Enriched categories and their centers

Zhi-Hao Zhang

Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences, School of Mathematical Sciences, University of Science and Technology of China

> Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology

SUSTech-Nagoya workshop on Quantum Science, May 31, 2022

Enriched monoidal categories I: centers Liang Kong, Wei Yuan, Zhi-Hao Zhang, Hao Zheng, arXiv:2104.03121 An **enriched category** ${}^{\mathcal{A}|}\mathcal{L}$ consists of the following data:

- A monoidal category A, called the base category or the **background category**;
- a set $Ob(^{\mathcal{A}|}\mathcal{L})$, whose elements are called objects;
- an object ${}^{\mathcal{A}|}\mathcal{L}(x,y) \in \mathcal{A}$ for each $x, y \in \mathrm{Ob}({}^{\mathcal{A}|}\mathcal{L})$, called the hom space;
- a morphism $\circ: {}^{\mathcal{A}|}\mathcal{L}(y, z) \otimes {}^{\mathcal{A}|}\mathcal{L}(x, y) \to {}^{\mathcal{A}|}\mathcal{L}(x, z)$ in \mathcal{A} for each $x, y, z \in Ob({}^{\mathcal{A}|}\mathcal{L})$, called the composition;
- a morphism $1_x \colon \mathbb{1} = \mathbb{1}_A \to {}^{\mathcal{A}|}\mathcal{L}(x, x)$ for each $x \in Ob({}^{\mathcal{A}|}\mathcal{L})$, called the identity;

and the composition is associative and unital.

• Let Set be the monoidal category of sets. Then a Set-enriched category is an ordinary category.

- Let Set be the monoidal category of sets. Then a Set-enriched category is an ordinary category.
- Given a 1d quantum liquid phase (gapped/gapless topological phase with/without symmetries), its observables in the long wave length limit form an enriched category, called the **topological skeleton** of the phase. [Kong-Zheng: A mathematical theory of gapless edges of 2d topological orders, 2019]

An important class of examples are given by the so-called **canonical construction** [Kelly: Adjunction for enriched categories, 1969].

Let \mathcal{B} be a monoidal category and \mathcal{M} be a left \mathcal{B} -module. We say \mathcal{M} is **enriched** in \mathcal{B} if the right adjoint of $-\odot x \colon \mathcal{B} \to \mathcal{M}$ exists for each $x \in \mathcal{M}$, denoted by $[x, -] \colon \mathcal{M} \to \mathcal{B}$. The object $[x, y] \in \mathcal{B}$ is called the **internal hom** of x and y.

By the adjunctions $(-\odot x) \dashv [x, -]$ we have:

- for each x ∈ M, there is a morphism 1_x: 1 → [x, x] in B induced by the identity morphism 1_x: 1 ⊙ x = x → x in M;
- for every $x, y, z \in \mathcal{M}$, there is a morphism $\circ : [y, z] \otimes [x, y] \rightarrow [x, z]$ induced by $([y, z] \otimes [x, y]) \odot x \simeq [y, z] \odot ([x, y] \odot x) \rightarrow [y, z] \odot y \rightarrow z.$

where $[x, y] \odot x \to y$ is induced by the identity morphism $[x, y] \to [x, y]$.

By the adjunctions $(-\odot x) \dashv [x, -]$ we have:

- for each x ∈ M, there is a morphism 1_x: 1 → [x, x] in B induced by the identity morphism 1_x: 1 ⊙ x = x → x in M;
- for every $x, y, z \in \mathcal{M}$, there is a morphism $\circ : [y, z] \otimes [x, y] \rightarrow [x, z]$ induced by $([y, z] \otimes [x, y]) \odot x \simeq [y, z] \odot ([x, y] \odot x) \rightarrow [y, z] \odot y \rightarrow z.$

where $[x, y] \odot x \to y$ is induced by the identity morphism $[x, y] \to [x, y]$.

Then there is an enriched category denoted by ${}^{\mathcal{B}}\mathcal{M}$, where:

- the set of objects is the same as \mathcal{M} , i.e., $Ob(^{\mathcal{B}}\mathcal{M}) := Ob(\mathcal{M})$;
- the hom spaces are given by internal homs, i.e., ${}^{\mathcal{B}}\mathcal{M}(x,y) \coloneqq [x,y] \in \mathcal{B};$
- the composition and identity morphisms are given by the above constructions.

Another way to construct enriched categories is given by the operation called the **changing of the background category**:

- Recall that a lax-monoidal functor F: A → B between two monoidal categories is a functor F: A → B equipped with a natural transformation
 F²: F(-) ⊗ F(-) → F(- ⊗ -) and a morphism F⁰: 1_B → F(1_A) satisfying the usual conditions for a monoidal functor.
- Suppose ^{A|}L is an A-enriched category and F: A → B is a lax-monoidal functor. Then F induces a B-enriched category ^{B|}L with the same objects as ^{A|}L and the hom spaces ^{B|}L(x, y) := F(^{A|}L(x, y)).
- In particular, when B = Set and F = A(1, −), the ordinary category L := ^{Set|}L is called the underlying category of ^{A|}L.

Another way to construct enriched categories is given by the operation called the **changing of the background category**:

- Recall that a lax-monoidal functor F: A → B between two monoidal categories is a functor F: A → B equipped with a natural transformation
 F²: F(-) ⊗ F(-) → F(- ⊗ -) and a morphism F⁰: 1_B → F(1_A) satisfying the usual conditions for a monoidal functor.
- Suppose ^{A|}L is an A-enriched category and F: A → B is a lax-monoidal functor. Then F induces a B-enriched category ^{B|}L with the same objects as ^{A|}L and the hom spaces ^{B|}L(x, y) := F(^{A|}L(x, y)).
- In particular, when B = Set and F = A(1, −), the ordinary category L := ^{Set|}L is called the underlying category of ^{A|}L.

For enriched categories, changing the background should also be viewed as a 'functor'. So we have found a new definition of an enriched functor.

An enriched functor ${}^{|}F \colon {}^{\mathcal{A}|}\mathcal{L} \to {}^{\mathcal{B}|}\mathcal{M}$ consists of the following data:

- a lax-monoidal functor $\hat{F}: \mathcal{A} \to \mathcal{B}$, called the **background changing functor**;
- a map $F : \operatorname{Ob}({}^{\mathcal{A}|}\mathcal{L}) \to \operatorname{Ob}({}^{\mathcal{B}|}\mathcal{M});$
- a morphism $|F_{x,y}: \hat{F}(^{\mathcal{A}|}\mathcal{L}(x,y)) \to {}^{\mathcal{B}|}\mathcal{M}(F(x),F(y))$ in \mathcal{B} for each $x, y \in {}^{\mathcal{A}|}\mathcal{L};$

such that |F preserves the composition and identity morphisms.

An enriched functor $|F: {}^{\mathcal{A}|}\mathcal{L} \to {}^{\mathcal{B}|}\mathcal{M}$ consists of the following data:

- a lax-monoidal functor $\hat{F}: \mathcal{A} \to \mathcal{B}$, called the **background changing functor**;
- a map $F : \operatorname{Ob}({}^{\mathcal{A}|}\mathcal{L}) \to \operatorname{Ob}({}^{\mathcal{B}|}\mathcal{M});$
- a morphism $|F_{x,y}: \hat{F}(^{\mathcal{A}|}\mathcal{L}(x,y)) \to {}^{\mathcal{B}|}\mathcal{M}(F(x),F(y))$ in \mathcal{B} for each $x, y \in {}^{\mathcal{A}|}\mathcal{L};$

such that |F| preserves the composition and identity morphisms.

In particular, if $\mathcal{B} = \mathcal{A}$ and $\hat{F} = \mathrm{id}_{\mathcal{A}}$, such an enriched functor $|F: \mathcal{A}|\mathcal{L} \to \mathcal{A}|\mathcal{M}$ is called an \mathcal{A} -functor. This is the traditional definition of an enriched functor (for example, see [Kelly: Basic concepts of enriched category theory, 1982]). An enriched functor $|F: {}^{\mathcal{A}|}\mathcal{L} \to {}^{\mathcal{B}|}\mathcal{M}$ consists of the following data:

- a lax-monoidal functor $\hat{F}: \mathcal{A} \to \mathcal{B}$, called the **background changing functor**;
- a map $F : \operatorname{Ob}({}^{\mathcal{A}|}\mathcal{L}) \to \operatorname{Ob}({}^{\mathcal{B}|}\mathcal{M});$
- a morphism $|F_{x,y}: \hat{F}(^{\mathcal{A}|}\mathcal{L}(x,y)) \to {}^{\mathcal{B}|}\mathcal{M}(F(x),F(y))$ in \mathcal{B} for each $x, y \in {}^{\mathcal{A}|}\mathcal{L};$

such that |F| preserves the composition and identity morphisms.

In particular, if $\mathcal{B} = \mathcal{A}$ and $\hat{F} = id_{\mathcal{A}}$, such an enriched functor $|F: \mathcal{A}|\mathcal{L} \to \mathcal{A}|\mathcal{M}$ is called an \mathcal{A} -functor. This is the traditional definition of an enriched functor (for example, see [Kelly: Basic concepts of enriched category theory, 1982]).

Remark: Every enriched functor $|F: {}^{\mathcal{A}|}\mathcal{L} \to {}^{\mathcal{B}|}\mathcal{M}$ can be decomposed as ${}^{\mathcal{A}|}\mathcal{L} \to {}^{\mathcal{B}|}\mathcal{L} \to {}^{\mathcal{B}|}\mathcal{M}$, where the first functor only changes the background, and the second is a \mathcal{B} -functor.

The **underlying functor** $F \colon \mathcal{L} \to \mathcal{M}$ of an enriched functor $|F \colon \mathcal{A}|\mathcal{L} \to \mathcal{B}|\mathcal{M}$ is defined by the map $F \colon \mathrm{Ob}(\mathcal{L}) \to \mathrm{Ob}(\mathcal{M})$ and the map

$$\begin{split} F_{x,y} \colon \mathcal{L}(x,y) &= \mathcal{A}(\mathbb{1}, {}^{\mathcal{A}|}\mathcal{L}(x,y)) \xrightarrow{\hat{F}} \mathcal{B}(\hat{F}(\mathbb{1}), \hat{F}({}^{\mathcal{A}|}\mathcal{L}(x,y))) \\ & \xrightarrow{\mathfrak{B}(\hat{F}^0, |F_{x,y})} \mathcal{B}(\mathbb{1}, {}^{\mathcal{B}|}\mathcal{M}(F(x), F(y))) = \mathcal{M}(F(x), F(y)). \end{split}$$

The underlying functor $F: \mathcal{L} \to \mathcal{M}$ of an enriched functor $|F: \mathcal{A}|\mathcal{L} \to \mathcal{B}|\mathcal{M}$ is defined by the map $F: Ob(\mathcal{L}) \to Ob(\mathcal{M})$ and the map

$$\begin{split} F_{x,y} \colon \mathcal{L}(x,y) &= \mathcal{A}(\mathbb{1}, {}^{\mathcal{A}|}\mathcal{L}(x,y)) \xrightarrow{\hat{F}} \mathcal{B}(\hat{F}(\mathbb{1}), \hat{F}({}^{\mathcal{A}|}\mathcal{L}(x,y))) \\ & \xrightarrow{\mathcal{B}(\hat{F}^0, |F_{x,y})} \mathcal{B}(\mathbb{1}, {}^{\mathcal{B}|}\mathcal{M}(F(x), F(y))) = \mathcal{M}(F(x), F(y)). \end{split}$$

Similarly, an **enriched natural transformation** is defined by a background changing natural transformation, which is monoidal, and an underlying natural transformation.

The enriched categories, enriched functors and enriched natural transformations form a 2-category $^{lax|}$ **ECat**. It is a symmetric monoidal 2-category with the Cartesian product defined by

- $\mathrm{Ob}(^{\mathcal{A}|}\mathcal{L} \times {}^{\mathcal{B}|}\mathcal{M}) \coloneqq \mathrm{Ob}(^{\mathcal{A}|}\mathcal{L}) \times \mathrm{Ob}(^{\mathcal{B}|}\mathcal{M});$
- $({}^{\mathcal{A}|}\mathcal{L}\times{}^{\mathcal{B}|}\mathfrak{M})((x,y),(x',y'))\coloneqq ({}^{\mathcal{A}|}\mathcal{L}(x,x'),{}^{\mathcal{B}|}\mathfrak{M}(y,y'))\in\mathcal{A}\times\mathcal{B}.$

The 2-category of enriched categories, enriched functors with strongly monoidal background changing functors and enriched natural transformations is denoted by **ECat**.

The enriched categories, enriched functors and enriched natural transformations form a 2-category $^{lax|}$ ECat. It is a symmetric monoidal 2-category with the Cartesian product defined by

- $\mathrm{Ob}(^{\mathcal{A}|}\mathcal{L} \times {}^{\mathcal{B}|}\mathcal{M}) \coloneqq \mathrm{Ob}(^{\mathcal{A}|}\mathcal{L}) \times \mathrm{Ob}(^{\mathcal{B}|}\mathcal{M});$
- $({}^{\mathcal{A}|}\mathcal{L}\times{}^{\mathcal{B}|}\mathfrak{M})((x,y),(x',y'))\coloneqq ({}^{\mathcal{A}|}\mathcal{L}(x,x'),{}^{\mathcal{B}|}\mathfrak{M}(y,y'))\in\mathcal{A}\times\mathcal{B}.$

The 2-category of enriched categories, enriched functors with strongly monoidal background changing functors and enriched natural transformations is denoted by **ECat**.

Remark: Fix a monoidal category \mathcal{A} . Then there is a 2-category $\mathcal{A}|\mathbf{Cat}$ of \mathcal{A} -enriched categories, \mathcal{A} -functors and \mathcal{A} -natural transformations. This is the traditional definition of a 2-category of enriched categories (for example, see [Kelly: Basic concepts of enriched category theory, 1982]).

We define an enriched monoidal category, an enriched braided monoidal category and an enriched symmetric monoidal category as an E_1 -algebra, an E_2 -algebra and an E_3 -algebra in the symmetric monoidal 2-category **ECat**. We define an enriched monoidal category, an enriched braided monoidal category and an enriched symmetric monoidal category as an E_1 -algebra, an E_2 -algebra and an E_3 -algebra in the symmetric monoidal 2-category **ECat**.

Intuitions for E_n -algebras

- We can imagine an *E_n*-algebra as a collection of particles living in an *n*-dimensional space. So these particles can be fused together in *n* directions.
- Intuitively, an E_n-algebra in a symmetric monoidal ∞-category C is an object equipped with n compatible multiplications.
- In particular, an E_0 -algebra in C is an object $x \in C$ equipped with a morphism $\mathbb{1} \to x$.

(a) In the symmetric monoidal 1-category $\operatorname{Vec}_{\Bbbk}$ of vector spaces, an E_1 -algebra is a \mathbb{R} -algebra and an E_2 -algebra is a commutative \mathbb{R} -algebra

(a) In the symmetric monoidal 1-category $\operatorname{Vec}_{\Bbbk}$ of vector spaces, an E_1 -algebra is a \Bbbk -algebra and an E_2 -algebra is a commutative \Bbbk -algebra by Eckmann-Hilton's argument:

$$\begin{bmatrix} a & b \\ \hline a & 1 \end{bmatrix} = \begin{bmatrix} b & b \\ \hline a & 1 \end{bmatrix} = \begin{bmatrix} b & b \\ \hline a & a \end{bmatrix} = \begin{bmatrix} b & 1 \\ \hline 1 & a \end{bmatrix} = \begin{bmatrix} b & a \end{bmatrix}$$

(a) In the symmetric monoidal 1-category $\operatorname{Vec}_{\Bbbk}$ of vector spaces, an E_1 -algebra is a \Bbbk -algebra and an E_2 -algebra is a commutative \Bbbk -algebra by Eckmann-Hilton's argument:

$$\begin{array}{c|c} a \\ b \\ \hline \end{array} = \begin{array}{c} 1 \\ a \\ 1 \\ \hline \end{array} = \begin{array}{c} b \\ \hline a \\ \hline \end{array} = \begin{array}{c} b \\ 1 \\ \hline 1 \\ a \\ \hline \end{array} = \begin{array}{c} b \\ a \\ \end{array} = \begin{array}{c} b \\ \end{array} = \begin{array}{c} b \\ a \\ \end{array} = \begin{array}{c} b \\ \end{array} = \begin{array}{c} b \\ a \\ \end{array} = \begin{array}{c} b \\ \end{array} = \begin{array}{c} b$$

(b) In the symmetric monoidal 2-category **Cat** of categories, functors and natural tranformations, an E_1 -algebra is a monoidal category, an E_2 -algebra is a braided monoidal category and an E_n -algebra for $n \ge 3$ is a symmetric monoidal category.

Taking the underlying category ${}^{\mathcal{A}|}\mathcal{L} \mapsto \mathcal{L}$ is a symmetric monoidal 2-functor **ECat** \mapsto **Cat**, thus it maps an E_n -algebra to an E_n -algebra. Similarly, taking the background category ${}^{\mathcal{A}|}\mathcal{L} \mapsto \mathcal{A}$ is also a symmetric monoidal 2-functor **ECat** $\mapsto \operatorname{Alg}_{E_1}(\operatorname{Cat}).$ Taking the underlying category ${}^{\mathcal{A}|}\mathcal{L} \mapsto \mathcal{L}$ is a symmetric monoidal 2-functor **ECat** \mapsto **Cat**, thus it maps an E_n -algebra to an E_n -algebra. Similarly, taking the background category ${}^{\mathcal{A}|}\mathcal{L} \mapsto \mathcal{A}$ is also a symmetric monoidal 2-functor **ECat** \mapsto Alg_{E_1}(**Cat**). Then we have the following results.

- (a) Given an enriched monoidal category ^AL, its underlying category L is a monoidal category, and its background category A is a braided monoidal category.
- (b) Given an enriched braided monoidal category ^A|L, its underlying category L is a braided monoidal category, and its background category A is a symmetric monoidal category.
- (c) Given an enriched symmetric monoidal category ^A L, its underlying category L and background category A are both symmetric monoidal categories.

1. Let \mathcal{B} be a monoidal category and \mathcal{M} be a left \mathcal{B} -module that is enriched in \mathcal{B} . The canonical construction gives an enriched category ${}^{\mathcal{B}}\mathcal{M}$.

- 1. Let \mathcal{B} be a monoidal category and \mathcal{M} be a left \mathcal{B} -module that is enriched in \mathcal{B} . The canonical construction gives an enriched category ${}^{\mathcal{B}}\mathcal{M}$.
- 2. Let \mathcal{C} be a braided monoidal category. A **monoidal left** $\overline{\mathcal{C}}$ -**module** is a monoidal category \mathcal{M} equipped with a braided monoidal functor $\varphi \colon \overline{\mathcal{C}} \to \mathfrak{Z}_1(\mathcal{M})$. If \mathcal{M} is enriched in $\overline{\mathcal{C}}$, the canonical construction ${}^{\mathcal{C}}\mathcal{M}$ is an enriched monoidal category.

- 1. Let \mathcal{B} be a monoidal category and \mathcal{M} be a left \mathcal{B} -module that is enriched in \mathcal{B} . The canonical construction gives an enriched category ${}^{\mathcal{B}}\mathcal{M}$.
- 2. Let \mathcal{C} be a braided monoidal category. A **monoidal left** $\overline{\mathcal{C}}$ -**module** is a monoidal category \mathcal{M} equipped with a braided monoidal functor $\varphi \colon \overline{\mathcal{C}} \to \mathfrak{Z}_1(\mathcal{M})$. If \mathcal{M} is enriched in $\overline{\mathcal{C}}$, the canonical construction ${}^{\mathcal{C}}\mathcal{M}$ is an enriched monoidal category.
- Let *E* be a symmetric monoidal category. A braided left *E*-module is a braided monoidal category *M* equipped with a symmetric monoidal functor φ: *E* → 𝔅₂(*M*). If *M* is enriched in *E*, the canonoical construction ^{*E*}*M* is an enriched braided monoidal category. Moreover, ^{*E*}*M* is symmetric if *M* is symmetric.

In a symmetric monoidal ∞ -category, we can define the E_n -center $\mathfrak{Z}_n(A)$ of an E_n -algebra A by universal property [Lurie: Higher algebras, 2017], which is an E_{n+1} -algebra.

In a symmetric monoidal ∞ -category, we can define the E_n -center $\mathfrak{Z}_n(A)$ of an E_n -algebra A by universal property [Lurie: Higher algebras, 2017], which is an E_{n+1} -algebra. **Example**: centers in the symmetric monoidal 1-category Vec

(a) The center of a vector space V is given by the endomorphism algebra End(V): a linear map $X \otimes V \to V$ is equivalent to a linear map $X \to Hom(V, V) = End(V)$.

In a symmetric monoidal ∞ -category, we can define the E_n -center $\mathfrak{Z}_n(A)$ of an E_n -algebra A by universal property [Lurie: Higher algebras, 2017], which is an E_{n+1} -algebra. **Example**: centers in the symmetric monoidal 1-category Vec

- (a) The center of a vector space V is given by the endomorphism algebra End(V): a linear map $X \otimes V \to V$ is equivalent to a linear map $X \to Hom(V, V) = End(V)$.
- (b) In Vec, the E_1 -center of a \Bbbk -algebra A is the usual center

$$Z(A) \coloneqq \{z \in A \mid za = az, \forall a \in A\}.$$

Indeed, if $f: X \otimes A \rightarrow A$ is both an algebra homomorphism and a left unital action, then

$$f(x \otimes 1)a = f(x \otimes 1)f(1 \otimes a) = f(x \otimes a) = f(1 \otimes a)f(x \otimes 1) = af(x \otimes 1).$$

Example: centers in the symmetric monoidal 2-category Cat:

- (a) The center of a category \mathfrak{X} is given by the endofunctor category $\operatorname{End}(\mathfrak{X})$.
- (b) The E₁-center of a monoidal category A is given by the Drinfeld center (or monoidal center) 3₁(A), whose objects are objects in A equipped with a half-braiding.
- (c) The *E*₂-center of a braided monoidal category C is given by the Müger center (or symmetric center)

$$\mathfrak{Z}_2(\mathfrak{C}) \coloneqq \{ x \in \mathfrak{C} \mid c_{y,x} \circ c_{x,y} = \mathsf{id}_{x \otimes y}, \, \forall y \in \mathfrak{C} \}.$$

Here we give the centers of enriched (monoidal) categories obtained from the canonical construction:

1. Suppose \mathcal{B} is a rigid monoidal category and \mathcal{M} is a left \mathcal{B} -module. Then $\begin{array}{l} \operatorname{Fun}_{\mathcal{B}}(\mathcal{M},\mathcal{M}) \text{ is a left } \mathfrak{Z}_{1}(\mathcal{B})\text{-module. Moreover, } \operatorname{Fun}_{\mathcal{B}}(\mathcal{M},\mathcal{M}) \text{ is a left monoidal} \\ \hline \overline{\mathfrak{Z}_{1}(\mathcal{B})}\text{-module, i.e., there is a braided monoidal functor} \\ \hline \overline{\mathfrak{Z}_{1}(\mathcal{B})} \to \mathfrak{Z}_{1}(\operatorname{Fun}_{\mathcal{B}}(\mathcal{M},\mathcal{M})). \text{ The center of } ^{\mathcal{B}}\mathcal{M} \text{ is given by the enriched monoidal} \\ \hline \operatorname{category} \, ^{\mathfrak{Z}_{1}(\mathcal{B})}\operatorname{Fun}_{\mathcal{B}}(\mathcal{M},\mathcal{M}). \end{array}$ Here we give the centers of enriched (monoidal) categories obtained from the canonical construction:

- 1. Suppose \mathcal{B} is a rigid monoidal category and \mathcal{M} is a left \mathcal{B} -module. Then $\begin{array}{l} \operatorname{Fun}_{\mathcal{B}}(\mathcal{M},\mathcal{M}) \text{ is a left } \mathfrak{Z}_{1}(\mathcal{B}) \text{-module. Moreover, } \operatorname{Fun}_{\mathcal{B}}(\mathcal{M},\mathcal{M}) \text{ is a left monoidal} \\ \hline \overline{\mathfrak{Z}_{1}(\mathcal{B})} \text{-module, i.e., there is a braided monoidal functor} \\ \hline \mathfrak{Z}_{1}(\mathcal{B}) \rightarrow \mathfrak{Z}_{1}(\operatorname{Fun}_{\mathcal{B}}(\mathcal{M},\mathcal{M})). \text{ The center of } {}^{\mathcal{B}}\mathcal{M} \text{ is given by the enriched monoidal} \\ \hline \operatorname{category} {}^{\mathfrak{Z}_{1}(\mathcal{B})} \operatorname{Fun}_{\mathcal{B}}(\mathcal{M},\mathcal{M}). \end{array}$
- Suppose C is a braided monoidal category and M is a monoidal left C-module defined by a braided monoidal functor φ: C → 3₁(M). Then the Müger centralizer 3₂(φ) of C in 3₁(M) is a braided left 3₂(C)-module, i.e., there is a symmetric monoidal functor 3₂(C) → 3₂(3₂(φ)). The E₁-center of ^CM is ^{3₂(C)}3₂(φ).

Here we give the centers of enriched (monoidal) categories obtained from the canonical construction:

- 1. Suppose \mathcal{B} is a rigid monoidal category and \mathcal{M} is a left \mathcal{B} -module. Then $\begin{array}{l} \operatorname{Fun}_{\mathcal{B}}(\mathcal{M},\mathcal{M}) \text{ is a left } \mathfrak{Z}_{1}(\mathcal{B}) \text{-module. Moreover, } \operatorname{Fun}_{\mathcal{B}}(\mathcal{M},\mathcal{M}) \text{ is a left monoidal} \\ \hline \overline{\mathfrak{Z}_{1}(\mathcal{B})} \text{-module, i.e., there is a braided monoidal functor} \\ \hline \mathfrak{Z}_{1}(\mathcal{B}) \rightarrow \mathfrak{Z}_{1}(\operatorname{Fun}_{\mathcal{B}}(\mathcal{M},\mathcal{M})). \text{ The center of } {}^{\mathcal{B}}\mathcal{M} \text{ is given by the enriched monoidal} \\ \hline \operatorname{category} {}^{\mathfrak{Z}_{1}(\mathcal{B})} \operatorname{Fun}_{\mathcal{B}}(\mathcal{M},\mathcal{M}). \end{array}$
- Suppose C is a braided monoidal category and M is a monoidal left C-module defined by a braided monoidal functor φ: C → 3₁(M). Then the Müger centralizer 3₂(φ) of C in 3₁(M) is a braided left 3₂(C)-module, i.e., there is a symmetric monoidal functor 3₂(C) → 3₂(3₂(φ)). The E₁-center of ^CM is ^{3₂(C)}3₂(φ).
- 3. The E_2 -center of an enriched braided monoidal category ${}^{\mathcal{A}|}\mathcal{L}$ is given by ${}^{\mathcal{A}|}\mathfrak{Z}_2(\mathcal{L})$.

In particular, we have the following results.

(a) Let \mathcal{A} be an indecomposable multi-fusion category and \mathcal{L} be a finite semisimple left \mathcal{A} -module. Then

$$\mathfrak{Z}_1(\mathfrak{Z}_0({}^{\mathcal{A}}\mathcal{L})) \simeq \mathfrak{Z}_1({}^{\mathfrak{Z}_1(\mathcal{A})}\mathsf{Fun}_{\mathcal{A}}(\mathcal{L},\mathcal{L})) \simeq {}^{\mathrm{Vec}}\mathrm{Vec} = \mathrm{Vec}.$$

(b) Let \mathcal{C} be a nondegenerate braided fusion category and \mathcal{M} be an indecomposable multi-fusion left $\overline{\mathcal{C}}$ -module defined by a braided tensor functor $\varphi \colon \overline{\mathcal{C}} \to \mathfrak{Z}_1(\mathcal{M})$. Then

$$\mathfrak{Z}_2(\mathfrak{Z}_1(^{\mathbb{C}}\mathfrak{M})) \simeq \mathfrak{Z}_2(^{\mathrm{Vec}}\mathfrak{Z}_2(\varphi)) \simeq ^{\mathrm{Vec}}\mathrm{Vec} = \mathrm{Vec}.$$

The center of a center is trivial. Its physical meaning is that the bulk of a bulk is trivial.

Thanks!