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Motivation

The main motivation is to quantize a subclass of smooth functions
on a Kähler manifold to differential operators on certain
holomorphic vector bundles. This has the following advantage
comparing to the Berezin-Toeplitz quantization:

This gives rise to a non-formal deformation of the classical
pointwise multiplication of functions.

This construction is not limited to the prequantum line bundle.

Functions are quantized to operators which are local instead
of asymptotic locality.
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Background

Deformation quantization is mathematical description of
observables in a quantum mechanical system. More precisely, the
Poisson algebra of classical observables is deformed to an
associative algebra of quantum observables.

Definition

Let (M, ω) be a symplectic manifold, then a deformation
quantization of M is an associative product ∗ on C∞(M)[[~]] such
that

f ∗ g = f · g +
∑
i≥1

~iCi (f , g),

where Ci ’s are bi-differential operators, with
C1(f , g)− C1(g , f ) = {f , g}.
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Fedosov’s construction of deformation quantization

Fedosov gives a simple geometric construction of deformation
quantization on a general symplectic manifold M: he considers the
Weyl bundle WM,R := Ŝym(T∨M,R), with the associative Moyal
product. And he shows the following theorem:

Theorem (Fedosov)

There exists a flat connection D on the Weyl bundle, which is
compatible with the fiberwise (quantum) Moyal product;

There is the following isomorphism between formal smooth
functions and flat sections of the Weyl bundle:

Γflat(M,WM,R) ∼= C∞(M)[[~]]

In particular, the Moyal product on the flat sections induces a
deformation quantization on C∞(M)[[~]].
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Berezin-Toeplitz quantization

Toeplitz operators are defined on a prequantizable Kähler manifold
M, in the following way:

Pick a prequantum line bundle L on M.

For every positive integer k > 0. Given any smooth function
f , we define the Toeplitz operator on holomorphic sections of
L⊗k associated to f as

Tf := Π ◦mf ,

where mf denotes multiplication by f , and Π denotes the
orthogonal projection to holomorphic sections.

The asymptotic formula of the composition of two Toeplitz
operators induces a deformation quantization.
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Example: Fock spaces

Definition

The Fock spaces are the holomorphic function spaces

HL2(Cn, µ~),

where the volume µ~ is given by

µ~(z) = (π~)−ne−|z|
2/~.

Here ~ is a positive number.

The Bargmann-Fock representation of the Wick algebra is the
algebraic formulation of Toeplitz operators on HL2(Cn, µ~).
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Example: Fock spaces

The Berezin-Toeplitz operators on the Fock spaces are operators of
the form “multiply then project”, i.e., multiplication by a smooth
function f which is in general non-holomorphic and then project
back to the holomorphic subspaces. In particular, for n = 1, there
are the following:

Tz = mz ,

Tz̄ = ~
d

dz
,

Tz̄mzn =

(
~
d

dz

)m

◦mzn ,

where mzn denotes the multiplication by zn.
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Wick algebra

The Toeplitz operators on Cn gives rise to the following Wick
product.

Definition

The Wick product on the space WCn := C[[z1, z̄1, · · · , zn, z̄n]][[~]]
is defined by

f ∗ g := exp

(
−~

n∑
i=1

∂

∂z i
∂

∂w̄ i

)
(f (z , z̄)g(w , w̄))|z=w

And there is also the representation of WCn on the Bargmann-Fock
space which consists of only holomorphic functions:

FCn := C[[z1, · · · , zn]][[~]].
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There are several drawbacks of these two quantization schemes:

1 In both Fedosov and Toeplitz quantization, we only get formal
deformation of smooth functions.

2 There is no Hilbert space in the Fedosov quantization scheme.

3 In Toeplitz quantization, although we have Hilbert spaces
H0(X , L⊗k), this is only a representation of the deformation
quantization in an asymptotic way as k →∞.
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Non-formal quantization

A simple observation of the above formula is that if we restrict to
polynomials on Cn, then we can evaluate ~ at any complex number
and get a non-formal quantum algebra.

A natural question is if there are appropriate generalizations to
Kähler manifolds, so that we get some non-formal quantization of
functions?
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L∞ structure on Kähler manifolds

The L∞-structure on a Kähler manifold X is equivalent to a flat
connection on the holomorphic Weyl bundle

WX := Ŝym(T∨X ),

of the following form:

DK = ∇− δ +
∑
n≥2

R̃∗n ,

The R̃∗n ∈ A1
X ⊗ (Symn(T∨X )⊗ TX )’s are defined as partial

transpose of the covariant derivatives of the curvature tensor.
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Fedosov quantization on Kähler manifolds

Definition

Let X be a Kähler manifold, the complexified Weyl bundle on X is
defined as follows:

WX ,C = ŜymT∨X ⊗ ŜymT̄∨X .

Here T∨X and T̄∨X denote the holomorphic and anti-holomorphic
cotangent bundle respectively. It is clear that WX ,C is the
complexification of WX ,R, and there is a fiberwise Wick product on
WX ,C induced by the Kähler form.

It is clear that the Levi-Civita connection naturally extends to a
connection on WX ,C, which we denote by ∇.

Qin Li Holomorphic differential operators via Fedosov quantization



Fedosov quantization on Kähler manifolds

With respect to a local holomorphic coordinate system
{z1, · · · , zn}, we let y i and ȳ j ’s denote their corresponding local
sections of T∨X and T̄∨X respectively. A local section of WX ,C is of
the following explicit form:∑

k≥0

ak,i1,··· ,im,j1,··· ,jn~
ky i1 · · · y im ȳ j1 · · · ȳ jn .

There is the following fiberwise de Rham differential operator δ on
AX ⊗WX ,C, which is a derivation:

δ(y i ) = dz i ,

δ(ȳ j) = dz̄ j .
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Quantization of L∞ structure

We can define the following natural operator

L : A∗X ⊗ (Ŝym(T∨X )⊗ TX )→ A∗X ⊗ (Ŝym(T∨X )⊗ T̄∨X )

by using the symplectic form to “lift the last subscript”. In
particular, we can define

In := L(R̃n) = R j
i1···inωj k̄y

i1 ⊗ · · · ⊗ y in ⊗ ȳk ∈ A0,1
X ⊗WX ,C.

There are the following three simple observations:

R̃∗n =
1

~
[In,−]?|WX

,

∇ ◦ L = L ◦ ∇,

L([A,B]) = [L(A), L(B)]?.
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Quantization of L∞ structure

Theorem (Chan-Leung-L)

There exists a Fedosov flat connection:

DF := ∇− δ +
∑
n≥2

1

~
[In,−]?.

which is a quantum extension of L∞ structure in the sense that

DF |WX
= DK .

From the general theory of Fedosov quantization, we know that
there is a canonical one-to-one correspondence between smooth
functions and flat sections of Weyl bundle under Fedosov
connection:

C∞(X )[[~]] ∼= Γflat(X ,WX ,C).
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Quantizable functions

The Fedosov connection in the Theorem satisfies the property that
we can evaluate the variable ~ = 1/k for any non-zero complex
number and to obtain a flat connection which we call Dk . We can
define a subclass of smooth functions:

Definition

A smooth function f ∈ C∞(X ) is called a quantizable function of
level k if there exists a section ξ of the Weyl bundle such that the
following conditions are satisfied:

1 The symbol of ξ is the function f , i.e. σ(ξ) = f .

2 Dk(ξ) = 0.

3 ξ has a uniform bound in the anti-holomorphic degree of Weyl
bundle. Precisely, there exists N > 0, such that ξ is a section
of WX ⊗ (WX )≤N .
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Quantizable functions

By explicit computation, we can show that the follow are examples
of quantizable functions:

1 Holomorphic derivatives of Kähler potentials

2 Quantum moment maps of hamiltonian symmetries which
preserves the complex structure
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Bargmann-Fock module sheaf

To show that the subclass of smooth functions can be quantized to
differential operators, we define the Bargmann-Fock sheaf.

First of all, the Kähler form on X enables us to define the fiberwise
Bargmann-Fock action, making the holomorphic Weyl bundle WX

a sheaf of WX ,C-modules. Explicitly, a monomial in WX ,C acts as
an operator on WX as follows:

y i1 · · · y ik ȳ j1 · · · ȳ jl 7→(
−
√
−1

2
~
)l

ωp1 j̄1 · · ·ωpl j̄l
∂

∂yp1
◦ · · · ∂

∂ypl
◦my i1 ···y ik
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Bargmann-Fock sheaf

The Fedosov connection can be defined on WX in a compatible
way. However, this connection is not flat. For this we twist it by
tensor powers of the prequantum line bundle L.

Definition

For every k > 0, we define the level k Bargmann-Fock sheaf by
twisting WX with tensor powers of the prequantum line bundle L:

FL⊗k :=WX ⊗OX
L⊗k .

Theorem (L)

There exists a connection Dk on the level k Bargmann-Fock sheaf
FL⊗k which is compatible with the Bargmann-Fock action.

Qin Li Holomorphic differential operators via Fedosov quantization



Bargmann-Fock sheaves

Similar to the standard result in Fedosov quantization that flat
sections of the Weyl bundle corresponds to smooth functions, there
is the following twisted version:

Theorem (L)

For any open set U ⊂ X , the space of flat sections of FL⊗k under
the connection Dα,k is canonically isomorphic to holomorphic
sections of L⊗k .

The compatibility between the Fedosov connections and the
Bargmann-Fock action implies that quantizable functions acts on
the space of holomorphic sections H0(X , L⊗k). From the explicit
construction, it is easy to see that functions acts as differential
operators.
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Quantizable functions as differential operators

Theorem (L)

Suppose that X is prequantizable Kähler manifold, then for any
integer k ∈ Z, there is a natural isomorphism

ϕ : C∞k → D(L⊗k),

from the sheaf of algebra of level k almost holomorphic functions
to the sheaf of holomorphic differential operators on L⊗k . In
particular, this isomorphism is compatible with the filtration on
almost holomorphic functions and that on differential operators by
orders.
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Thank You!
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