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Introduction and Motivation
AGT correspondence

I 4d AGT correspondence [Alday-Gaiotto-Tachikawa, 0906.3219 ]

I 5d AGT correspondence [Awata-Yamada, 0910.4431]

It was shown in [Feigin-Shiraishi-et al., 1002.2485] that all of the q-deformedWN algebra can be generated
from an algebra called quantum toroidal gl1 algebra. This motivates us to regard quantum toroidal gl1 algebra
Uq1,q2(

bbgl1) as the algebra underlying the 5d AGT correspondence. One way to justify this statement is to
consider Fock q-KZ equation for quantum toroidal gl1 [Awata-Kanno-et al., 1703.06084].
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Introduction and Motivation
Fock q-KZ equation for quantum toroidal gl1

q-KZ equation (of quantum toroidal gl1) corresponding to representation ⇢

Let ⇢ be a representation of Uq1,q2(
bbgl1). Then the q-KZ equation is defined to be the q-di�erence equation of

the form

qzi@/@zih�1(z1) · · ·�n(zn)i =

2

4
Y

i,j

Rij
✓
zi
zj

◆3

5 h�1(z1) · · ·�n(zn)i.

where�i(zi) are the intertwiners of Uq1,q2(
bbgl1)with respect to representation ⇢, and Rij(zi/zj) are the

R-matrix of Uq1,q2(
bbgl1)with respect to the representation ⇢.

I Why q-KZ ? h�1(z1) · · ·�n(zn)i =
Q

i<jh�i(zi)�j(zj)i
?
=

Q
N�µ

I Why Fock ? Fock intertwiner��(z) is labeled by a partition.
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Introduction and Motivation
Goal

Goal
Our goal is to derive the MacMahon1 KZ equation and solve it. Then, we express the solution of
the KZ equation as the generalized Nekrasov factor.

I WhyMacMahon ?
I From the perspective of a�ine Yangian gl1, the rational limit of Uq1,q2(

bbgl1), the MacMahon
representation (plane partition representation) is more natural than the Fock representation.

I MacMahon representation preserves the S3 symmetry of Uq1,q2(
bbgl1), while Fock representation

breaks it.

1MacMahon representation can be considered as the generalization of Fock representation
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Quantum toroidal gl1 algebra, its
representations, and intertwiner

The goal of the part 2 is to introduce the notion of intertwiner of 
quantum toroidal algebra. However, in order to do this, we have to first 
discuss about the quantum toroidal algebra and its representations. 



Definition of quantum toroidal gl1 algebra
I Let q1, q2, q3 2 C such that q1q2q3 = 1 and if qa1qb2qc3 = 1, then a = b = c.
I Quantum toroidal gl1 algebra Uq1,q2(

bbgl1) (a.k.a. Ding-Iohara-Miki algebra) is the associative
unital algebra with the generators Ek, Fk, K±

0 ,Hr (k 2 Z, r 2 Z\{0}) and central element C
satisfying the following defining relations:

g(z,w) K±(C(1⌥1)/2z)E(w) + g(w, z) E(w)K±(C(1⌥1)/2z) = 0,

g(w, z) K±(C(1±1)/2z)F(w) + g(z,w) F(w)K±(C(1±1)/2z) = 0,
...

where g(z,w) = (z � q1w)(z � q2w)(z � q3w), and

E(z) =
X

k2Z
Ekz�k, F(z) =

X

k2Z
Fkz�k, K±(z) = K±

0 exp

 
±

1X

r=1

H±rz⌥r
!
.

I Uq1,q2(
bbgl1) has the Hopf algebra structure. Particularly, it has a coproduct

� : Uq1,q2(
bbgl1) ! Uq1,q2(

bbgl1)⌦ Uq1,q2(
bbgl1).

5



Representations of Uq1,q2(
bbgl1)

Vertical Fock representation

I LetF(v) be the free vector space which has the set of (2d) partitions as a basis. We define the map
⇢Fv : Uq1,q2(

bbgl1) ! End(F(v)) by

⇢Fv
�
K±(z)

�
|�i = q�1

1Y

i=1

(1� q�i1 q
i
2v/z)(1� q�i�1

1 qi�2
2 v/z)

(1� q�i1 q
i�1
2 v/z)(1� q�i�1

1 qi�1
2 v/z)

|�i,

⇢Fv
�
E(z)

�
|�i =

1X

k=1

1
(1� q1)

�
⇣
q�k1 q

k�1
2

v
z

⌘ k�1Y

i=1

(1� q�k��i
1 qk�i�1

2 )(1� q�k��i+1
1 qk�i+1

2 )

(1� q�k��i
1 qk�i

2 )(1� q�k��i+1
1 qk�i

2 )

�
|�+ 1ki,

⇢F
�
F(z)

�
|�i = q�1

1X

k=1

1
(1� q�1

1 )
�
⇣
q�k�1
1 qk�1

2
v
z

⌘ 1Y

i=k+1

(1� q�i��k+1
1 qi�k+1

2 )(1� q�i��k
1 qi�k�1

2 )

(1� q�i��k+1
1 qi�k

2 )(1� q�i��k
1 qi�k

2 )

�
|�� 1ki.

We can directly check that these actions satisfy all of the defining relations of Uq1,q2(
bbgl1). So ⇢Fv is an

algebra homomorphism and it is called the vertical Fock representation with spectral parameter v. We
can interpret vertical Fock representation by using diagrams. In terms of the diagrams, the action of E(z)
(resp. F(z) ) adds (resp. removes) a box into the diagrams.
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Representations of Uq1,q2(
bbgl1)

Vertical Fock representation

I Example Consider the partition � = (3, 3, 1)
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Representations of Uq1,q2(
bbgl1)

MacMahon representation

I Generalization of vertical Fock representation
I LetM(K; v) be the vector space which has the set of plane partitions as a basis. We call the
algebra homomorphism ⇢MK,v : Uq1,q2(

bbgl1) ! End
�
M(K; v)

�
defined by

⇢MK,v
�
K±(z)

�
|⇤i = (· · · ) |⇤i, ⇢MK,v (E(z)) |⇤i =

1X

k=1

1X

m=1

(· · · )|⇤+ 1(k)m i,

⇢MK,v (F(z)) |⇤i =
1X

k=1

1X

m=1

(· · · )|⇤� 1(k)m i,

theMacMahon representation with spectral parameter v. The MacMahon representation is
first constructed in the paper [Feigin-Jimbo-Miwa-Mukhin, 2011].

I Example : Consider the plane partition ⇤ = ( (2), (1) )
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Representations of Uq1,q2(
bbgl1)

Horizontal Fock representation

I Let {ar}r2Z\{0} be the operators satisfying the commutation relation

[ar, as] = �r+s,0
r
r

(qr � q�r).

I DefineH = span {a��1a��2 · · · a��n |0i | �1 � · · · � �n}where |0i is the vacuum state
satisfying the annihilation condition an|0i = 0

I ⇢(q,1)H : Uq1,q2(
bbgl1) ! EndH defined by

⇢(q,1)H
�
E(z)

�
=

u
(1� q1)(1� q2)

exp

✓ 1X

n=1

n
n

q�n/2

(qn � q�n)
a�nzn

◆
exp

✓
�

1X

n=1

n
n

q�n/2

qn � q�n
anz�n

◆
,

⇢(q,1)H
�
F(z)

�
=

u�1

(1� q�11 )(1� q�12 )
exp

✓
�

1X

n=1

n
n

qn/2

qn � q�n
a�nzn

◆
· exp

✓ 1X

n=1

n
n

qn/2

qn � q�n
anz�n

◆

⇢(q,1)H
�
K±(z)

�
= exp

✓
±

1X

r=1

r
r
q±r/2a±rz⌥r

◆
, ⇢(q,1)H

�
C
�
= q.

is an algebra homomorphism. We call it the horizontal Fock representation of level 0. 9



Representations of Uq1,q2(
bbgl1)

Horizontal Fock representation

I Themap ⇢(q,q
N)

H : Uq1,q2(
bbgl1) ! End

�
H
�
defined by

⇢(q,q
N)

H
�
E(z)

�
= ⇢(q,1)H

�
E(z)

�
·

✓
q

z

◆N

,

⇢(q,q
N)

H
�
F(z)

�
= ⇢(q,1)H

�
F(z)

�
·

✓
q

z

◆�N
,

⇢(q,q
N)

H
�
K±(q1/2z)

�
= ⇢(q,1)H

�
K±(q1/2z)

�
q⌥N

is an algebra homomorphism. In other word, it forms a representation of Uq1,q2(
bbgl1). We call it

the horizontal Fock representation of level N.
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Intertwiner
Definition

Definition of intertwiner
Let V be a Fock (resp. MacMahon) representation, andH andH0 be horizontal Fock
representations. A Fock (resp. MacMahon) intertwiner is a map : V ⌦H ! H

0 defined by the
intertwining relation

a =  �(a) 8a 2 Uq1,q2(
bbgl1).

I Since in the Fock (and MacMahon) representation, [Hr,Hs] = 0, there exists a simultaneous
eigenbasis of {Hr}r2Z\{0}, say {↵}. For each ↵ in this basis, we define the ↵-component
intertwiner ↵(•) by

 ↵(•) =  (↵⌦ •) : H ! H
0.
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Intertwiner
Explicit expression

I Fock intertwiner

I MacMahon intertwiner

Remark
Note that if we take the 2d partition limit ⇤ = �, K = q3, the MacMahon intertwiner will reduce to
the Fock intertwiner.
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Derivation of the MacMahon KZ equations



Derivation of the MacMahon KZ equations
MacMahon KZ equation

Nowwe have already introduced all of the ingredients needed to derive the MacMahon KZ
equation. Let’s get started!

I First recall that a di�erence equation will be called MacMahon KZ equation if it takes the
following form

qzi@/@zih0|⌅1(z1) · · ·⌅n(zn)| {z }
MacMahon intertwiners

|0i =

2

4
Y

i,j

Rij
✓
zi
zj

◆3

5

| {z }
Products of MacMahon R-matrix

h0|⌅1(z1) · · ·⌅n(zn)|0i.

for certain parameter q.
I The goal of this part is to find the equation which takes the above form.
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Derivation of the MacMahon KZ equations
MacMahon KZ equation

I If we act on the MacMahon intertwiner ⌅⇤(K; v) by the operator (q�2)v
@
@v , the result will be the

MacMahon intertwiner whose spectral parameter is scaled by q�2. We can always write the
scaled MacMahon intertwiner as a composition of T ±

⇤ and the original MacMahon intertwiner.

(q�2)v
@
@v⌅⇤(K; v) = ⌅⇤(K; q�2v) = T

�
⇤ · ⌅⇤(K; v) · T +

⇤

and

T
+
⇤ (v, K)⌅⇤0(K0, v0) = RK,K

0

⇤,⇤0

� v
q�1/2v0

�
· ⌅⇤0(K0, v0)T +

⇤ (v, K),

T
�
⇤ (v, K)⌅⇤0(K0, v0) = RK

0,K
⇤0,⇤

� v0

q�1/2v
�
· ⌅⇤0(K0, v0)T �

⇤ (v, K),

I If one uses other scaling parameter rather than q±2, the T ±
⇤ (v, K) operators will no longer

produce the MacMahon R-matrix.
I The MacMahon R-matrix RK1,K2⇤1,⇤2

(z) is computed in [Awata-Kanno-et al, 1810.07676] using the

universal R-matrix of Uq1,q2(
bbgl1) [Feigin-Jimbo-Miwa-Mukhin, 1603.02765]
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Derivation of the MacMahon KZ equations
MacMahon KZ equation

I Define G⇤1···⇤n
⇣K1...,Kn
v1,...,vn

⌘
:= h0|⌅⇤1(K1; v1) · · ·⌅⇤n(Kn; vn)|0i

I If we act on G⇤1···⇤n
⇣K1...,Kn
v1,...,vn

⌘
by the operator (q�2)vi

@
@vi , we then get that

(q�2)vi
@
@vi G⇤1···⇤n

⇣K1...,Kn
v1,...,vn

⌘

= h0|⌅⇤1(K1; v1) · · ·⌅⇤i(Ki; q�2vi) · · ·⌅⇤n(Kn; vn)|0i

= h0|⌅⇤1(K1; v1) · · · T �
⇤i ⌅⇤i(Ki; vi)T +

⇤i · · ·⌅⇤n(Kn; vn)|0i

=

0

@
i�1Y

j=1

RKj,Ki⇤j,⇤i

✓
q1/2

vj
vi

◆1

A
�10

@
nY

j=i+1

RKi,Kj⇤i,⇤j

✓
q1/2

vi
vj

◆1

AG⇤1···⇤n
⇣K1...,Kn
v1,...,vn

⌘

This is theMacMahon KZ equation of Uq1,q2(
bbgl1).
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Derivation of the MacMahon KZ equations
Generalized Nekrasov factor

I (Solution) Define AK1,K2⇤1,⇤2
(v,w) = h0|⌅⇤1(K1; v)⌅⇤2(K2;w)|0i. Then,

G⇤1···⇤n
⇣K1...,Kn
v1,...,vn

⌘
=

nY

j,l=1
j<l

AKj,Kl
⇤j,⇤l

(vj, vl).

I We regard the quantity AK1K2⇤⇤0 (v,w)�1 as the generalized Nekrasov factor. This is because when
we take the 2d partition limit ⇤1 = �1, ⇤2 = �2, K1 = K2 = q3, we then see that

AK1K2⇤⇤0 (v,w)�1 ! Aq3,q3��0 (v,w)�1 = (proportional factors) · N��0(w, v).

I The MacMahon KZ equations and the generalized Nekrasov factor should be related to various
objects in field and string theory, though currently many of these links remain to be
discovered.
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