —a; — I)Al + -+ (an_.z —adp-1— I)An_l, (2.1)

with a,’s obeying the conditions a,, def a, —a, € Zforall0 < p,v < n-1
and I +a,-q >ag>a; > > an_y. We extend the index of the fundamental
weights by seiting A, = A,;,,Vu and denote by o the cyclic Dynkin diagram
automorphim: ¢(A,) = A,y1. Let Y be a Young diagram with the depth less than
n and the width less than £. Qur aim is to build, in one to one correspondence
with V', a vector space V3 and an operator Wy (u) € End(Vy @ Vy),u € C such
that;

(1) The Yang-Baxier equation is fulfilled in End(V;°):

(1 ® Wy(u)) (Wy (‘LL + u’) ® 1) (1 @ Wy(‘u’))
= (Wy(u)© 1) (1® Wy(u+)) (Wy(u)®1).

(2) The space Vi has the direct sum decomposition Vy = Ba,pep, (n, ) Vy Jas and

the composition

¥ Wy(u x
V)as ® (W hoe Ve @ W "2 Ve @ e 5 (Ve arar ® (Ve

1s zero unless a = a',b=b,c=¢ and d = d'.

ab
Hereafter we shall wrile Wy ( u) =70 Wy(u)oi € Homg ((Vy Jas @ (Vi Dpe,s
dc
_ ab
(W )aa ® (Vy)dc) Je, Wy(u) = @a,b,c,dEP+(n‘t)W}’(d u) Note that Wy (u)
C
here corresponds {o a less general case Y = Y' of Wyy+(u) treated in ref. 2. The

ab
operator Wy (

u) gives 1ise lo a solvable statistical mechanical model, which
de

we shall now explain.
Consider a two-dimensional square laitice £ of size, say, (M +1) by (M’ +1).
To each site we attach a coordinate (4,7)(0 < i < M,0 < j < M',i,j € Z)

s
e



so that the points (0,0),(0, M’),(M,0) and (M, M') signify the NW, NE, SW
and SE corner of L, respectively. We also assign a coordinate (i — 1,;) (resp.
(1,7 — 1) ) to the vertical (resp. lorizontal) edge between the sites (i — 1,7) and
(#,7) (resp. (4,7 — 1} and (4,7)). We introduce two kinds of physical degrees
of freedom, one sitling on the siles and the oller on the edges of £. The site
variables {a‘(ﬁ)}OSigM.OSJ'SM' take their values in the set Py(n,{). On the other

hand the variables {a("“%i)} (resp. {o:(" =

3
? }ogigM.xgng' ) on
the vertical (resp. horizontal) edges range over the base veclors of (Vy)n(.-_u)a(u)

1<i <M, 0< <M

(resp. (Vi )atis-natiy )- Thus b € Py(n,£) is allowed to occupy the lower or right
neighbor site of another state a if and only if dim(Vy)ab > 1. By a configuration
on £, we mean an assignment of all the variables al/), oli=37) and ol!i-%) on £
salisfying the above constraint on every edge. The elementary interaction takes
place among the eight round the face (Fig.1). Here a is a base vector of (Vi )as,

etc. To this configuration round the face we éLssign the (a®f,6®~) matrix element

ab) | agp ab
Wy ( 1.-.)ts of the operator Wy ( u) as the statistical weight. The partition
v

dc de

function of the system is then given by

QUi+ G+l i+

u) . (2.2)
<L) GHie

Here the factors involving aGM'+1) or a{M+1J) a1e {0 be understood as 1. This

(a(:‘i) glii+1)

ali+13) J(i+1j41)

= T I w

configurations 0Si<M
0<i<M

defines an (generalized) interaction round face model®) whose Boltzmann weights

obey the Yang-Baxicr equation.

d P ¢

Fig.1 A configuration ronnd n [ace. lis Boltzmann weight is denoted by

ol
a b :
Wy 'u. .
d ¢
by




Before going to the descriptioh of V¥ and Wy (u), we need to prepare further
notations. Let (pg,V(a)) be the finite dimensional irreducible representation of
sl(n,C) with the highest weight @, the classical part of a. Thus in particular
V(A1) becomes the space of the vector representation of si(n, C), which will be
denoted as A4 = @;;306)“ €ex o (0,...,0,1,0,...,0). We will also regard the

—— N

A n-1—A
dominant integral weight (2.1) as (ag,...,an—1) belonging to A. A sequence p =

(@) o of the states al¥) € Py(n,¢) is called an N—admissible path from a 1o
if al® = a,a™) = b and ali) — ali-1) = ex, for some A;(j = 1,...,N). We put
e,(,N) =€), ® Qe € A®Y In particular, we write e, to mean the 1-admissible
path from a to b. Set (VV),, = GBPCB_S,N), where the direct sum extends over all
ihe N —admissible paths p from a to b, Notlice that (ffN)ab c A%V,

We invoke the fusion method to construct Vy and Wy{u) out of the simplest
case ¥ = (1). In this latter case, the dimensionality of the space (V{1))as does not

exceed 1 and we have

Ce,, ifb—acA,

Vi)es = { , 2.3
: Mw)es 0 otherwise. (2.3)
ab
Thus W(l)( 'u,) becomes a scalar operator:
dc
ab ab
W(l)( u) €ab @ €pe = B( ‘!L) €ad ® €4,
c de ‘
where the Boltzmann weighis in the r.h.s. are given as follows®) (u # v).
a a+te, 1
B( u) = [ _!I_U]’
ate,a—+ 2e, [1]
B ( ’ e u) = e[—CLW—-H—]-[El €= =1 (2.4)
ate,ate, +e, [a’“’][l]
a a+e, ) @, — ]
B | o=l 2
(a.+elta+e#+u [a;“,]

Either sign € = 21 is allowed so long as the choice does not vary depending on

a,f,v. The symbol [u] denotes the elliptic theta function with nome p (-1 <



p < 1)
' 2
[v] = 2pM/Bsin T2 H(I - 2p"cosﬂ + )1 - p*). (2.5)
‘ L5 L
Using the coefficients (2.4) we introduce the elementary operators W;(u) €
Exd(VM)(i=1,..., M - 1) by (M is assumed to be sufficiently large)

NOSING
m(u)ea(o)a(l) R @ Ca(M=1) (M) = Z B(

W) (2.6)

o (g G+1)

X)) @ - D€ i-ngy ® Cat(Ngli+1) @ > @ €y (m—1) (p),

where the sum is taken over a'(*) Py(n,£) with the condition dim(’[f(l))a(a_l)a.(.-)

= dim(¥(1))ar (0ati+1) = 1. They satisfy the Yang-Baxter equation:
Wilu)Wisa(u + w)Wi(') = Wigr (0 )Wi(u + v )W 4y (w).

Let Y = (y1,%2,...,%n—1) be the Young diagram that constitutes the basic dats
:4
(A,(il_)l, Y, £) of the model. Here y; denotes the length of the i—th row of ¥ and is

assumed to obey

£>2y1 2 2> yn>0 {for some 1<m<n-1,
(2.7)
¥y =0 Hform<j<n-1.
We set N = y; + - 4 y,_y, which is the number of the nodes contained in Y,
Now we are going to define an operator F ¢ End(ffN) which is analogous to the
Young symmetrizer for a standard tableau on Y (cf. appendix A of ref.2). We
introduce an auxiliary parameter z and assign v;(z)(i = 1,...,N) to each node i

of Y as follows.

vl(z),...,vN(z):0,1,...,y1—1,z-1,z,...,z+yz——2,...,

(m—l)z—m—{-l,(m-—l)z—m+2,...,(m——1)z—m+'ym.

def

Usiﬁg the elementary operator W;() (2.6) and vi; = v(z) — v;(z) we set

P(z) = Wl(”Zl)(Wz(Us1)W1(vaz)) (WN—1(1)N1)'--W1(1:NN_1)). (2.8)

v



It turns out that F(z) is vanishing as z*Q(1) in the limit z — 0, where « is the
number of pairs of the nodes on the NW-SE diagonals of Y. Removing this {factor
we define F' € End(VY) as follows.

F = lim F(z) H Bii(2)7h

¥i ¥ ISll(Jsm (2'9)
Bii(z)= [ TG -z —1)+» 4.

r=2a=1 '

One can check that [T, ¢;; <, Bij(#) has precisely k zeros at z = 0. In the Limit
L — c0,| g, |— oo, the F tends to cr x(invertible element), where cr is a Young
symmetrizer for a standard tableau 7" on Y (cf. ref. 2). Our Vi is defined to be

the image of V™ under F.
(Vi )ab = F((V™ )ap). (2.10)
The operator Wy (u) € End(V?") is also made from the following composition of

the elementary operators.

Wy (#) = wywy-_1 w1,
w; = W;(ul - u,-)W,-+1(uz — 'u.,-) e Wi-l-N-—l(uN - 'u,-), (2.11)
U = u 'U.'(U).

By the comstruction, the Wy (u) is shown to satisfy the Yang-Baxier equation in

End((VN)®3%). It can be also verified that

ab
Wy (

de

0) (W )ab ® (Vi ) € (W Jou @ (Vi )

Thus Wy («) indeed belongs to End(Vy ® Vs ). In general one has to fix base vectors
ab

de
been done for some non-irivial cases in ref. 2. Although, the general case is still

@ of (Vy )as, elc to write down the Boltzmann weights Wy(

af
u) . This has
dy

to be worked out.

Finally, let us include a remark on the dimensionality of the space (V¥ )ab-

Based on the invariance of the Boltzmann weights under any cyclic Dynkin diagram

=

™



automorphism o, it has been conjectured as?) ( see (1.1) )

dim(Vy )ap = NX, . (2.12q)
s defl . —=Y

sz = mlnﬁNﬂ(a}a(b)! (2‘126)

Moy & V(a) ® Vy : V(). (2.12¢)

Here Vy is the irreducible s/(n, C)—module whose highest weight is the classical

part of

(E—=y)ho+(y1~ya)A+ -+ (Va2 —VYn-1)An-2+Yn-18n-1 € Py(n,£). (2.13)

The NY, is known as the fusion rule®®) in ASLI_)i level { Wess-Zumino-Witten model.

Fixing a,b € P.(n,{) and Y, one can show that dim(Vy )ap 1s equal to T\f{b for L

sufficiently large.
lim dim (Vi )op = NV op. (2.14)

Lo

The quantities N, and N2, will be described in detail in the next section.



3. DUALITY

Having described the fusion RSOS models, we now turn to the duality among the
: (1)
pair (4

n—17

Y,{) and (Agi_)l,'}’,n). We claim that the corresponding models are
equivalent to each other with the spectral parameter u replaced by —u. In order
to establish this one has to verify the following which we will discuss separately in
the sequel.

(1) Correspondence between the configurations.

(i1) Proportionality of the Boltzmann weights for the corresponding configurations.

3.1 Configuration Correspondence.
Firstly, let us explain a way going from Py(n,£) to Py (£, n). For this purpose
we introduce Young diagram representation of the dominant integral weights. Let
y(nt) = {(gla“'agn) I g € Z)gl 2 2 In 2 0191 — Gn S f}: (310.)
Yo = g1, 92, )| g €Lt > g1, ¢ > gi1 Vi, ¢s = 0 for i 3> 1} (3.1b)
be the sets consisting of infinitely many Young diagrams. For X € Y op yl=d)

we will write |X| io mean the number of the nodes contained in X. We define the

maps Dy : Yy Py(n,f) and Dy Y9 Py(n,£) as follows.

-Dul((gl) e 1971))

= (E -0 -+ Qn)Ao + (91 - 92)A1 + -4 (g,,_l - gn)An—l, (32&)

Dui((91,92,---)) = (£ = g1) Ao + Z(gi — giy1)Ai (3.28)

Note that the sum in (3.2Dh) is actually finile and the convention Ay, = A; has
been implied. By the definition, the set I s the disjoint union of the inverse
image YY" of @ € Py(n,£) (2.1) under D,;.

y(n[) = UaEp+(n,[) yg,n[)‘l

YD ={(ag—n+14+ka; —n+2+k, ... an1 +k) | k+an_y € Tro}.
(3.3)

In view of (3.2a) we naturally extend the Dynkin diagram automorphism o(A,) =

A, 41 to the operation o : Y(* — Y9 a5 follows.

o((91,--+192)) = (gn + 4,91, -+, gn-1). (3.4)



Suppose that k; appears k; times {1 <i < s < n) in the sequence g;,...,gn and
0=hy <h; <---<h,. Weihen define the map T, : V("0 Yleon) by

Toel(gr--19m)) = (915,60, 0,0,...),

(3.5)
g:zk1+'+k, fOI hJ'—1<iShJ

This is the transposition of the Young diagram along the NW-SE diagonal. Now

consider the following scheme of these maps.

yro) Ty yleom)

ant lﬁ‘“ (3.6)
a € Py(n,?) Pi(t,n)

By this ome can associate the subset f)[,"(Tnt(yE“‘))) C Py(4,n) to each a €
P (n,0).

Secondly, we explain an effective tool to evaluate the multiplicity _1\7:; in
(2.12¢c). This is known as the Littlewood- Richardson rule®). In our context (2.12),
It describes the configurations (al'7), ali+47) g(i+15)) gpg (ali), alii+3) qii+1))
in terms of the Young diagrams. Below we assumc that ¥ — (i, s ¥ao1),

N =y + 4 yo_1 is as given in (2.7) and a,b € Py (n,£). The procedure goes

as {ollows.
Step 1.
Fix an element X = T1ye.e, ) € J)EM). Then N_Zrb = 0 unless there exists

(
Z=(z1,...,2,) € yg"‘) such that d; &' Zi—zi 20forl1<i<nandy & =N
(ie. |Z] = |X|+|Y]). i such Z exists, it is unique. |
Step 2.

Take the Z as above. Let ry,..., 7y be an array of integers involving i (1 < i < n)
for y; times. We iunscribe Pdidotdi i (1 <2<, 1< 5 < d;) on the node of Z
located at the i—th row and the (2: — 7+ 1)—th column. The following conditions

must be satisfied.
(1)

Tdytotd; S oo S Tdytotdi_ 341 for 1 <i<n.

(2) In every column of Z, the appearing 7,’s stnictly increase downwards.



ck>cd> >k for1<k<N,

— —_— —_— m

=§{s|1<s <k, r, =5}

Step 3.

-

N, = the number of the possible ways to do Step 2.

This determines the muliiplicity Wi’b. Combining it with (2.12b) and (3.4) one
gels N:b

Bzample. Ny for AY))Y =(2,1,0),¢= 5 and a = 240 -+ 2A; -+ As.

Take X =(3,1,0,0) € J’?s . The possible ways to do Step 2 above are

V(1] .

[1iv] Il ] [ ] |

Ifig.2 T'he possible ways of doing Step 2 for n =4, =5X = (3,1) and ¥ = (2,1).

According to Step 3 we find tha.t Na.b =1forb=3A1+2A;, Ao+ Ay +3A;, 280 +
2hy + A3, 280 + Ay + 2Ag, Ny = 2 for b = Ap + 2A;1 + Ay + Ag and Ny = 0
otherwise.

Thirdly, we stale a duality property of the fusion rule NY,. For a € Py(n,?),
pick up a Young diagram X € J’a"t). Assume that NY, > 0, hence Na,,' > 0. Then
there exists a unique Z € J’g“‘) as described in Step! above. Denote Dy, (T, (X))
and Dy (Th ((2)) € P8, 2) by ‘a and ‘b, respectively. The crucial point we find

in the configuration correspondence is the following property.
N]b - Nl (3‘7)

The fusion rules in theleft and the right sides are referring to the datas (AE:_E“ Y, )
and (Agl_)l, ‘Y, n), respectively. The proof has been done in Appendix by an exten-

sive use of Verlinde’s formula®). The duality property (3.7) together with (2.12a)

t7



lead to
dima (Vy)ep = dim (V‘Y)'a'b- (3.8)

In the sequel we explain the configuration correspondence between the models
for (Asll)l,Y £) and (Agl_)l,‘Y, n) admitting (3.8). Consider a configuration on £
in the mode] (A 1,Y £). As presented in section 2, the relevant physical de-
grees of freedom are the site variables {a U)}0<=<M 0<i <MY the edge variables
{a(’“?’)}1<;<MU<J<M, and {a(lJ_i)}(J(n(Ml(;(M' The former belongs to
P, (n,{) whereas the latter iwo range over the base vectors of (Vi )ati-11)005) and
(V¥ )atis-1aciiy, Tespectively, By the definition, the site variables have to be chosen
so as to satisfy dim (Vy ), i-157,¢) > 1and dim (Vy Jatii-ngts > 1 on every edge
on £. Upon fixing a Young diagram representation X(°0) ¢ yfl':oﬁ]), we have con-
sequently a unique assignment X (1) ¢ y‘“,,g that obeys [X(I/+1)] = | x(i+1)| =
|XCDl + N (cf. Step I). Now consider the model (AE )1,‘Y, n} and the relevant
physical variables which we write as *al'/) ta(i-37) and ¢alii-3). We put them
on a Jattice ‘L, the transposition of £ with respect to the NW-SE diagonal. The
corresponding configuration is then built by setting ‘alif) = bln(Tnt(X(""))) €
Py(€n). Notice that (3.8) guarantees that such a state configuration is indeed
possible. It also assures that there are as many possible assignments for the edge
variables ‘ali=37) and ‘ali’= 1) as ot 1) and oli-37) in the model (A,(ll)l,Y, 1),
respectively. To summarize, given ali) ¢ P, (n,£) in the model (Asll_zl,Y, £} there
exist a Young diagram representation X7 ¢ yf:(lf,.)) that is uniquely determined
by the choice X(°9), The state configuration is mapped to a possible assignment
in the model (Al 1,‘}’, n) on ‘L through ‘o) = D, (T, ,(X0))) € Py(t,n) .
The corresponding edge variables therein are allowed to assume the same number
of choices in both models. In the nexi section we will exhibit several examples of

the configuation correspondence.

3.2 Statistical Weights.

Here we shall only consider those Y representing the symmetric tensors (¥ =
(N)) and the anti-symmetric tensors (¥ = (1™)). For these cases we prove that
the statistical weights, if the spectral parameter u is negaied, are proportional

for the corresponding configuraiions described in 3.1. Firstly, consider the sim-



plest case Y = (1) (the Young diagram with one node). Let a,b,¢c,d € Py(n,{)

be the four states such that Ni;) = N,S:) = Nﬂ) = N‘Ei) = 1. The Boltzmann
ab -
weight B(

u) of the state configuration round a face has been given in (2.4).

dc
As explained in 3.1, onc has accordingly the states ‘a,’b, ‘c,'d € P (£,n) so that

N((:?b = Nl(;.)c = Nt(::)d = Nl(.}*).: = 1. (Note that (1) = (1).) Under this correspon-

dence the following relation is valid®).

ab tatd.

B w) = (=)o ple)( -—'u) (3.9)

dc

thic

wlere we have cxhibited the rank and the level dependences. The sign factor
(~)*=5< here can be absorbed into ¢ in {2.4) and actually irrelevant. This is
because the two choices ¢ = 21 lead to the same probabilities for the configurations
on L. In this way (3.9) assures the proportionality of the statistical weights for
Y =(1).

Let us proceed to the case Y = (N), 'Y = (1"). We compare the statistical
weights in the models (Asll_?l,(N),E) and (Agl_)l,(lN),n). A simplifying feature
here is that we still have dim(Vy )ap, = dim(Viy )eqep < 1, hence are left with the
unique choice for the edge variables. (See (4.1).) We illustrate the idea of proving

the proportionality using the example Y = (2),'Y = (1?). By the construction in

ab ab

section 2, the Bollzmann weight I/V(z)( 1.-,’) for the face configuration ( ) in
c de

the model (Astl_)l, (2),£) 15 proportional to

(3.10)

d c

Here each square signifies the elememiary weights B{") (2.4) with the spectral

parameter taking the value specified inside. The figure represenis the quantity



obtained by making the product of these weights and taking the summation after-
wards with respect to ihe site variables marked by the solid circles. By means of

(3.9), one can also express (3.10) in terms of BU™)g us

'd

(3.11)

The squares now stand for BU"V’s in place of B™*)’s. With the aid of the Yang-

Baxter equalion this can be rearranged into the form

(3.12)

'b

(ot
a’d
which is proportional to the Bolizmann weight W3 (i

- u) in the model

b'c
(Agf_)l,(lz),n). The case ¥ = (N) for N > 2 can be deall with in the same
manner.

For general ¥ other than ¥ = (N) or (17V), the proportionality of the statis-

tical weights are left as a conjecture.

€7



4. EXAMPLES

Consider a state configuration {al}oci<nro<i<mr a) € Py(n,L) on the M x
M lattice £ in the model (AS:I—)UY! L'j. It may be regarded as a collection of the
paths of the stales (a,(j))?f;l'M' going from the NW corner al) = al® right or
downwards to the SE corner aM+M) = ™M) In each siep one has to salis{y
the condition N, 4y = 1. In view of this we shall depict the configuration
correspondence in terms of such paths. The examples will include the Young
diagrams of signature (2,1) (a hook diagram) as well as (1),{2) and (1%).

When Y = (V) or (1), the {usion rule NY (2.12D) is determined to be 0 ox

1 via the following rule.

NY, is zero unless b—a =y, + - exy for some 0 < Xy,..., An <n—1.

I{ b — ais of this form, we have

1 ifa-der, +-+exy € Py(n,f) foralll <j <N
(V) (1} (i)
NG, ' = and all the permutations T of N letters 1,..., N, (4.1a)
0 otherwise,
v if all the A;’s are distinct
N {1 if all ; : 1
ab 0 otherwise. : (4.16)

These are casily established by combining the Lit{lewood-Richardson rule and
(2.12b) as explained in section 3.1. Note that (4.1) reduces to (2.3) when N = 1.
4.1 (AD,Y,3) and (4,47, 2).
We label the the states in P.(2,3) and Py (3,2) as in Fig. 3. Here the roman
(0.2,0)

3o [

le 2L 3b  da 2b DLBJ 5b
$ — 0 —D— [T /\ / \
(3.0) (03) 10 g———H——FF 6o
(2.0.0) 4b (00,2}
P, (2.3) P.(3.2)

Fig.3 Labelings of the clements in Py (2,3) and J,(3,2). In P.(2,3), the coordinate (3,0)
signifies n dominant integral weight 3JAp - 0Ag, ele. A bond is pui belween J and
ke Pp(2,3)0f and only if N}:) = N:}) = 1. In P,(3,2), an nrrow is pul {rom ; to k
il and only i N;:) =1,



characters a,b, etc signify the Z;— (resp. Z3—) equivalence classes of P,(2,3)
(resp. P,(3,2)) under the automorphism o (cf. Appendix). Consider an element
la € P4(2,3), for example. Depending on the choice of the Young diagram repre-
sentation in ygff'), there are three states la, 3a, 6a € P,(3,2) that correspond to
la = 3A¢ € Py(2,3) under the scheme (3.6).

D23 Ty Dy,
la— ¢ +— ¢ —la=24A

.P.|.(2, 3) =] la B t—3 D:l — Ja = 2A1 c P+(3, 2)

la — — — 6a = 24,
The case Y = (1). TFrom (4.1) with N = 1, one has the following paths.
4

la 4a la 4a la a la

Pi(2,3) - X X X >< >< >< oo (4.20)
3b 2b 3b 2b 3b 2b 3b
la 6a Ja la ba 3a la

o XN
: 5b 26 45 5b 2b 4b 5%

Here the paths grow from left to right following the bonds connecting the states.

For example, one has Nl(i)% = NS(;)“ = Né;)% = 1 but N{:)u =0, etc in (4.2a).

Under the scheme (3.6), each path in (4.2a) is mapped to the one in (4.2b) lying

in the corresponding position. The paths consisit of the following fundamental

patterns.
la 4a la ba
.S
(48,(1),3) (457,(1),2)

The other patterns in (4.2) can be deduced from these by using the symmetry
NJ-),: = Nf(j)v(k) (see (2.12)). In what follows we shall exclusively exhibit the

identical structure of the fundamental patterns as above.

The case Y = (2).
la la la 3a

36X3b 5bx4b

(A%, (2),3) (A, (12),2)



10d  13b

P.(3.4)

150

4.2 (AV)Y,4) and (4L, 1y, 3).
The labeling of the elements in P(3,4) and P,(4,3) is shown in Fig. 4.

P.(43) 100

- Tig4 Labelings of the clements in Py (3,4) and Py(4,3).

Likewise in Fig. 3, the roman characters stand {or the Z3— and the Z4—equivalence

classes.

The case Y = (1).

la

13b

The fundamental patierns are as follows.

/Sa

/
a

(A7, (1), 4)

2b

14c

10d

Be

la

7b

19c

8d

2e

'y

20a

2b

Pc

13d

Kol

i4e

(A", (1),3)



The case Y = (2).

la 15a la 10a
13b 4 9b 7b 17b
4c b¢ 19c¢ Jc
12d 3d 8d ,’/ 5d
7e e 12e 15e
(AD) (2),4) (A§?,(1%),9)

Finally we present an example including the siluation NL > 1

The case Y =(2,1). The fusion rule is calculated through the method in 3.1.

As the result we find the following fundamental patterns.

1a Ta
13b 7b
4c 19¢c
12d 8d
/e 2e
(43),(2,1),4) (457, (2,1),3)

In this diagram, double lines represent that the fusion rules in between are equal

to 2 (c.g. NIEY =2 for (n,8) = (3,4)). Single lines show that they are 1.

Tele

e
=iy



5. LOCAL STATE PROBABILITIES

Let us discuss the physical implications of the dualily detailed so far. The quantity
of our interest here is the 1-point function, which we call the local state proba-
bility. By definition, it is the probability of finding a site variable, say a) in a
preassigned stale a € Py(n, ).

Pla)= lim zZ-1 Z Og ot

M, M'— o0

configurations _
.s - i+ itdf
alii)  q(i+1) | alii+3) oG+ 34D (5 1)
I w w ,
0<i<M PSR EEPPIC R T AR VAN PINCERES D
0<; <M’ ,

wherein Z is given by (2.2). There are some regimes of distinct physical behaviors
depending on the values of the spectral parameter u and the elliptic nome p (see
(2.5)). Here we shall exclusively consider

Regime II : 0<u<tf2, 0<p<],

Regime Ill: —n/2<u<0, 0<p<L. 52)
The LSPs are exactly computable by the corner transfer matrix (CTM) method?)
if the Yang-Baxter equation and some additional conditions are satisfied. The
results turn out to be the functions of the nome p alone and dependent on u
only through the choice of the regimes. A remarkable feature is that the LSPs
are neaily described by the coset construction of the Virasoro modules!® (not
necessarily irreducible ones), which .we now explain quickly.

Let ¢ O H be a pair of an affine Lie algebra and its subalgebra such that the
highest weight representations of M are labeled by a € P, (n,£). We write x?, X3
to mean their characters for integrable representations with the specified highest
weights. Then the character decomposition describing the G/H coset construction

has the form
x{ = beexas (5.3)

where b;,, the branching coefficient, gives rise to the character of the so-called

GXO-Virasoro &1gebram). Our LSP (5.1) is related to the above construction in

3
L%



that the CTM method leads o the following expression.

bfaxzi
Pla) = G
X¢

(5.4)

principal speciahization

Note that (5.3) ensures the correct normalization; 3", P(a) = 1. In (5.4) the
argument of the specialized characters is chosen to be a suitable power of the
conjugate nome of p. The highest weight ¢ of G is determined by the boundary
condition in (5.1). Here we are not going into the details about that matters. So

far the following cases have been treated along this line.

models regime II regime III
(A, (W), £)12) A3 > AV @AM 5 4M  (550)
L 1 1 (- N N 14
(421,09 AP 04D, 54D 4D 4D S 4D (55
n—1 1 n (-1 1 4
(A0, (), AV AW 54D (5.5

{— N N £
(4225, (17, ) Ao al 5Al, (559
£-1 1 £
Here we have exhibited the relevani coset pairs ¢ O H with the levels of their rep-
resentations. Excepl for the cases (Agl), (N),£) and (Astl_)l,(l),!f), the latter two
cases (5.5¢) and (5.5d) are conjectures emerged from the computer experiments.
(Further results concerning the non-unitary cases are also available!'), where L in
(2.5) is replaced by L/t with ¢ coprime to IL.)

Now recall the duality of the models (ASLI_)UY, £) and (AEE_).L,‘Y,TL). They
are equivalent to each other if one replaces the spectral parameter u by —u. In
view of (5.2) this implies the equivalence between regime II (resp. III) of the
model (Aftl_)l,Y, ¢) and regime III (resp. II) of (Agl_)l, ‘Y,n). For the simplest case
Y =*'Y = (1), such an equivalence was effectively used to determine the LSPs as
in (5.5b)%),

Notice that in regime II of (5.5a) the coset pair, hence the LSPs are indepen-
dent of the degree N of the fusion. (The dependence only enters in the description




of the ground statc struciures.) This is a curious phenomenon in view of that the
calculation with the CTM method becomes highly non-trivial for general N,
Our duality for the case ¥ = (1) provides a simple explanation of this. Namely, it

attributes the problem to regime IIl of the model (A(l) (1), 2) (5.5d), where the

{~1
N —independence property is actually enjoyed! In this way the curiousity in regime
11 of (5.5a) is found to be a simple consequence of (5.5d) through the duality.

Then what is the mecchanism responsible for the N—independence in (5.5d)
? Here we only point out that the indenpendence property can be restated as a
(1)

symmetry of the LSPs under ¢; the Dynkin diagram automorphism A2, To ex-

plain this, recall that the data (Asllll, Y, !) in general refers Lo a finite dimensional
icxeducible sl(n, C)—module Vy (1.1). Denoting Y. i)y (¥1,.++1Yn-1), its highest
weight is given by the classical part of D (Y) Itzy: € Py(n,v1) (see (3.2)). In our
casc of Y = (17}, this is identical with the N —th fundamental weight An, which
is just related to the N = 1 case Ay by Ay = o™ ~1(Ay). Thus the invariance of
the LSPs under the change of N may be viewed as reflecting the Dynkin diagram
symmetry.

Turning to the general case (Asll),]’, £), such a feature can also be observed
in the following conjecturc due to Date, Jimbo, Kuniba, Miwa and Okadold) for
the coscl pair describing the LSP in regime IIL

Ao A2 o0 Al > A, (5.6)
A"U k-‘j_ kr f

Here ihe levels ko, ...k, (ko 4 - + k, = {) are specified {from the diagram Y as

follows.
- , -
I
(|2 - ](I--t-
‘lr l
n - kz_._y.
1

—— kr-—b—

Fig.h Lhe Young diagram ¥ of the data (/i“) Y, 0.

n—11 1

¢}
e



Note that all the cases of (5.5) for regime I are included in (5.6) as the special case
r = 1. For some small values of n and £, the conjecture (5.6) has been checked also
for the Young diagram ¥ = (2,1) by the compuler experiments!®), The Dynkin
diagram symmetry may be thought io be reflected in the fact that ihe levels
koy...,k, are determined from ¥ independently of the depths dy,...,d,. They
appear only in labeling the ground states in terms of one dimensional sequence
of the states'®); i) =~ =00 (6,),6, € Pi(n,k,). We remark that a similar
Dynkin diagram symmeiry seems to be valid between the DI vertex models
associated with the vector'®) and ihe spinor*®) representations.

After completing the paper, ihe anthors were informed of ref.17 where similar

concepts 1o the dualily were studied in the Hecke algebra.



APPENDIX PROOF OF (3.7)

Let us prove the duality (3.7) in the fusion rule NY,. In order to treat the Young
diagram Y = (91,...,¥n-1) on the same footing as a,b € Py(n,£), we hereafter

identify il with the element (2.13) in P, (n,{). We exploit Verlinde’s formula®

Sy ¢SaeSpe
NY = Z _Z_TS'____&, (A.1)
c€Py(n)l) #e

where the symbol ¢ denotes the empty Young diagram corresponding to £Ag and
* stands for the complex conjugate. See ref. 6 for various aspecis of this formula.

The (Sab)a,b€P+(n.£)
of the AELI_)l level £ characters*®) (L = n + £).

is the unitary matrix representing a modular transformation

,i'n.(n— 1)/2

Sab = Sia = 7=y det (" oguwgn-ny
nL"-

(n—1)/2 A2
—_ C—‘nﬂ.n_jbn_j, det (Caﬂn_:bv"-l)DSp,uSn-—lg ( )

" /nLn—l

C — 6_2,”'/1;.

Here a,’s and b,’s are the coordinates uniquely specified from a and b by (2.1)
and the extira constraints Eo<p<n—1 a, = EO(p(n—l b, = 0. Under the cychc

Dynkin diagram automorphism ¢(A,) = A4y, the Sy transforms as {ollows.
So'(a,)b — (__)1;—16—21:'&03“['" (A3)
As a result, the fusion rule N}, enjoys the following symmetry.
(Y

Y _ nY — yo(¥)
Noy = No(ayory = Nog(): (A.4)

We shall call two elements a,b € P, (n,£) Z,—equivalent if b = o*(a) for some

0 <k <n-—1 Accordingly, (A.1)is rewritten as follows.

: 1 S o(0)Sart( i
NL= ). 3 otle), (A.5)
cermorzn ™ ocignn Spob(e)

where the outer sum extends over Z,—equivalence classes and m,(c) is the multi-

plicity of ¢ occuring in the o—orbit ¢,a(c),...,o" *(¢). Eliminating o* by (A.3) we

$r
'S



gel an extra phasc [actor ¢72*k(80+Yo~bo~do) {Jnder the assumption NY > 0, this
is equal to 1 since we have ag € Z 4 by — %]XI,X € J’S,“[),Yo €EZ4¢y— %|Yl,bo €
Z+¢o~+1Z],Z2 € Y'Y and |Z] = |X| + Y] (cI. Step 1 and (A.10)). Thus (A.5)

reduces Lo

N];, - Z n S]’.:SGCS;C- (AG)
: cCPy(n,l)/ %, 7n,,(c) Soﬁc

The following fact simplifies the proof of (3.7).

Lemuna 1. There is a one lo one correspondence between the Z, —equivalence
classes Py(n,t)/Z, and the Z;—equivalence cIassedP.,.(l,n)/Z(. Suppose that
¢ € Py(n,£) and ‘c € P, (£,n) belong o the corresponding classes. Then we have

mn(c) = m(tc).

Proof. To see the former part, recall ithe séheme (3.6). With each a € P,(n, ),
there is associaled a subsel ﬁg,l(T,,t(,)PE‘“‘))), which forms a Z;-equivalence class in
Py, n). Varying a, these subsels cover P.,.(C, n) while 0*(a)’s for 0 < k < n —1
are mapped into the same Z;—equivalence class. Hence {he assertion holds. To
verify the latter part, assume that mn(¢) = s for some positive integer 5. Then n
is divisible by s and ¢ = ¢®Ag + -+ - 4- ¢~ 1A, _1 takes the form (.. ) =
(ag,...,ay,... 1 @1y, @, ). Here a; € T, 5 = n/r and r is a divisor of n. Take
NLIERRR R St 2

1-si »—th
a Young diagram representation C' € 2™ with the depth less than n. See Fig.

6. By ihe transposition we see thatl my('c) = 3.

~ |

: 1| r‘.—“\" 1
X | 0y r
] 1
! L |
' ,,"’ oy ]
2] ! - - !
[ '
I
T |
e r
&, !

Fig.6 "The Young dingram ¢ tepresenting 2, (C) = c"Ag - 4" 'A,_, € Pi(n, ) with
the coeflicients having the form (" ) =
(n‘;....,n',,...,r'r,,...,n',).
S P

I“HL -—lh



In the sequel we shall show

Theorem. Let ¢ and ‘¢ be as in Lemma 1. For a,b such that NY, > 0 and ‘a,'b

as described in (3.7), we have

(ni) o(né) o(nt)” ({n)" o(fn)* o(tn)
spOsltsi sEn) s

= p2iree Otate Pipee . (A7)
(nt) (in)-
Sdrc S"¢"C

Here we have exlubited the opposile level-rank dependences on the both sides. By
virtue of (A.6), Lemma 1 and the fact that N} is real, the duality (3.7) follows

from Theorem. To verily (A.7) we need a few Lemmas. The first one is

Lemuna 2. ((1.7) of ref. 9.} Let X = (z1,23,...) be a Young diagram, ‘X =
(‘zy,‘z3,...) beits transposition and z, < £ and ‘zy < n. Then the n+{ numbers
2y +n—p(l < p < n)yn—14v—"*2,(1 <v <{) are a permutation of
{0,1,...,n- £ —1}.

Proof.  Comsider an n by £ reclangle containing X. Starting from the bottom
left, we assign the numbers 0,1,...,n -+ £{ — 1 to each edge on the boundary line
separating X and ils complemenl. See Fig. 7. Those atlached to the vertical
edges are z, --n — 4 (1 < p < n). On the other hand the numbers appearing on

ihe horizonial edges are by transposition
n+f-1)=('z, +L—v)=n—1+v-"g,

for 1 < v < {. Ience {ollows the Lemma.

e
.

n %?/{/5
ﬂ?:’

k=

[ig.7 The n by £ rectangle, The Young dingram X contained therein is hatched. n = 5, ¢ =7
and X =(5,5,1,2).



Lemma 3. Let { be as in (A.2) and define & symmetric I by L matrix Q by

0= _1_6_"“'(5—1)(L+2)/4L(Cgv)

\/E 0<pu,w<L-1" (AB)

Then we have det @ =1 and ! = Q*,

Proof. The latter assertion is obvious. The determinant is of Vandermonde’s

type and is rewritten as

9L{L—-1) ) W(V _ #)
det 2 = \/ 7L sin ——L-——

0<pu<v<L~1

This is shown to be 1 by considering the involusion properly of & modular trans-

formation for the denomenator of the A(Llll characters.
There is a simple relation between the matrices S(™4) and 54",
Lemma 4. For a,b € Py(n,£) let X = (zy,...,2,) € ") and Z = (z1,..0,2,)

€ yﬁ"" be the Young diagram representations with z; < £ and z1 < L. Define
‘a,'b € Pi.(£,n) by ‘e = D (T, 1(X)),'b = ﬁln(TM(Z)). Then we have

S(:t) t axi
a =4/ = et X112
ser TVt (“49)

Proof. By the definition, the coordinates a,’s of a obeying E:;; a, = 0 are given

as
1 n-1
ﬂ,‘u:m#.}.l_#-—;le"' 2 ! OS}LSR—I. (A’loa’)
See (2.1) and (3.2a). Similarly, denoting the transposition Tat(X) by (*z1,%23,...),
we have
. . 1 £—-1
a, = 22,,+1—'V—E|XI+—2_', 051’/3["‘1 (A.J.Ob)
Define the sets T and T of integers by
I'={apn_1+2, | 0<p<n—~1} (A.11a)
T:{L—l——’zz—’a,,t_l[0_<_u§£—1}. (A.110)

Using Lemma 2 and (A.10) we see that T and T are disjoint and JUT = {0,1,..., L—
1}. Replacement of X by Z yields by(0<p<n—-1),%,(0<v<t— 1) in the

¢d

£



same way as in (A.10) and also the following seis J and J satisfying J U J =
{0,1,...,L -1}

J={bunc1+ 2z, | 0< p<n-1}, (A.12q)
J={L—-1-'2;='b 1 |0<v<t-1}. (A.120)

Now consider the {ollowing identity for the symmetric unimodular matrix  in

Lemma 3.

det ()15 = (=) X M2 Get (071 - (A.13)
Here the left hand side, for example, stands for the minor of {2 with the row indices
[ (A.11a) and the column indices J (A.12a). Combining (A.2),(A.8),(A.11a) and

(A.12a) we get

nwi

det (Q)I_J =e I
= /%i——‘—l“ T e A (Lo EA ) en(RIX [ 232011214 252) ()

| (A.14a)
A similar calculation using {A.11b) and (A.12h) leads {o

(L—l)(L+2)L'—,—n det (C(ﬂ-yn—l'l‘ﬂ’n)(bvn—1+zn))osu‘ugﬂ_1

det (Q_l)f'j

A.14b
= ,/iii—l‘ i e‘T"r"(L—l)(LH)C—t(%IXI+‘—E—’-L+1)(%IZI+‘—E—‘—L+1)5(‘"3' ( )
L tat .

Substituting (A.14) into (A.13) we find that all the phase factors cancell except

e Z=1X112! and thus obtain (A.9).

Proof of Theorem. With no loss of generality we assume that C € _)75:”‘) is of width
< Land set ‘c = Dy (T, ((C)). Consider a,b € Py (n,£) and their Young diagram
representations X = (2q,...,2,) € yﬁ“‘), Z =(z1,...,2,) € ‘)75,"‘). Due to the
assumption NJ; > 0, Z is uniquely specified by the requirement |Z} = |X| + |Y]|
(cf. Step 1). According to the scheme (3.6) we have then ‘a = .ﬁln(Tnt(X)), ‘b =
D, n(Tn¢(Z)). Let us consider the X as consisting of an n by z,, rectangle diagram
(#n,...,2x) and the rest Xgp = (21 — Zp,. .., Tnoy — z,,0) € yf;‘". Similarly, we

divide the Z into (z,,...,2,) and Zr = (21 — 2n,...,25-1 — 2,,0) € yi"”. Set



tap = Dy (T (XR)) and *bg = Dy u(T, ((ZR)). Then one can deduce from (3.6)
that
‘a=0""("ar), ‘b= o""(*bg). (A.15)

Since both Xp and Zp have the width not greater than £, Lemma 4 evaluates

S.(I:“/SSSL): and SE:L). /S%EZC. Combining the results with {A.3) and (A.15) we

(nt) { )
SN — (")(t"l):’ne%IXR”CF-Zri'comn
sy W !

(n)* .
Sbc — \/Z(_)([—I)zne—%|ZR”C]+21:"¢0;“‘
S((n] n

thte

obtlain

(A.16)

Using (A.9) and (A.16) we now simplify the ratio of the left and the right hand
sides of (A.7) as follows.

(_)([—1)(.15“—1“)6—27“' ‘co(wn—z“)ei—:“—|0|(|xnl+]Y1—Iz;ﬂ). (A.l?)

Recall that from (A.10) and (A.12) one has ‘co € Z+'¢o — [T, 'do = 5, |X| =
| Xg| + nzn, |Z] = |Zr] + nz, and |Z| = |X| + |Y|. Thus we conclude that the
ratio (A.17) is equal {o 1. This completes the proof of (A.7) and therefore (3.7).
Remark., The duality (3.7) has the classical version —I\_f:b = W:Z’.b for n and ¢
sufficiently large. Il can be verified by using the Jacobi-Trudi identity for the

Schur polynomials (cf. ref. 9).
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