Power of Distributed Quantum Merlin-Arthur Proofs

Harumichi Nishimura (Nagoya U) Based on arXiv: 2002.10018 (Proc. ITCS2021) (joint work with P. Fraigniaud, F. Le Gall, Ami Paz) SUSTech-Nagoya workshop on Quantum Science 2022 June 2, 2022

Quantum Distributed Computing

- Leader election [Tani, Kobayashi, Matsumoto 05, 09]
- Byzantine agreement [Ben-Or, Hassidim 05]
- Diameter [Le Gall, Magniez 18]
- All pairs shortest paths [Izumi, Le Gall 19]
- Triangle finding [Izumi, Le Gall, Magniez 20] etc

Quantum Distributed Computing

- Leader election [Tani, Kobayashi, Matsumoto 05, 09]
- Byzantine agreement [Ben-Or, Hassidim 05]
- Diameter [Le Gall, Magniez 18]
- All pairs shortest paths [Izumi, Le Gall 19]
- Triangle finding [Izumi, Le Gall, Magniez 20] etc
- Our work: Distributed certification

Outline

- Problem (Equality of data on networks)
- Setting (Distributed Merlin-Arthur protocols)
- Results (Quantum dMA protocols)
- Overview of our protocol

Our Problem: Equality of Data

- Replicated data on a network
- Are all data identical?

terminals (nodes who have data)

Our Problem: Equality of Data

- Replicated data on a network
- Are all data identical?

Our Problem: Equality of Data

- Replicated data on a network
- Are all data identical?
- No O(1) round protocol
 - Ω(r) rounds are needed
 (r: diameter of the network)
 - We assume the nodes do not share prior randomness & entanglement
- ∃ 1 round "NP-like" protocol (distributed certification)

terminals (nodes who have data)

Outline

- Problem (Equality of data on networks)
- Setting (Distributed Merlin-Arthur protocols)
- Results (Quantum dMA protocols)
- Overview of our protocol

Merlin-Arthur Protocols

- Protocol between prover (Merlin) and verifier (Arthur)
 - Merlin: powerful (computationally unbounded) but untrusted
 - Arthur: wants to check some property but less powerful (polynomial-time)
- Ex. "N is composite?" has a Merlin-Arthur protocol

(Completeness) If N is composite, the verifier can check it easily by receiving a non-trivial divisor as certificate

(Soundness) If not, the verifier rejects any message from the prover

- Distributed Merlin-Arthur (dMA) protocols
 - Proof labeling scheme [Korman, Kutten, Peleg 10]
 - Locally checkable proof [Goos, Suomela 16] etc

- Distributed Merlin-Arthur (dMA) protocols
 - Proof labeling scheme [Korman, Kutten, Peleg 10]
 - Locally checkable proof [Goos, Suomela 16] etc

<u>Two phases</u>:

1. (Prover phase) Prover sends certificates to each node

- Distributed Merlin-Arthur (dMA) protocols
 - Proof labeling scheme [Korman, Kutten, Peleg 10]
 - Locally checkable proof [Goos, Suomela 16] etc

<u>Two phases</u>:

- 1. (Prover phase) Prover sends certificates to each node
- 2. (Verification phase) Each node exchanges messages with the neighbors

 ${\mathcal X}$

- Distributed Merlin-Arthur (dMA) protocols
 - Proof labeling scheme [Korman, Kutten, Peleg 10]
 - Locally checkable proof [Goos, Suomela 16] etc

```
Properties:
(YES case: Completeness)
∃W[all nodes accept]
(w.h.p.)
(NO case: Soundness)
∀W[some node rejects]
(w.h.p.)
```


dMA Protocol for EQ of Data

Trivial protocol:

(P) Prover sends x when all data are x
(V) Each node checks if it is same as the neighbor's one

(YES case: Completeness) **JW**[all nodes accept]

dMA Protocol for EQ of Data

Trivial protocol:

(P) Prover sends x when all data are x
(V) Each node checks if it is same as the neighbor's one

(NO case: Soundness) ∀W[some node rejects]

dMA Protocol for EQ of Data

Trivial Protocol is communication inefficient

- Prover sends *n* bits for each node (*n* ≔ length of *x*)
- Each node sends n bits to the neighbors

Outline

- Problem (Equality of data on networks)
- Setting (Distributed quantum Merlin-Arthur protocols)
- Results (Quantum dMA protocols)
- Overview of our protocol

Our Results

- Distributed Quantum Merlin-Arthur (dQMA) protocols for "Equality of Data" on the network
 - Quantum certificates from the prover
 - Quantum messages among nodes
- Classical lower bound
 - Any dMA protocol requires $\Omega(n)$ -bit certificates if error probability is reasonably small (say, 1/3)
- Quantum upper bound
 - \exists dQMA protocol for equality of replicated data with $O(tr^2 \log(n + r))$ -qubit certificates & messages
 - *t*:= number of the terminals (= nodes who have data)
 - $r \coloneqq$ diameter of the network
 - *t* and *r* are typically much smaller than *n*

Outline

- Problem (Equality of data on networks)
- Setting (Distributed quantum Merlin-Arthur protocols)
- Results (Quantum dMA protocols)
- Overview of our protocol
 - Path networks

Path

• Path network

- t = 2, r = path length
- Only the left & right nodes have input strings

Path (2 nodes): Classical case

• $O(\log n)$ messages are enough on the path of 2 nodes

- Prover is unnecessary
- Use hash functions
 - $\Pr_{h}[h(x) \neq h(y)] \leq 1/\text{poly}(n)$ when $x \neq y$
 - Length of pair $(h, h(x)) = O(\log n)$

h: randomly chosen

 χ

(h,h(x))

Path (3 nodes or more): Classical case

- Similar strategy is impossible on the path of 3 nodes as the left node and the right node cannot communicate directly in one round
- The case of 3 nodes is similar to the SMP model in communication complexity (since the central node has no information on inputs and his/her simultaneous message is useless)

SMP complexity of EQ

- $CC^{smp}(EQ_n) = 2n$
- $RCC^{smp}(EQ_n) = \Theta(\sqrt{n})$ [Amb96,NS96,BK97]

• How about the dMA-case (i.e., with the help of a prover)?

- How about the dMA-case (i.e., with the help of a prover)?
- Prover may be malicious

[Our classical lower bound]

Classical lower bound $\Omega(n)$ for the prover's certificate size can be proved for the path of 4 nodes

[Our classical lower bound]

Classical lower bound $\Omega(n)$ for the prover's certificate size can be proved for the path of 4 nodes

Q. How about the quantum MA protocols?

SMP complexity of EQ

- Classical Case
 - $CC^{smp}(EQ_n) = 2n$
 - $RCC^{smp}(EQ_n) = \Theta(\sqrt{n})$ [Amb96,NS96,BK97]

[BCWW01

- Quantum Case
 - $QCC^{smp}(EQ_n) = O(\log n)$

Basic Tools for Quantum Protocol

- Quantum fingerprint [Buhrman, Cleve, Watrous, de Wolf 01]
 - $|h_x\rangle = \sum_h |h\rangle |h(x)\rangle$ ($O(\log n)$ -qubit state)
 - $|\langle h_x | h_y \rangle|^2 < 1/\text{poly}(n)$ when $x \neq y$
- SWAP test [Buhrman, Cleve, Watrous, de Wolf 01]
 - Can estimate $|\langle h_x | h_y \rangle|^2$ even if the input states $|h_x \rangle$, $|h_y \rangle$ are not known
 - $O(\log n)$ is enough for the 3 nodes case without the prover
- Our protocol uses quantum fingerprints as "certificates"

Our Quantum Protocol (Prover phase)

- Honest prover (when x = y) sends certificate $|h_x\rangle$ to each of the intermediate nodes
- The left node creates $|h_x\rangle$ and the right node creates $|h_y\rangle$

Our Quantum Protocol (Verification phase)

- 1. Each node j (except right node) chooses $b_j \in \{0,1\}$ uniformly at random: if $b_j = 0$, j sends the state to the right neighbor; otherwise, keep it by itself.
- 2. Each node (except left node) does SWAP test if it has two states, and outputs its result (accept/reject), and accepts otherwise

Analysis

• When x = y, all nodes accept with probability 1

Analysis

- When x = y, all nodes accept with probability 1
- When $x \neq y$, the probability that all nodes accept is $1 \Omega(1/r^2)$
- Soundness error can be reduced to 1/3 by $O(r^2)$ repetitions

Soundness: $x \neq y$ (NO instance)

• We want some node to reject SWAP test with prob. $\Omega(1/r^2)$

Verification phase

- 1. Each node j (except right node) chooses $b_j \in \{0,1\}$ uniformly at random: if $b_j = 0$, j sends the state to the right neighbor; otherwise, keep it by itself.
- Each node (except left node) does SWAP test if it has two states, and outputs its result (accept/reject), and accepts otherwise

Soundness: $x \neq y$ (NO instance)

- We want some node to reject SWAP test with prob. $\Omega(1/r^2)$
- The property we use:

[Property] If the SWAP test accepts on input ρ_{AB} w.h.p., the two reduced states $\rho_A \& \rho_B$ must be close ($\rho_A \approx \rho_B$)

Assuming all nodes accept w.h.p.,

$$|h_x\rangle \approx \rho_1 \approx \rho_2 \approx \cdots \approx \rho_{r-1} \approx |h_y\rangle,$$

which contradicts $|\langle h_x | h_y \rangle|^2 \le 1/\text{poly}(n)$ for the NO case \Rightarrow Some nodes must reject w.h.p.

Verification phase

- 1. Each node *j* (except right node) chooses $b_j \in \{0,1\}$ uniformly at random: if $b_j = 0$, *j* sends the state to the right neighbor; otherwise, keep it by itself.
- Each node (except left node) does SWAP test if it has two states, and outputs its result (accept/reject), and accepts otherwise

0)

General Graphs

- Merlin sends a rooted tree with fingerprints:
 - Root is a terminal
 - Leaves are the other terminals

General Graphs

- Merlin sends a rooted tree with fingerprints:
 - Root is a terminal
 - Leaves are the other terminals
- Run the protocols on lines from the root to terminals in parallel

Our Results

- Distributed Quantum Merlin-Arthur (dQMA) protocols
 - Quantum certificates from the prover & quantum messages among nodes
- Quantum upper bound
 - \exists dQMA protocol for equality of replicated data with $O(tr^2 \log(n + r))$ -qubit certificates & messages (t:= number of the terminals; $r \coloneqq$ radius of the network)
 - Extends to a **more general protocol** that converts one-way quantum communication complexity protocol to dQMA protocol **in line graphs**

- Classical lower bound
 - Any dMA protocol requires $\Omega(n)$ -bit certificates if error probability is reasonably small (say, 1/3)

Future work

• Distributed Quantum Merlin-Arthur (dQMA) protoc

Q1: Is there a dQMA protocol better than dMA in terms of the graph size parameter?

Quantum certificates from the prover & quantum messages ar

.odes

- Quantum upper bound
 - \exists dQMA protocol for equality of replicated data with $O(tr^2 \log(n + r))$ -qubit certificates & messages (t:= number of the terminals; $r \coloneqq$ radius of the network)
 - Extends to a **more general protocol** that converts one-way quantum communication complexity protocol to dQMA protocol **in line graphs**

- Classical lower bound
 - Any dMA protocol requires $\Omega(n)$ -bit certificates if error probability is reasonably small (say, 1/3)

Future work

• Distributed Quantum Merlin-Arthur (dQMA) protoc

Q1: Is there a dQMA protocol better than dMA in terms of the graph size parameter?

Quantum certificates from the prover & quantum messages ar

JODES

- Quantum upper bound
 - \exists dQMA protocol for equality of replicated data with $O(tr^2 \log(n + r))$ -qubit certificates & messages (t:= number of the terminals; $r \coloneqq$ radius of the network)
 - Extends to a **more general protocol** that converts one-way quantum communication complexity protocol to dQMA protocol **in line graphs**

