Update: 2019/12/14
  
People
Awata, Hidetoshi |
Fujie-Okamoto, Futaba |
Fujiwara, Kazuhiro |
Furusho, Hidekazu |
Garrigue, Jacques |
Hamanaka, Masashi |
Hayashi, Masahito |
Hayashi, Takahiro |
Hesselholt, Lars |
Hisamoto, Tomoyuki |
Hishida, Toshiaki |
Ishii, Akira |
Ito, Atsushi |
Ito, Kentaro |
Iwaki, Kohei |
Iyama, Osamu |
Izumi, Keisuke |
Jaerisch, Johannes |
Kanno, Hiroaki |
Kato, Jun |
Kawamura, Tomomi |
Kimura, Yoshifumi |
Kobayashi, Ryoichi |
Kondo, Shigeyuki |
Kubo, Masashi |
Le Gall, François |
Matsumoto, Kohji |
Matsuo, Shinichiroh |
Minami, Kazuhiko |
Moriyoshi, Hitoshi |
Nagao, Taro |
Naito, Hisashi |
Nakanishi, Tomoki |
Nakaoka, Hiroyuki |
Nakashima, Makoto |
Nayatani, Shin |
Ohira, Toru |
Ohkubo, Shun |
Ohta, Hiroshi |
Okada, Soichi |
Sasahara, Yasuhiro |
Sato, Takeshi |
Shiromizu, Tetsuya |
Sugimoto, Mitsuru |
Suzuki, Hiroshi |
Suzuki, Yuhei |
Takahashi, Ryo |
Terasawa, Yutaka |
Ueda, Yoshimichi |
Uzawa, Tohru |
Yamagami, Shigeru |
Yanagida, Shintaro |
Yoshida, Nobuo |
Masashi Kubo Associate Professor |
 |
OFFICE |
Rm 403 in Math. Bldg. |
PHONE |
+81 (0)52-789-2825 (ext. 2825) |
E-MAIL |
kubo (at) math.nagoya-u.ac.jp |
RESEARCH |
- source coding
- large deviation
- stochastic process
|
PAPERS |
[1] | S. Ihara and M. Kubo: Error exponent of coding for stationary memoryless sources with a fidelity criterion, IEICE Trans., E88-A (2005), no. 5, 1339–1345. |
[2] | S. Ihara and M. Kubo: The asymptotics of string matching probabilities for Gaussian random sequences, Nagoya Math. J., 166 (2002), 39–54. |
[3] | S. Ihara and M. Kubo: Error exponent for coding of memoryless Gaussian sources with a fidelity criterion, IEICE Trans., E83-A (2000), no. 10, 1891–1897. |
|
 |
François Le Gall Associate Professor |
 |
OFFICE |
¿-404 |
PHONE |
+81 (0)52-789-2412 (ext. 2412) |
E-MAIL |
legall (at) math.nagoya-u.ac.jp |
 |
Kohji Matsumoto Professor |
 |
OFFICE |
Rm 357 in Math. Bldg. |
PHONE |
+81 (0)52-789-2414 (ext. 2414) |
E-MAIL |
kohjimat (at) math.nagoya-u.ac.jp |
WEBSITE |
https://www.math.nagoya-u.ac.jp/~kohjimat/ |
PROFILE |
matsumoto_kohji_en.pdf [PDF/82KB] |
RESEARCH |
- mean value theory of zeta and L-functions
- value-distribution theory of zeta and L-functions
- analytic theory of multiple zeta-functions
|
PAPERS |
[1] | K. Matsumoto and H. Tsumura: On Witten multiple zeta-functions associated with semisimple Lie algebras I, Ann. Inst. Fourier 56 (2006), 1457–1504. |
[2] | Y. Ihara and K. Matsumoto: On certain mean values and the value-distribution of logarithms of Dirichlet L-functions, Q. J. Math. 62 (2011), no. 3, 637–677. |
|
PRIZES |
- 2005, MSJ Algebra Prize
- “Studies on analytic behaviour of zeta-functions”
|
 |
Shinichiroh Matsuo Associate Professor |
 |
OFFICE |
Rm 451 in Sci. Bldg. A |
PHONE |
+81 (0)52-789-2409 (ext. 2409) |
E-MAIL |
shinichiroh (at) math.nagoya-u.ac.jp |
WEBSITE |
http://www.math.nagoya-u.ac.jp/~shinichiroh/ |
RESEARCH |
- gauge theory
- dynamical systems
- positive scalar curvature
|
PAPERS |
[1] | S. Matsuo and M. Tsukamoto: Brody curves and mean dimension, J. Amer. Math. Soc. 28 (2015), 159–182. |
[2] | S. Matsuo, The prescribed scalar curvature problem for metrics with total unit volume, Math. Ann. 360 (2014), 675–680. |
|
 |
Kazuhiko Minami Associate Professor |
 |
OFFICE |
Rm 347 in Sci. Bldg. A |
PHONE |
+81 (0)52-789-5578 (ext. 5578) |
E-MAIL |
minami (at) math.nagoya-u.ac.jp |
WEBSITE |
http://www.math.nagoya-u.ac.jp/~minami/ |
PROFILE |
minami_kazuhiko_en.pdf [PDF/84KB] |
RESEARCH |
- statistical physics
- lattice models
- integrable systems
- magnetic materials
- statistical mechanics of equilibrium and non-equiliburium systems
|
PAPERS |
[1] | K. Minami: The susceptibility in arbitrary directions and the specific heat in general Ising-type chains of uniform, periodic and random structures, J. Phys. Soc. Jpn., 67 (1998), 2255–2269. |
[2] | K. Minami and M. Suzuki: Non-universal critical behaviour of two-dimensional Ising systems, J. Phys. A, 27 (1994), no. 22, 7301–7311. |
|
 |
Hitoshi Moriyoshi Professor |
 |
OFFICE |
Rm 504 in Math. Bldg. |
PHONE |
+81 (0)52-789-4746 (ext. 4746) |
E-MAIL |
moriyosi (at) math.nagoya-u.ac.jp |
PROFILE |
moriyoshi_hitoshi_en.pdf [PDF/138KB] |
RESEARCH |
- topology
- differential geometry
- noncommutative geometry
- index theorem
|
PAPERS |
[1] | H. Moriyoshi and T. Natsume, The Godbillon-Vey cyclic cocycle and longitudinal Dirac operators, Pacific J. Math., 172 (1996), no. 2, 483–539. |
[2] | H. Moriyoshi, Operator algebras and the index theorem on foliated manifolds, Foliations: geometry and dynamics (Warsaw, 2000), 127–155, World Sci. Publ., 2002. |
[3] | H. Moriyoshi and T. Natsume, Operator algebras and geometry, Translations of Mathematical Monographs, 237, American Mathematical Society, Providence, 2008. |
|
 |
Taro Nagao Professor |
 |
OFFICE |
Rm 508 in Math. Bldg. |
PHONE |
+81 (0)52-789-5392 (ext. 5392) |
E-MAIL |
nagao (at) math.nagoya-u.ac.jp |
WEBSITE |
http://www.math.nagoya-u.ac.jp/~nagao/nagaoeng.html |
PROFILE |
nagao_taro_en.pdf [PDF/74KB] |
RESEARCH |
- theory of random matrices
- quantum field theory and disordered systems
- semiclassical theory of quantum mechanics
|
PAPERS |
[1] | T. Nagao: Dynamical correlations for vicious random walk with a wall, Nuclear Phys. B, 658 (2003), no. 3, 373–396. |
[2] | T. Nagao: Correlation functions for multi-matrix models and quaternion determinants, Nuclear Phys. B, 602 (2001), no. 3, 622–637. |
|
PRIZES |
- 2011, Ryogo Kubo Memorial Prize (by Inoue Foundation for Science)
- “Random matrix theory and its applications to physics”
|
 |
Hisashi Naito Associate Professor |
 |
OFFICE |
Rm 408 in Math. Bldg. |
PHONE |
+81 (0)52-789-2415 (ext. 2415) |
E-MAIL |
naito (at) math.nagoya-u.ac.jp |
WEBSITE |
http://www.math.nagoya-u.ac.jp/~naito/naito-e.html |
PROFILE |
naito_hisashi_en.pdf [PDF/2.0MB] |
RESEARCH |
- differential geometry
- variational problem
- paritial differential equation on Riemannian manifolds
|
PAPERS |
[1] | H. Kozono, Y. Maeda and H. Naito: Global solution for the Yang-Mills gradient flow on 4-manifolds, Nagoya Math. J., 139 (1995), 93–128. |
[2] | H. Naito: Finite time blowing-up for the Yang-Mills gradient flow in higher dimensions, Hokkaido Math. J., 23 (1994), 451–464. |
[3] | H. Naito: A stable manifold theorem for a quasi-linear parabolic equations and asymptotic behavior of the gradient flow for geometric variational problems, Compositio Math., 68 (1988), 221–239. |
|
 |
|