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An enriched category A|L consists of the following data:

• A monoidal category A, called the base category or the background category;

• a set Ob(A|L), whose elements are called objects;

• an object A|L(x , y) ∈ A for each x , y ∈ Ob(A|L), called the hom space;

• a morphism ◦ : A|L(y , z)⊗ A|L(x , y) → A|L(x , z) in A for each x , y , z ∈ Ob(A|L),

called the composition;

• a morphism 1x : 1 = 1A → A|L(x , x) for each x ∈ Ob(A|L), called the identity;

and the composition is associative and unital.
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Examples:

• Let Set be the monoidal category of sets. Then a Set-enriched category is an

ordinary category.

• Given a 1d quantum liquid phase (gapped/gapless topological phase with/without

symmetries), its observables in the long wave length limit form an enriched

category, called the topological skeleton of the phase. [Kong-Zheng: A mathematical

theory of gapless edges of 2d topological orders, 2019]
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An important class of examples are given by the so-called canonical construction

[Kelly: Adjunction for enriched categories, 1969].

Let B be a monoidal category and M be a left B-module. We say M is enriched in B

if the right adjoint of −⊙ x : B → M exists for each x ∈ M, denoted by

[x ,−] : M → B. The object [x , y ] ∈ B is called the internal hom of x and y .
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By the adjunctions (−⊙ x) ⊣ [x ,−] we have:

• for each x ∈ M, there is a morphism 1x : 1 → [x , x ] in B induced by the identity

morphism 1x : 1 ⊙ x = x → x in M;

• for every x , y , z ∈ M, there is a morphism ◦ : [y , z ]⊗ [x , y ] → [x , z ] induced by

([y , z ]⊗ [x , y ])⊙ x ≃ [y , z ]⊙ ([x , y ]⊙ x) → [y , z ]⊙ y → z .

where [x , y ]⊙ x → y is induced by the identity morphism [x , y ] → [x , y ].

Then there is an enriched category denoted by BM, where:

• the set of objects is the same as M, i.e., Ob(BM) := Ob(M);

• the hom spaces are given by internal homs, i.e., BM(x , y) := [x , y ] ∈ B;

• the composition and identity morphisms are given by the above constructions.
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Another way to construct enriched categories is given by the operation called the

changing of the background category:

• Recall that a lax-monoidal funtor F : A → B between two monoidal categories is a

functor F : A → B equipped with a natural transformation

F 2 : F (−)⊗ F (−) → F (−⊗−) and a morphism F 0 : 1B → F (1A) satisfying the

usual conditions for a monoidal functor.

• Suppose A|L is an A-enriched category and F : A → B is a lax-monoidal functor.

Then F induces a B-enriched category B|L with the same objects as A|L and the

hom spaces B|L(x , y) := F (A|L(x , y)).

• In particular, when B = Set and F = A(1,−), the ordinary category L := Set|L is

called the underlying category of A|L.

For enriched categories, changing the background should also be viewed as a ‘functor’.

So we have found a new definition of an enriched functor.
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An enriched functor |F : A|L → B|M consists of the following data:

• a lax-monoidal functor F̂ : A → B, called the background changing functor;

• a map F : Ob(A|L) → Ob(B|M);

• a morphism |Fx ,y : F̂ (
A|L(x , y)) → B|M(F (x),F (y)) in B for each x , y ∈ A|L;

such that |F preserves the composition and identity morphisms.

In particular, if B = A and F̂ = idA, such an enriched functor |F : A|L → A|M is called

an A-functor. This is the traditional definition of an enriched functor (for example, see

[Kelly: Basic concepts of enriched category theory, 1982]).

Remark: Every enriched functor |F : A|L → B|M can be decomposed as
A|L → B|L → B|M, where the first functor only changes the background, and the

second is a B-functor.

Zhi-Hao Zhang Enriched categories and their centers 6 / 16



An enriched functor |F : A|L → B|M consists of the following data:

• a lax-monoidal functor F̂ : A → B, called the background changing functor;

• a map F : Ob(A|L) → Ob(B|M);

• a morphism |Fx ,y : F̂ (
A|L(x , y)) → B|M(F (x),F (y)) in B for each x , y ∈ A|L;

such that |F preserves the composition and identity morphisms.

In particular, if B = A and F̂ = idA, such an enriched functor |F : A|L → A|M is called

an A-functor. This is the traditional definition of an enriched functor (for example, see

[Kelly: Basic concepts of enriched category theory, 1982]).

Remark: Every enriched functor |F : A|L → B|M can be decomposed as
A|L → B|L → B|M, where the first functor only changes the background, and the

second is a B-functor.

Zhi-Hao Zhang Enriched categories and their centers 6 / 16



An enriched functor |F : A|L → B|M consists of the following data:

• a lax-monoidal functor F̂ : A → B, called the background changing functor;

• a map F : Ob(A|L) → Ob(B|M);

• a morphism |Fx ,y : F̂ (
A|L(x , y)) → B|M(F (x),F (y)) in B for each x , y ∈ A|L;

such that |F preserves the composition and identity morphisms.

In particular, if B = A and F̂ = idA, such an enriched functor |F : A|L → A|M is called

an A-functor. This is the traditional definition of an enriched functor (for example, see

[Kelly: Basic concepts of enriched category theory, 1982]).

Remark: Every enriched functor |F : A|L → B|M can be decomposed as
A|L → B|L → B|M, where the first functor only changes the background, and the

second is a B-functor.

Zhi-Hao Zhang Enriched categories and their centers 6 / 16



The underlying functor F : L → M of an enriched functor |F : A|L → B|M is defined

by the map F : Ob(L) → Ob(M) and the map

Fx ,y : L(x , y) = A(1, A|L(x , y))
F̂−→ B(F̂ (1), F̂ (A|L(x , y)))

B(F̂ 0,|Fx,y )−−−−−−−→ B(1, B|M(F (x),F (y))) = M(F (x),F (y)).

Similarly, an enriched natural transformation is defined by a background changing

natural transformation, which is monoidal, and an underlying natural transformation.
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The enriched categories, enriched functors and enriched natural transformations form a

2-category lax|ECat. It is a symmetric monoidal 2-category with the Cartesian product

defined by

• Ob(A|L× B|M) := Ob(A|L)×Ob(B|M);

• (A|L× B|M)((x , y), (x ′, y ′)) := (A|L(x , x ′), B|M(y , y ′)) ∈ A×B.

The 2-category of enriched categories, enriched functors with strongly monoidal

background changing functors and enriched natural transformations is denoted by

ECat.

Remark: Fix a monoidal category A. Then there is a 2-category A|Cat of A-enriched

categories, A-functors and A-natural transformations. This is the traditional definition

of a 2-category of enriched categories (for example, see [Kelly: Basic concepts of enriched

category theory, 1982]).
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We define an enriched monoidal category, an enriched braided monoidal category

and an enriched symmetric monoidal category as an E1-algebra, an E2-algebra and

an E3-algebra in the symmetric monoidal 2-category ECat.

Intuitions for En-algebras

• We can imagine an En-algebra as a collection of particles living in an

n-dimensional space. So these particles can be fused together in n directions.

• Intuitively, an En-algebra in a symmetric monoidal ∞-category C is an object

equipped with n compatible multiplications.

• In particular, an E0-algebra in C is an object x ∈ C equipped with a morphism

1 → x .
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Examples:

(a) In the symmetric monoidal 1-category Veck of vector spaces, an E1-algebra is a

k-algebra and an E2-algebra is a commutative k-algebra

by Eckmann-Hilton’s

argument:

a b = a
1

1

b
= a

b
=

1

b
a
1

= b a

(b) In the symmetric monoidal 2-category Cat of categories, functors and natural

tranformations, an E1-algebra is a monoidal category, an E2-algebra is a braided

monoidal category and an En-algebra for n ≥ 3 is a symmetric monoidal category.
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Taking the underlying category A|L 7→ L is a symmetric monoidal 2-functor

ECat 7→ Cat, thus it maps an En-algebra to an En-algebra. Similarly, taking the

background category A|L 7→ A is also a symmetric monoidal 2-functor

ECat 7→ AlgE1
(Cat).

Then we have the following results.

(a) Given an enriched monoidal category A|L, its underlying category L is a monoidal

category, and its background category A is a braided monoidal category.

(b) Given an enriched braided monoidal category A|L, its underlying category L is a

braided monoidal category, and its background category A is a symmetric

monoidal category.

(c) Given an enriched symmetric monoidal category A|L, its underlying category L

and background category A are both symmetric monoidal categories.
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The canonical construction can be extended to a symmetric monoidal 2-functor from a

2-category of monoidal categories and modules (we do not give details here) to ECat.

Thus it maps an En-algebra to an En-algebra.

1. Let B be a monoidal category and M be a left B-module that is enriched in B.

The canonical construction gives an enriched category BM.

2. Let C be a braided monoidal category. A monoidal left C-module is a monoidal

category M equipped with a braided monoidal functor φ : C → Z1(M). If M is

enriched in C, the canonical construction CM is an enriched monoidal category.

3. Let E be a symmetric monoidal category. A braided left E-module is a braided

monoidal category M equipped with a symmetric monoidal functor

ϕ : E → Z2(M). If M is enriched in E, the canonoical construction EM is an

enriched braided monoidal category. Moreover, EM is symmetric if M is

symmetric.
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In a symmetric monoidal ∞-category, we can define the En-center Zn(A) of an

En-algebra A by universal property [Lurie: Higher algebras, 2017], which is an En+1-algebra.

Example: centers in the symmetric monoidal 1-category Vec

(a) The center of a vector space V is given by the endomorphism algebra End(V ): a

linear map X ⊗V → V is equivalent to a linear map X → Hom(V ,V ) = End(V ).

(b) In Vec, the E1-center of a k-algebra A is the usual center

Z (A) := {z ∈ A | za = az , ∀a ∈ A}.

Indeed, if f : X ⊗ A → A is both an algebra homomorphism and a left unital

action, then

f (x ⊗ 1)a = f (x ⊗ 1)f (1⊗ a) = f (x ⊗ a) = f (1⊗ a)f (x ⊗ 1) = af (x ⊗ 1).
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Example: centers in the symmetric monoidal 2-category Cat:

(a) The center of a category X is given by the endofunctor category End(X).

(b) The E1-center of a monoidal category A is given by the Drinfeld center (or

monoidal center) Z1(A), whose objects are objects in A equipped with a

half-braiding.

(c) The E2-center of a braided monoidal category C is given by the Müger center (or

symmetric center)

Z2(C) := {x ∈ C | cy ,x ◦ cx ,y = idx⊗y , ∀y ∈ C}.
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Here we give the centers of enriched (monoidal) categories obtained from the canonical

construction:

1. Suppose B is a rigid monoidal category and M is a left B-module. Then

FunB(M,M) is a left Z1(B)-module. Moreover, FunB(M,M) is a left monoidal

Z1(B)-module, i.e., there is a braided monoidal functor

Z1(B) → Z1(FunB(M,M)). The center of BM is given by the enriched monoidal

category Z1(B)FunB(M,M).

2. Suppose C is a braided monoidal category and M is a monoidal left C-module

defined by a braided monoidal functor φ : C → Z1(M). Then the Müger centralizer

Z2(φ) of C in Z1(M) is a braided left Z2(C)-module, i.e., there is a symmetric

monoidal functor Z2(C) → Z2(Z2(φ)). The E1-center of
CM is Z2(C)Z2(φ).

3. The E2-center of an enriched braided monoidal category A|L is given by A|Z2(L).
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In particular, we have the following results.

(a) Let A be an indecomposable multi-fusion category and L be a finite semisimple

left A-module. Then

Z1(Z0(
AL)) ≃ Z1(

Z1(A)FunA(L,L)) ≃ VecVec = Vec.

(b) Let C be a nondegenerate braided fusion category and M be an indecomposable

multi-fusion left C-module defined by a braided tensor functor φ : C → Z1(M).

Then

Z2(Z1(
CM)) ≃ Z2(

VecZ2(φ)) ≃ VecVec = Vec.

The center of a center is trivial. Its physical meaning is that the bulk of a bulk is trivial.
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Thanks!


