
Dequantizing the Quantum Singular Value Transformation:
Hardness and Applications to Quantum Chemistry and the 

Quantum PCP Conjecture

François Le Gall
Graduate School of Mathematics

Nagoya University

ArXiv: 2111.09079

Sevag Gharibian
Department of Computer Science

Paderborn University

STOC’22, QIP’22

SUSTech-Nagoya workshop on Quantum Science
June 3rd, 2022



1-Slide Overview of the Results
Main result:

We show that a central computational problem considered by 
quantum algorithms for quantum chemistry is BQP-complete.

This gives theoretical foundations to claim the 
superiority of quantum algorithms for chemistry!

computing an estimation of the ground state energy with inverse-polynomial precision,
(when given a rough estimation of the ground state)

Second result:

We show that computing an estimation of the ground state energy 
with constant precision can be done classically in polynomial time. 

“as hard as simulating 
universal polynomial-size 

quantum circuits”

This shows that the superiority of quantum algorithms comes from 
the improved precision achievable in the quantum setting

To prove the second result, we show how to “dequantize” the 
Quantum Singular Value Transformation with constant precision 

This dequantization result has implications to the famous quantum PCP conjecture, 
which is one of the central conjectures in quantum complexity theory



Quantum Chemistry and Eigenvalue Estimation

 Quantum chemistry is considered as one of the most promising 
applications of quantum computers 

compute a good estimation of the ground state energy of a 
local Hamiltonian representing the system

 From a computer science perspective as well, quantum chemistry is 
attractive since the main goal is clearly defined: 

(in more mathematical terms: compute a good estimation
of the smallest eigenvalue of a sparse Hermitian matrix)

 The most rigorous approaches, first proposed by [Abrams, Lloyd 99] 
[Aspuru-Guzik, Dutoi, Love, Head-Gordon 05], are based on quantum 
phase estimation

 Other promising approaches such as variational quantum algorithms are 
also actively studied but these approaches are mostly heuristic-based and 
their performance is thus much more difficult to evaluate in a rigorous way

TODAY’S FOCUS



Guided Local Hamiltonian Problem

input: a sparse Hamiltonian H acting on n qubits
a quantum state that has good overlap with the ground state of H

output: an estimation of the ground state energy 

Informal description:

Formal description: s ≥ 1 : sparsity parameter
δ ∈ (0,1] : overlap parameter
ε ∈ (0,1] : precision parameter

H is s-sparse if it contains at most s non-zero entries per row and 
column (remember: H is a 2n x 2n matrix)
λH: ground state energy of H (i.e., smallest eigenvalue)

ΠH: projection into the vector space spanned by the ground states of H

input: an s-sparse Hamiltonian H acting on n qubits such that H ≤ 1
an n-qubit quantum state | ⟩u

promise: ΠH| ⟩u ≥ δ
output: an estimate λ̃ such that | λ̃ - λH | ≤ ε

GLH(s,ε,δ) “Guided local Hamiltonian problem”

k-local        poly(n)2k-sparse



Guided Local Hamiltonian and Chemistry

input: an s-sparse Hamiltonian H acting on n qubits such that H ≤ 1
an n-qubit quantum state | ⟩u

promise: ΠH| ⟩u ≥ δ
output: an estimate λ̃ such that | λ̃ - λH | ≤ ε

GLH(s,ε,δ) “Guided local Hamiltonian problem”



Guided Local Hamiltonians and Chemistry

input: an s-sparse Hamiltonian H acting on n qubits such that H ≤ 1
an n-qubit quantum state | ⟩u

promise: ΠH| ⟩u ≥ δ
output: an estimate λ̃ such that | λ̃ - λH | ≤ ε

GLH(s,ε,δ) “Guided local Hamiltonian problem”

Quantum-phase-estimation-based approach to quantum chemistry
(e.g., [Abrams, Lloyd 99] [Aspuru-Guzik, Dutoi, Love, Head-Gordon 05][Lee et al. 21])

1. Find a model for the chemical system (e.g., second quantization with finite-size 
basis), and express its Hamiltonian using qubits

2.  Find a quantum state that has good overlap with the ground state

3.  Apply quantum phase estimation

this gives a s-sparse Hamiltonian acting on n qubits, where s is polynomial in n 
(for instance s = O(n4)  [Lee et al. 21], s = O(n2) [MacClean et al. 14])

the Hartree-Fock method typically recovers 99% of the total energy [Whitfield et al. 13]

running time polynomial in s, 1/δ and 1/ε
(polynomial in n when s is polynomial in n, and δ, ε are inverse-polynomial in n)

worked out explicitly in the framework of the 
Quantum Singular Value Transformation 
[Gilyen et al.19] [Martyn et al. 21] and 
eigenstate filtering [Lin, Yu]  



Guided Local Hamiltonians and Chemistry

input: an s-sparse Hamiltonian H acting on n qubits such that H ≤ 1
an n-qubit quantum state | ⟩u

promise: ΠH| ⟩u ≥ δ
output: an estimate λ̃ such that | λ̃ - λH | ≤ ε
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Quantum-phase-estimation-based approach to quantum chemistry
(e.g., [Abrams, Lloyd 99] [Aspuru-Guzik, Dutoi, Love, Head-Gordon 05][Lee et al. 21])

1. Find a model for the chemical system (e.g., second quantization with finite-size 
basis), and express its Hamiltonian using qubits

2.  Find a quantum state that has good overlap with the ground state

3.  Apply quantum phase estimation

this gives a s-sparse Hamiltonian acting on n qubits, where s is polynomial in n 
(for instance s = O(n4)  [Lee et al. 21], s = O(n2) [MacClean et al. 14])

the Hartree-Fock method typically recovers 99% of the total energy [Whitfield et al. 13]

running time polynomial in s, 1/δ and 1/ε
(polynomial in n when s is polynomial in n, and δ, ε are inverse-polynomial in n)

worked out explicitly in the framework of the 
Quantum Singular Value Transformation 
[Gilyen et al.19] [Martyn et al. 21] and 
eigenstate filtering [Lin, Yu]  

For any s ≤ poly(n) and any δ,ε ≥1/poly(n), the problem GLH(s,ε,δ) can be solved in 
poly(n)-time with a quantum computer. 

Theorem (expressing the phase-estimation approach to quantum chemistry)



input: an s-sparse Hamiltonian H acting on n qubits such that H ≤ 1
an n-qubit quantum state | ⟩u

promise: ΠH| ⟩u ≥ δ
output: an estimate λ̃ such that | λ̃ - λH | ≤ ε

GLH(s,ε,δ) “Guided local Hamiltonian problem”

For any s ≤ poly(n) and any δ,ε ≥1/poly(n), the problem GLH(s,ε,δ) can be solved in 
poly(n)-time with a quantum computer. 

Theorem (expressing the phase-estimation approach to quantum chemistry)

Guided Local Hamiltonian Problem

Is it really a hard problem for classical computers?
Reasons why it may be hard (and counter-arguments): 

 if no guiding state | ⟩u is given, then we know the problem is very hard (QMA-hard)

 phase estimation solves integer factoring and many other hard problems 
but is it really hard for a sparse matrix?

but having a guiding state significantly simplifies the problem…
(if | ⟩u is exactly the ground state, then λH can be computed easily classically)

Assume that u1 ≠ 0

Consider the 2n-dimensional vector u 
(stored in a classical Random-Access-Memory)

Then λH = first coordinate of the vector Hu
first coordinate of the vector u

easy to compute since H is sparse



Our Results

For any s ≤ poly(n) and any δ,ε ≥1/poly(n), the problem GLH(s,ε,δ) can be solved in 
poly(n)-time with a quantum computer. 

Theorem (expressing the phase-estimation approach to quantum chemistry)

The problem GLH(s,ε,δ) is BQP-hard for 
s = poly(n), ε = 1/poly(n) and δ = 1/2.

Our first result

Our second result
For any s ≤ poly(n) and any constant δ,ε > 0, the problem GLH(s,ε,δ) 
can be solved in poly(n)-time with a classical computer. 

“If there exists a classical algorithm that solves GLH(s,ε,δ) 
with inverse-polynomial precision (even for δ = 1/2), then 
any quantum polynomial time computation (e.g., Shor 
algorithm) can be simulated classically in polynomial time.” 

This shows that the superiority of quantum algorithms comes from 
the improved precision achievable in the quantum setting

This gives some theoretical foundations to claim the 
superiority of quantum algorithms for chemistry

“The problem can be solved classically in polynomial time with 
constant precision even with arbitrarily small constant overlap δ.” 

s ≥ 1 : number of non-zero entries in each row of H
δ ∈ (0,1] : overlap between |u⟩ and the ground state 
ε ∈ (0,1] : precision parameter

n: number of qubits
(H: 2n x 2n matrix)  

The holy grail in quantum chemistry is to get estimation of the ground state energy 
with precision less than the “chemical accuracy” (about 1.6 millihartree), which 
corresponds to inverse-polynomial precision after normalizing the Hamiltonian



Proof of Hardness
Our first result We show that if we can solve efficiently this 

problem, we can efficiently solve any 
decision problem that can be solved by a 

polynomial-size quantum circuit.

to simplify the explanations I will assume that the quantum circuit 
does not make any error (i.e., on each input x, the circuit correctly 
outputs “yes” with probability 1 or outputs “no” with probability 1)

 Consider a polynomial-size quantum circuit U = Um … U1 with m = poly(n)

From this circuit, we need to show how to efficiently classically create a 
sparse Hamiltonian H and a state | ⟩u with ΠH| ⟩u ≥ δ such that a solution 
to GLH(s,ε,δ) gives information about the output of the circuit.

input: an s-sparse Hamiltonian H acting on n qubits such that H ≤ 1
an n-qubit quantum state | ⟩u

promise: ΠH| ⟩u ≥ δ
output: an estimate λ̃ such that | λ̃ - λH | ≤ ε

GLH(s,ε,δ) “Guided local Hamiltonian problem”

The problem GLH(s,ε,δ) is BQP-hard for 
s = poly(n), ε = 1/poly(n) and δ = 1/2.



Proof of Hardness

 Consider a polynomial-size quantum circuit U = Um … U1 with m = poly(n)

 We apply Kitaev’s circuit-to-Hamiltonian construction [Kitaev et al. 02, 06] to map the 
circuit U to a 5-local Hamiltonian

H = Hin + Hprop + Hout + Hstab

so that the ground space of H “simulates” U. In particular, we can show that if U outputs “yes” on 
the input then λH = 0, while if U outputs “no” on the input then λH ≥ 1/m3 = 1/poly(n).

Problem: in the second case (λH ≥ 1/m3), how to generate efficiently a state | ⟩u that has good overlap 
with the ground space of H? (we don’t even have a good mathematical description of this space!)

to simplify the explanations I will assume that the quantum circuit 
does not make any error (i.e., on each input x, the circuit correctly 
outputs “yes” with probability 1 or outputs “no” with probability 1)

 In the first case (λH = 0) we know that the ground state is the “history state” 

input space     work space     clock space
the state ⟩| ⟩u = |𝑥𝑥 𝐴𝐴 ⟩|0⋯ 0 𝐵𝐵 ⟩|0 𝐶𝐶, which is easy to generate classically, has non-trivial overlap 

with ⟩|𝜓𝜓hist

inverse-polynomial gap

.

Our first result We show that if we can solve efficiently this 
problem, we can efficiently solve any 

decision problem that can be solved by a 
polynomial-size quantum circuit.

The problem GLH(s,ε,δ) is BQP-hard for 
s = poly(n), ε = 1/poly(n) and δ = 1/2.

x: input of U



H = Hin + Hprop + Hout + Hstab

so that the ground space of H “simulates” U. In particular, we can show that if U outputs “yes” on 
the input then λH = 0, while if U outputs “no” on the input then λH ≥ 1/m3 = 1/poly(n).

 In the first case (λH = 0) we know that the ground state is the “history state” 

input space     work space     clock space

inverse-polynomial gap

.

Consider the 6-local Hamiltonian H’ =  H⊗ | ⟩0 𝐷𝐷⟨0|𝐷𝐷 +
2𝑚𝑚3 ⊗ | ⟩1 𝐷𝐷⟨1|𝐷𝐷

I

If U outputs “no” then λH’ = 1/(2m3) = 1/poly(n). 
Any state of the form ⟩|𝜑𝜑 ⟩|1 𝐷𝐷 is a ground state (for any ⟩|𝜑𝜑 ).

If U outputs “yes” then λH’ = 0. The corresponding ground state is ⟩|𝜓𝜓hist ⟩|0 𝐷𝐷.

the state ⟩| ⟩u′ = |𝑥𝑥 𝐴𝐴 ⟩|0⋯ 0 𝐵𝐵 ⟩|0 𝐶𝐶 ⟩|＋ 𝐷𝐷 has non-trivial overlap even for the 
case where U outputs “no” !

We have constructed a 6-local Hamiltonian (and thus s-sparse 
with s = poly(n)) and a state | ⟩u with overlap δ ≥ 1/poly(n) such 
that solving GLH(s,ε,δ) with ε = 1/poly(n) identifies the output of 
the circuit U on the input x. 

the state ⟩| ⟩u = |𝑥𝑥 𝐴𝐴 ⟩|0⋯ 0 𝐵𝐵 ⟩|0 𝐶𝐶, which is easy to generate classically, has non-trivial overlap 
with ⟩|𝜓𝜓hist

Problem: in the second case (λH ≥ 1/m3), how to generate efficiently a state | ⟩u that has good overlap 
with the ground space of H? (we don’t even have a good mathematical description of this space!)



Proof of Hardness
to simplify the explanations I will assume that the quantum circuit 
does not make any error (i.e., on each input x, the circuit correctly 
outputs “yes” with probability 1 or outputs “no” with probability 1)

 Consider a polynomial-size quantum circuit U = Um … U1 with m = poly(n)

Remains to do:  increase the overlap δ to 1/2  (we use “pre-idling”)
 deal with the case where the quantum circuit 

makes errors

We have constructed a 6-local Hamiltonian (and thus s-sparse 
with s = poly(n)) and a state | ⟩u with overlap δ ≥ 1/poly(n) such 
that solving GLH(s,ε,δ) with ε = 1/poly(n) identifies the output of 
the circuit U on the input x. 

Our first result We show that if we can solve efficiently this 
problem, we can efficiently solve any 

decision problem that can be solved by a 
polynomial-size quantum circuit.

The problem GLH(s,ε,δ) is BQP-hard for 
s = poly(n), ε = 1/poly(n) and δ = 1/2.



Proof of Hardness
to simplify the explanations I will assume that the quantum circuit 
does not make any error (i.e., on each input x, the circuit correctly 
outputs “yes” with probability 1 or outputs “no” with probability 1)

 Consider a polynomial-size quantum circuit U = Um … U1 with m = poly(n)

Remains to do:  increase the overlap δ to 1/2  (we use “pre-idling”)
 deal with the case where the quantum circuit 

makes errors
We replace U = Um … U1 by U = Um … U1 I … I

poly(n) times
Then a large part of the history state becomes trivial

We have constructed a 6-local Hamiltonian (and thus s-sparse 
with s = poly(n)) and a state | ⟩u with overlap δ ≥ 1/poly(n) such 
that solving GLH(s,ε,δ) with ε = 1/poly(n) identifies the output of 
the circuit U on the input x. 

Our first result We show that if we can solve efficiently this 
problem, we can efficiently solve any 

decision problem that can be solved by a 
polynomial-size quantum circuit.

The problem GLH(s,ε,δ) is BQP-hard for 
s = poly(n), ε = 1/poly(n) and δ = 1/2.



open problem #2: prove the hardness for the Hamiltonians 
occurring in quantum chemistry

Proof of Hardness: Open Problems
Our first result

input: an s-sparse Hamiltonian H acting on n qubits such that H ≤ 1
an n-qubit quantum state | ⟩u

promise: ΠH| ⟩u ≥ δ
output: an estimate λ̃ such that | λ̃ - λH | ≤ ε

GLH(s,ε,δ) “Guided local Hamiltonian problem”

open problem #1: improve the parameters
δ → 1-1/poly(n), better sparsity (e.g., 2-local Hamiltonian)

Our first result
The problem GLH(s,ε,δ) is BQP-hard for 
s = poly(n), ε = 1/poly(n) and δ = 1/2.

The 6-local Hamiltonian H used to prove the 
hardness encodes the computation of an 
arbitrary quantum circuit 



Second Result

input: an s-sparse Hamiltonian H acting on n qubits such that H ≤ 1
an n-qubit quantum state | ⟩u

promise: ΠH| ⟩u ≥ δ
output: an estimate λ̃ such that | λ̃ - λH | ≤ ε

GLH(s,ε,δ) “Guided local Hamiltonian problem”

“The problem can be solved classically in polynomial time with 
constant precision even with arbitrarily small constant overlap δ.” 

an efficient classical representation 
of a unit-norm vector | ⟩u ∈ ℂ2𝑛𝑛

concretely, we assume that we can perform ℓ2-sampling from u as in prior 
works in dequantization [Tang 19][Chia et al. 20](see also [Van den Nest 10]):

one sample gives (i,ui) with probability |ui|2

Our first resultOur first result
The problem GLH(s,ε,δ) is BQP-hard for 
s = poly(n), ε = 1/poly(n) and δ = 1/2.

Our second result
For any s ≤ poly(n) and any constant δ,ε > 0, the problem GLH(s,ε,δ) 
can be solved in poly(n)-time with a classical computer. 



Second Result: Dequantizing the QSVT

input: an s-sparse Hamiltonian H acting on n qubits such that H ≤ 1
ℓ2-sampling access to a unit-norm vector | ⟩u ∈ ℂ2𝑛𝑛

promise: ΠH| ⟩u ≥ δ

goal: decide which of λH ≤ a or λH ≥ b holds

“Decision version” of the guided local Hamiltonian problem (for a < b)

either λH ≤ a or λH ≥ b holds

For any polynomial p: p(H) = ∑𝑖𝑖=12𝑛𝑛 p(𝜎𝜎𝑖𝑖) ⟩|𝑣𝑣𝑖𝑖 ⟨𝑣𝑣𝑖𝑖|
Eigenvalue decomposition: H = ∑𝑖𝑖=12𝑛𝑛 𝜎𝜎𝑖𝑖 ⟩|𝑣𝑣𝑖𝑖 ⟨𝑣𝑣𝑖𝑖| with -1 ≤ 𝜎𝜎1 ≤ 𝜎𝜎2 ≤… ≤ 𝜎𝜎2𝑛𝑛 ≤ 1

(we have λH = 𝜎𝜎1)

QSVT: given a qubitization of H, compute a qubitization of p(H) 
 Definition of the framework and quantum algorithms: [Gilyén, Su, Low and Wiebe 19] [Low 

and Chuang 17,19] [Martyn, Rossi, Tan and Chuang 21],… 

 Dequantization possible for low-rank matrices: [Chia, Gilyén, Li, Lin, Tang and Wang 20] )



Second Result: Dequantizing the QSVT

input: an s-sparse Hamiltonian H acting on n qubits such that H ≤ 1
ℓ2-sampling access to a unit-norm vector | ⟩u ∈ ℂ2𝑛𝑛

promise: ΠH| ⟩u ≥ δ

goal: decide which of λH ≤ a or λH ≥ b holds

“Decision version” of the guided local Hamiltonian problem (for a < b)

either λH ≤ a or λH ≥ b holds

For any polynomial p: p(H) = ∑𝑖𝑖=12𝑛𝑛 p(𝜎𝜎𝑖𝑖) ⟩|𝑣𝑣𝑖𝑖 ⟨𝑣𝑣𝑖𝑖|

There exists a polynomial q of degree O(1/(b-a)) such that 
q(x) ∈ [0,1] for all x ∈ [-1,1], q(x) ≈ 1 if x ≤ a and q(x) ≈ 0 if x ≥ b

Lemma:
[Low, Chuang 19]

Eigenvalue decomposition: H = ∑𝑖𝑖=12𝑛𝑛 𝜎𝜎𝑖𝑖 ⟩|𝑣𝑣𝑖𝑖 ⟨𝑣𝑣𝑖𝑖| with -1 ≤ 𝜎𝜎1 ≤ 𝜎𝜎2 ≤… ≤ 𝜎𝜎2𝑛𝑛 ≤ 1
(we have λH = 𝜎𝜎1)

q(H)| ⟩u ≈ 0 if λH ≥ b

q(H)| ⟩u ≥ δq(λH) ≈ δ if λH ≤ a

QSVT distinguishes the two cases in 
poly(s,1/δ,1/(b-a)) time

We show that classically, this can be 
done in O(sO(1/(b-a))) time (for δ constant)

Our second result
For any s ≤ poly(n) and any constant δ > 0 and any constants a<b the 
problem can be solved in poly(n)-time with a classical computer. 

q(H) is O(sO(1/(b-a))) -sparse, 
ℓ2-sampling access to u



Quantum PCP Conjecture

input: a k-local Hamiltonian H acting on n qubits such that H ≤ 1
promise: either λH ≤ a or λH ≥ b holds
goal: decide which of λH ≤ a or λH ≥ b holds

LH(k,a,b) “Local Hamiltonian problem” (for a < b)

H is k-local if it can be written as a sum of poly(n) terms, where each 
term acts on at most k qubits

known: 
[Kitaev et al. 02,06]

There exist a,b ∈ [-1,1] with b-a =1/poly(n) such that 
LH(2,a,b) is QMA-hard.

“there exist local Hamiltonians for which estimating the ground 
energy with inverse-polynomial precision is very hard”

Quantum PCP 
conjecture: 

There exist k=O(1) and a,b ∈ [-1,1] with b-a = Ω(1)
such that LH(k,a,b) is QMA-hard.

“there exist local Hamiltonians for which estimating the ground 
energy even with constant precision is very hard”

no guiding vector!

Quantum generalization of the class NP

k-local        poly(n)2k-sparse



Our Result

input: a k-local Hamiltonian H acting on n qubits such that H ≤ 1
promise: either λH ≤ a or λH ≥ b holds

output: goal: decide which of λH ≤ a or λH ≥ b holds

LHS(k,a,b) “Local Hamiltonian problem with samplable state” (for a < b)

Our result: For any k = O(log n) and any a,b ∈ [-1,1] with b-a = Ω(1),
LHS(k,a,b) is not QMA-hard (unless QMA=MA).

“unless the Quantum PCP conjecture is false, Hamiltonians involved in the 
Quantum PCP conjecture do not have a non-trivial approximation of their 

ground state by efficiently-samplable state”

there exists an efficiently-samplable state | ⟩u such that ΠH| ⟩u = Ω(1) 

Proof: We show that LHS(k,a,b) is in MA 
The classical prover simply guesses the classical description of 
the state | ⟩u , and the classical verifier applies our dequantized 
version of the QSVT to check which of  λH ≤ a or λH ≥ b holds 

no guiding vector!

there exists a classical description of | ⟩u such that 
(approximate) ℓ2-sampling can be done in poly time



Conclusion

This shows that the superiority of quantum algorithms comes from 
the improved precision achievable in the quantum setting

This dequantization result gives a new perspective on the famous quantum PCP 
conjecture, which is one of the central conjectures in quantum complexity theory

Main result:

We show that a central computational problem considered by 
quantum algorithms for quantum chemistry is BQP-complete.

This gives theoretical foundations to claim the 
superiority of quantum algorithms for chemistry!

Second result:

We show that computing an estimation of the ground state energy 
with constant precision can be done classically in polynomial time. 

“as hard as simulating 
universal polynomial-size 

quantum circuits”

To prove the second result, we show how to “dequantize” the 
Quantum Singular Value Transformation (for a constant-degree 
polynomial ) with constant precision 

computing an estimation of the ground state energy with inverse-polynomial precision
(given a rough estimation of the ground state)



Open Problems

open problem #2: prove the hardness for the Hamiltonians 
occurring in quantum chemistry

open problem #1: improve the parameters
δ → 1-1/poly(n), better sparsity (e.g., 2-local Hamiltonian)

open problem #3: give theoretical foundations for the approaches 
based on variational quantum algorithms 

for quantum chemistry

Main result:

We show that a central computational problem considered by 
quantum algorithms for quantum chemistry is BQP-complete.

This gives theoretical foundations to claim the 
superiority of quantum algorithms for chemistry!

“as hard as simulating 
universal polynomial-size 

quantum circuits”

computing an estimation of the ground state energy with inverse-polynomial precision
(given a rough estimation of the ground state)
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