Martin Herschend

Martin Herschend

Designated Associate Professor of Mathematics for the G30 program at the Graduate School of Mathematics, Nagoya University. Full CV.


Graduate School of Mathematics

Nagoya University, Chikusa-ku

Nagoya, 464-8602


Room: A331 School of Science, Building A (D3(2) on this map)

Telephone: +81 (0)52 789 5612

e-mail: martinh (at) math (dot) nagoya-u (dot) ac (dot) jp

Office hours: Wednesdays 10:00-12:00.


Linear Algebra II

Mathematics Tutorial II

Topics in Representation Theory I

Previous Teaching


My research is in representation theory of finite dimensional algebras. I'm organizing a Research Seminar in Representation Theory with the purpose of making those active in similar fields at Nagoya University more familiar with each other's work.


11. M. Herschend, O. Iyama and Steffen Oppermann, n-representation infinite algebras. Preprint. 2012.

10. M. Herschend and O. Iyama, Selfinjective quivers with potential and 2-representation-finite algebras. Compos. Math. doi:10.1112/S0010437X11005367. 2011 Preprint.

9. M. Herschend and O. Iyama, n-representation-finite algebras and fractionally Calabi-Yau algebras. Bull. London Math. Soc. doi:10.1112/blms/bdq101. 2011. Preprint.

8. M. Herschend, Solution to the Clebsch-Gordan problem for string algebras. J. Pure Appl. Algebra. doi:10.1016/j.jpaa.2010.02.003. 2009. Preprint.

7. E. Darpö and M. Herschend, On the representation ring of the polynomial algebra over a perfect field. Math. Z.. doi:10.1007/s00209-009-0532-9. 2009. Preprint.

6. M. Herschend, On the representation ring of a quiver. Algebr. Represent. Theory, 12(6):513-541. 2009.

5. M. Herschend, On the representation rings of quivers of exceptional Dynkin type. Bull. Sci. Math., 132(5):395-418. 2008.

4. M. Herschend, Tensor products on quiver representations. J. Pure Appl. Algebra, 212(2):452-469. 2008.

3. M. Herschend, Galois coverings and the Clebsch-Gordan problem for quiver representations. Colloq. Math., 109(2):193-215. 2007.

2. E. Darpö, E. Dieterich and M. Herschend, In which dimensions does a division algebra over a given ground field exist? Enseign. Math. (2), 51(3-4):255-263. 2005.

1. M. Herschend, Solution to the Clebsch-Gordan problem for representations of quivers of type Ãn. J. Algebra Appl., 4(5):481-488. 2005.