One-shot Multiparty Purity Distillation SuSTech-Nagoya workshop on Quantum Science

Aditya Nema Jointly with: Sayantan Chakraborty (CQT-NUS) and Francesco Buscemi (Nagoya University)

2nd June, 2022

1 E N 1 E N

A very high level problem description:

\rightarrow Single party:

Given a quantum mixed state ρ^A how much purity can Alice distill by application of only <u>local unitaries</u> ? (Devetak, 2004)

$\rightarrow\,$ Two parties:

Given a mixed quantum state ρ^{AB} where state on system A is with Alice and that on B is with Bob, what is the amount of **TOTAL** purity that can Alice and Bob can distill using only <u>local unitaries</u>?

$\rightarrow\,$ Multi-party generalization

Given a multipartite density matrix $\rho^{A_1,A_2,...,A_n}$, where *n* parties $A_1,...,A_n$ are given the marginal states each, how much **TOTAL** purity can they distill by application of only <u>local unitaries</u>?

A detailed description of the problem:

Given a density matrix (say to Alice) ρ^{A} on an |A| dimensional Hilbert space :

- Distill purity \Leftrightarrow Extract <u>pure states</u>, specifically $|0\rangle^{A_p}$ where $|A_p| \leq |A|$. Trivial checks: $|A_p| = |A| \Rightarrow \rho^A = |0\rangle^A \langle 0|$; $|A_p| = 0 \Rightarrow \rho^A = \frac{I^A}{|A|}$.
- Allowed operations to Alice: Only a unitary operator on *A*; If Alice wish to use ancilla, then she can do so *only catalytically*, i.e., with a promise to return it at the end of the protocol.
- Pure state ⇔ |0⟩; since, any other pure state can be created by applying another local unitary.
 Aliter: Not charged for local unitary operations.
- Multi-party case: Allow <u>unidirectional</u> classical communication. (Reason to be described shortly!)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Single Party Case: (aka Local Protocol)

Aim: Find maximum
$$\log |A_p|$$
 s.t. for a small $\epsilon > 0$:
 $\|U^A \rho^A (U^{\dagger})^A - |0\rangle \langle 0|^{A_p} \otimes \rho'^{A/A_p}\|_1 \le \epsilon$ (1)

Definition: A rate $R := \log |A_p|$ is said to be ϵ -achievable for one-shot purity distillation protocol $\iff \exists$ a unitary U^A that satisfies Eq (1).

Theorem

Given a state ρ^{A} and $\epsilon > 0$, there exists a unitary on the system $A \rightarrow A_{p} \otimes A_{q}$ such that: $\|U\rho U^{\dagger} - (\Pi\rho\Pi)^{A_{q}} \otimes |0\rangle \langle 0|^{A_{p}}\|_{1} \leq \epsilon$ and

$$\boxed{ \begin{array}{c} R = \log |A_{\rho}| = \log |A| - \widetilde{H}_{\max}^{\epsilon}(A)_{\rho} \ , \ where} \\ \hline \widetilde{H}_{\max}^{\epsilon}(A)_{\rho} := \log \operatorname{supp}(\rho'^{A}) \end{array} }$$

 ρ'^A is the matrix obtained by zeroing out the smallest eigen vectors of ρ that sum up to $\leq \epsilon.$

Proof of local protocol

$$A \cong A_p \otimes A_q : A_q = eigen space(\rho')$$
 (thm. above).

• Thus,
$$|A_q| = 2^{\widetilde{H}_{\max}^{\epsilon}(A)_{\rho}}$$
.

• Π projector onto $A_q
ightarrow (1-\epsilon)$ probability eigen space(
ho) :

$$\operatorname{Tr}(\mathbf{\Pi}) = |\mathbf{A}_{\mathbf{q}}|; \operatorname{Tr}[\mathbf{\Pi}\rho] \geq \mathbf{1} - \epsilon.$$

- $:: [\Pi, \rho] = 0 \Rightarrow A_q \cong \text{eig. space}(\Pi \rho \Pi).$ Hence, eigen vectors $\{|i\rangle^{A_q}\}$ of $\Pi \rho \Pi \in Basis(A_q).$
- Let { |i'⟩^A}_{i'∈A} = eigen vectors(ρ^A).
 ∴ [Π, ρ] = 0 ⇒ ∃ embedding from span { |i⟩^{A_q}} into span { |i'⟩^A} as:

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー ・ つへの

Proof of local protocol

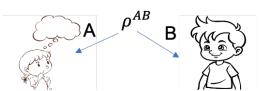
$$\begin{aligned} \frac{\left| U: A \to A_{p} \otimes A_{q}: \left| i' \right\rangle^{A} \mapsto \left| i \right\rangle^{A_{q}} \left| 0 \right\rangle^{A_{p}}; U(\Pi \rho \Pi)^{A} U^{\dagger} &= (\Pi \rho \Pi)^{A_{q}} \otimes \left| 0 \right\rangle \left\langle 0 \right|^{A_{p}}. \\ \| \rho^{A} - (\Pi \rho \Pi)^{A} \|_{1} &\leq \epsilon \Rightarrow \| (U \rho U^{\dagger})^{A} - (\Pi \rho \Pi)^{A_{q}} \otimes \left| 0 \right\rangle \left\langle 0 \right|^{A_{p}} \|_{1} \overset{uni.}{\leq} 2\sqrt{\epsilon} \\ R &= \log |A_{p}| = \log \frac{|A|}{|A_{q}|} = \log |A| - \widetilde{H}_{\max}^{\epsilon}(A)_{\rho} \quad [QED] \end{aligned}$$

• Devetak (2004) showed that in asymptotic iid setting:

 $\max \mathbf{R} = \log |\mathbf{A}| - \mathbf{H}(\mathbf{A})_{\rho}$, with a matching converse.

• In either one-shot and asymptotic iid case, R=0, if $\rho = \frac{I}{|A|}$ (intuitively).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



Alice and Bob want to distill max # pure states from their respective halves of ρ^{AB} .

• Naively, if they apply the local (single party) protocol, they can distill a total purity of $\log |A| - \widetilde{H}_{max}^{\epsilon}(A)_{\rho} + \log |B| - \widetilde{H}_{max}^{\epsilon}(B)_{\rho}$.

• Can classical correlations help to increase the rate?

- e.g. let $|A| = |B| = 2, \epsilon < \frac{1}{2}$; $\rho^{AB} = \frac{|0\rangle\langle 0|^A \otimes |0\rangle\langle 0|^B}{2} + \frac{|1\rangle\langle 1|^A \otimes |1\rangle\langle 1|^B}{2}$, then $\widetilde{H}^{\epsilon}_{max}(A)_{\rho} = 1 = \widetilde{H}^{\epsilon}_{max}(B)_{\rho}$. $\Rightarrow R_{AB} = 0$ by local protocol!
- If classical communication is allowed from Alice → Bob, then Alice can simply send her A system to Bob and the Bob can apply the controlled unitary CNOT on A(rx. from Alice), B. Then, Alice distills 0 purity but Bob distills 1 bit of purity and R_{AB} = 1!!

- Can do better by utilizing classical correlations in ρ^{AB} .
- A way to create such a classical correlated state is via <u>measurement</u>!
- Thus, further allowed: catalytic use of ancilla for Alice; Alice <u>1-way classical</u> <u>communication</u> Bob; Alice can perform measurements, leading to:

Theorem

Given $\rho^{AB} \xrightarrow{purification} |\rho\rangle^{RAB}$. A one-shot achievable total rate for distilling purity under the above conditions is:

 $R_{AB} = \log |A||B| - I_{\mathsf{max}}^{\epsilon}(X:RB) - \widetilde{H}_{\mathsf{max}}^{\epsilon}(B) + I_{H}^{\epsilon_{0}/2}(X:B) + 0(\epsilon,\epsilon_{0}) - O(1)$

for a given $\epsilon > 0$ and $\epsilon_0 = O(\epsilon)$ and the above entropic quantities are evaluated wrt the $\rho^{XRB} = (I^{RB} \otimes \Lambda^A) |\rho\rangle^{RAB}$, where Λ^A are rank one measurement operators on A. The maximum achievable rate can be obtained by optimizing over the Λ^A .

• Asymptotic iid rate (with a matching converse, Devetak, 2004) = $\log |A| - H(A) + \log |B| - H(B) + \lim_{n \to \infty} \frac{\max_{n \to \infty} I(X^n; B^n)_{(I^B \otimes \Lambda^A) \otimes n(\rho^{AB}) \otimes n}}{n}$ Protocol for one-shot achievability:

Step 1: Alice applies normalized rank 1-POVM $\Lambda^{A} = \{|\psi_{x}\rangle \langle \psi_{x}|\}_{\{x \in \mathcal{X}\}}$ on her system *A* "coherently" by borrowing log $|\mathcal{X}|$ ancilla \rightarrow applies unitary: $U_{1}^{AX} : |0\rangle^{X} |\rho\rangle^{ABR} (\stackrel{Schmidt}{=} \sum_{i} \lambda_{i} |i\rangle^{A} |\varphi_{i}\rangle^{BR}) \mapsto \sum_{x,i} |x\rangle^{X} (|\psi_{x}\rangle \langle \psi_{x}| |a_{i}\rangle)^{A} |\tilde{\varphi}_{i}\rangle^{RB} = \sum_{x} |x\rangle^{X} |\psi_{x}\rangle^{A} |\tilde{\varphi}_{x}\rangle^{RB}$. Step 2: Alice now applies controlled unitary $\sum_{x} |x\rangle \langle x|^{X} \otimes U_{x}^{A} : |x\rangle^{X} |\psi_{x}\rangle^{A} \mapsto |x\rangle^{X} |0\rangle^{A}$, thus distilling log $|A| - \log |\mathcal{X}|$ purity. (Note: log $|\mathcal{X}|$ catalyst is be returned.) Remark: Now the state is $\sum_{x} |x\rangle^{A} |\tilde{\varphi}_{x}\rangle^{RB} \Rightarrow I(X; RB) = H(A)_{\rho}$.

Step 3: Alice
$$\xrightarrow{\{|x\rangle\}}{\text{measure}} \tau^{XB} = \sum_{x} p_X(x) |x\rangle \langle x|^X \otimes \rho_x^B$$
.
Note: $\tau^B = \sum_{x} p_X(x) \rho_x^B = \rho^B$ (unaltered).

Alice local protocol on X
Alice's log |X| - identified in X
Alice's overall purity is |A| - log |X| + log |X| - H̃_{max}^ϵ(X) = log |A| - H̃_{max}^ϵ(X).
Resultant state (S = (1 - ϵ) prob. subset of x's under p_X):
σ^{X₁B} = Σ_{x∈S} P_X(x)|x⟩⟨x|^{X₁⊗ρ^B}_x; Π_S : proj.(S). Alice now aims at transferring these correlations to Bob for him to be able to distill some purity from these classical correlations. Naively: Alice sends X₁ to Bob and Bob tries to distill purity from X₁!

Naively: Alice sends X_1 to Bob and Bob tries to distill purity from X_1 ! **Won't work naively:** S is a high prob. set, with almost no redundancies. What else can Bob do to distill purity from classical correlations? New idea: One shot classical data compression with quantum side information.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tool: One-shot classical data-compression with quantum side information

Lemma (Chakraborty et al., 2022)

Given
$$\rho^{XB} = \sum_{x} P_X(x) |x\rangle \langle x|^X \otimes \rho_x^B \exists$$
 bijection $\sigma : \mathcal{X} \to [M] \times [N]$, s.t.
a) for $\epsilon > 0$, $\log |N| \le I_H^{\epsilon}(X : B) + 2\log \epsilon$;
b) $\rho^{XB} \xrightarrow{\sigma} \sum_{m,n} P_{MN}(m,n) |m,n\rangle \langle m,n|^{MN} \otimes \rho_{mn}^B$; then $\forall m \in [M] \exists a$
POVM $\Theta_n(m)$ s.t. for $\epsilon_0 := O(\epsilon^{1/4})$
 $\sum_{m,n} P_{MN}(m,n) \|\rho_{mn}^B - \sqrt{\Theta_n(m)}\rho_{mn}^B \sqrt{\Theta_n(m)}\|_1 \le \epsilon_0$.

Proof: Binning at the encoder; one-shot cq packing lemma at the decoder. Corollary

For
$$\rho^{MNB} \exists$$
 a unitary W^{MNB} : $\|\operatorname{Tr}_{BM} (W^{MNB} \cdot \sigma^{MNB}) - |0\rangle \langle 0|^{N} \|_{1} \leq 2\epsilon_{0}$

Step 4:
$$\tau^{X_1B} \xrightarrow{\text{Alice}}_{\text{bij},\sigma} \sigma^{MNB} = \sum_{m,n} P_{MN}(m,n) |m,n\rangle \langle m,n|^{MN} \otimes \rho_{mn}^B$$

s.t. $\log |N| \leq I_H^{\sqrt{\epsilon_0}}(X_1:B) + \log \epsilon_0$; \xrightarrow{MN} Bob using $\tilde{H}_{\max}^{\epsilon}(X)$ bits.
Step 5: Bob applies unitary W^{MNB} from Cor. [4] and extracts
 $\log |N| \approx I_H^{\sqrt{\epsilon_0}}(X_1:B) + \log \epsilon_0$ purity. Further, by lemma [3] and
cor. [4] and fact that S being a high prob. set implies: (non-trivial)
 $\|\sum_x p_X(x)\rho_X^B - \frac{1}{\text{Tr}[\Pi_S \tau]}\sum_{x \in S} p_X(x)\rho_X^B\|_1 \leq O(\epsilon_0^{1/8}).$
 \Rightarrow Bob's state $\approx \rho^B$; Distills $I_H^{\sqrt{\epsilon_0}}(X_1;B)$ purity.
Lemma: $I_H^{\sqrt{\epsilon_0}}(X_1:B)_{\sigma^{X_1B}} \geq I_H^{\epsilon_0/2}(X:B)_{\rho^{XB}} - O(1) + O(\log(1-\epsilon_0))$
Step 6: Bob now applies the local protocol on approximate version of
his local state and distill $\log |B| - \tilde{H}_{\max}^{\epsilon}(B)$ purity.
Thus, $R_{AB} \stackrel{(\epsilon,\epsilon_0)}{\approx} \log |A| - \tilde{H}^{\epsilon}(X) + I_H^{\epsilon_0/2}(X:B) + \log |B| - \tilde{H}_{\max}^{\epsilon}(B)$.

12/16

Bipartite purity distillation and further

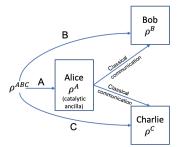
- Can recover the aysmptotic iid rate :: entropic quantities are smooth.
- The amount of classical communication $\log |supp(X_1)| = \tilde{H}_{\max}^{\epsilon}(X)_{p_X}$. Can we save on this?
 - YES! By using a modification to a recent **one-shot measurement compression** (Chakraborty et al., 2022).
 - Idea: Come up with a smaller outcome rank 1-measurement, $\{\widetilde{\Lambda_y}^A\}_{\{y \in \mathcal{Y}\}}, \ |\mathcal{Y}| \leq |\mathcal{X}| \text{ from } \Lambda^A$:

$$\left|I_{H}^{\sqrt{\epsilon_{0}}}(Y:B)_{\sigma} \geq I_{H}^{\epsilon_{0}/2}(X:B)_{
ho} - O(1) + O(\log(1-\epsilon_{0}))
ight|$$
 and find a

high prob. set (under p_Y obtained from $\widetilde{\Lambda}$) $S_{\mathcal{Y}} : |S_{\mathcal{Y}}| \leq 2^{I_{\max}^{\epsilon}(X:RB)_{\rho}XRB}$.

• \Rightarrow Catalytic ancilla \downarrow -classical communication \downarrow and Alice's purity from correlations \uparrow to log $|\mathcal{Y}| - I^{\epsilon}_{\max}(X : RB)_{\rho^{XRB}}$.

・ロト ・ 同 ト ・ 言 ト ・ 言 ・ つ へ ()



Alice, Bob and Charlie want to distill max # pure states from their respective parts of ρ^{ABC} .

Need: A multiparty version of classical data compression with quantum side information at Bob and Charlie, respectively. Can modify a similar theorem from Chakraborty et al. (2022).
 Proposed rate is:

$$R_{ABC} \stackrel{\epsilon,\epsilon_{0},\epsilon_{1}}{\approx} \log |A| - I_{\max}^{\epsilon}(X,Y:B,C) + \log |B| - \tilde{H}_{\max}^{\epsilon}(B) + I_{H}^{\epsilon_{0}}(X:B) + \log |C| - \tilde{H}_{\max}^{\epsilon}(C) + I_{H}^{\epsilon_{1}}(Y:C)$$

Conclusion and Future Prospects

- We have obtained the rate for one-shot purity distillation of pure states of form $|0\rangle\,\langle 0|.$
 - We have used a modified version of the recent one-shot measurement compression theorem.
 - We have used the strategy for classical data compression with quantum side information.
 - Using the insights from above two lemmas, we have shown inequalities between the entropic quantities that show up in the rate expression.
- **Ongoing Work:** To prove the suggested rate for the tripartite case and in general, for the multipartite case.
- For future work: Investigate if this protocol or some minor variant of it can serve as an operational meaning to the so-called Grünwald information gain. This is definfined as: $H(R)_{\sigma} H(B|X)_{\sigma}$ for the state $\sigma^{RXB} := \sum_{x} \Lambda_{x}^{A \to B} (|\rho\rangle^{RA}) \otimes |x\rangle \langle x|^{X}$, where $\Lambda^{A \to BX}$ is a quantum instrument.

Thank you and Questions ?? (To be out on arXiv shortly!!)

Aditya Nema

One-shot Multiparty Purity Distillation