A quantum secure direct communication \& private dense coding framework

Speaker: Jiawei Wu
Tsinghua University
Collaborators: Guilu Long, Masahito Hayashi

Main points

- A framework of private classical communication using quantum state \& quantum channel
- Application of quantum wiretap channel theory
- Improvement on finite-length secrecy bound
- Construct practical linear code for implementation

Power of entanglement: dense coding

$$
\left|B_{00}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{A} 0_{B}\right\rangle+\left|1_{A} 1_{B}\right\rangle\right)
$$

$$
\left|B_{10}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{A} 0_{B}\right\rangle-\left|1_{A} 1_{B}\right\rangle\right)
$$

$$
\left|B_{01}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|1_{A} 0_{B}\right\rangle+\left|0_{A} 1_{B}\right\rangle\right)
$$

$$
\left|B_{11}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{A} 1_{B}\right\rangle-\left|1_{A} 0_{B}\right\rangle\right)
$$

- Transmit 2 bit classical information within 1 use of channel
$\left|B_{10}\right\rangle=Z_{A}\left|B_{00}\right\rangle$
$\left|B_{01}\right\rangle=X_{A}\left|B_{00}\right\rangle$
$\left|B_{11}\right\rangle=Z_{A} X_{A}\left|B_{00}\right\rangle$

Some variants

- Perfect entanglement + noisy channel: (Entanglementassisted classical communication)

$$
I(\mathcal{N}) \equiv \max _{\varphi_{A A^{\prime}}} I(A ; B)_{\rho},
$$

- Noisy entanglement + noiseless channel:

$$
C=\log d-H(A \mid B)_{\rho_{A B}}
$$

Power of quantum channel: secure communication

E.g.

- Private capacity of noiseless channel + perfect entanglement $=2$

Our problem setting (Private dense coding)

- General shared states + noisy channel + unitary operations
- Use $\operatorname{PDC}\left(\tau_{A B E},\left\{U_{g}\right\}_{g \in G}, \Lambda\right)$. to denote this setting

- Goal: explore the secure transmission rate

Requirements

- Soundness
- reliability: If the protocol does not abort, Bob recovers the message with probability $\geq 1-\epsilon_{r}$
- secrecy: the information leakage $d(M ; E) \leq \epsilon_{S}$ (measured by trace distance)
- Completeness: In honest case (without interception), the communication aborts with probability $\leq \epsilon_{C}$

Secrecy criteria

$$
\begin{aligned}
d(M ; E Z) & =\left\|\tau_{M E Z}-P_{\mathcal{M}} \otimes \tau_{E Z}\right\|_{\mathrm{tr}} \\
& =\mathbb{E}_{Z}\left\|\tau_{M E \mid Z}-P_{\mathcal{M}} \otimes \tau_{E \mid Z}\right\|_{\mathrm{tr}}
\end{aligned}
$$

- $\tau_{M E Z}$ is the state after transmission
- Z is the publicly shared information, e.g., random seed for UHF

CQ wiretap channel for our setting

(Classical-quantum)

Honest case
Channel 1:

$$
g \mapsto \rho_{A B}
$$

$$
\rho_{A B}=\Lambda\left(U_{g} \tau_{A B} U_{g}^{\dagger}\right)
$$

Worst case
Channel 2:
$g \mapsto \omega_{A E}$
$\omega_{A E}=U_{g} \tau_{A E} U_{g}^{\dagger}$

Tool: quantum wiretap channel

- Intuition: When $\mathrm{Ch}_{X \rightarrow B}$ is "stronger" than the channel $\mathrm{Ch}_{X \rightarrow E}$, reliable and secure communication is possible
- Achievable rate:

Completeness
Secrecy

- Exists a code s.t. error $\rightarrow 0, d(M ; E) \rightarrow 0$ as $n \rightarrow \infty$

- Capacity: maximal achievable rate
- $C:=\sup \{R: R$ is achievable $\}$

Capacity \& Achievable rate of Q-wiretap

- Capacity of CQ wiretap channel (Devetak 2005)

$$
C_{s}=\lim _{n \rightarrow \infty} \frac{1}{n} \max _{P_{U}, P_{x^{n} W}}\left[I\left(U: B^{n}\right)-I\left(U: E^{n}\right)\right]
$$

- A more simple but not tight achievable rate

$$
R=I(X: B)-I(X: E)
$$

General asymptotic result

- A simple application to $\operatorname{PDC}\left(\tau_{A B E},\left\{U_{g}\right\}_{g \in G}, \Lambda\right)$
- Achievable rate:

$$
\mathcal{G}(\rho):=\sum_{g \in G} \frac{1}{|G|} U_{g} \rho U_{g}^{\dagger} .
$$

$$
R_{*}=H\left(\mathcal{G}\left(\Lambda\left(\tau_{A B}\right)\right)\right)-H\left(\Lambda\left(\tau_{A B}\right)\right)-H\left(\mathcal{G}\left(\tau_{A E}\right)\right)+H\left(\tau_{A E}\right) .
$$

- Under condition: $\Lambda\left(\tau_{A B}\right)$ is maximally correlated, $\tau_{A B E}$ is pure

$$
C_{s}=R_{*}=-2 H(A \mid B)_{\Lambda(\tau)}
$$

Modular code construction

- A modular constructive approach: (Hayashi 2010, Vardy 2015)

- Inverse Universal Hash function (UHF) + Any error correcting code

The finite-length bound

- Universal hash lemma (Dupuis 2021):
$\tau_{L E}$ is classical on $L,\left\{f_{S}\right\}: \mathcal{L} \rightarrow \mathcal{M}$ is a UHF family, then

$$
\begin{array}{r}
\mathbb{E}_{S}\left\|f_{S}\left(\tau_{L E}\right)-P_{\mathcal{M}} \otimes \tau_{E}\right\|_{1} \leq 2^{\frac{1-t}{1+t}} 2^{\frac{t}{1+t}\left(\log |\mathcal{M}|-\tilde{H}_{1+t}^{\uparrow}(L \mid E)_{\tau}\right)} \\
\tilde{H}_{1+t}^{\uparrow} \text { is the sandwiched Renyi conditional entropy }
\end{array}
$$

The one-shot secrecy bound
leakage $\leq \min _{0 \leq t \leq 1} 2^{\frac{1-t}{1+t}} 2^{\frac{t}{1+t}\left(-\log \mathrm{L}_{2}+\tilde{I}_{1+t}^{\downarrow}\left(X ; E \mid W_{E} \times P_{\mathcal{L}}\right)\right)}$.

$$
\begin{aligned}
& \tilde{I}_{1+t}^{\downarrow} \text { is the sandwiched Renyi mutual information } \\
& \log L_{2} \text { is the sacrificed length of UHF }
\end{aligned}
$$

Detailed definitions

$$
\begin{aligned}
& D_{1+t}(\rho \| \sigma):=\frac{1}{t} \log \operatorname{Tr} \rho^{1+t} \sigma^{-t}, \\
& \tilde{D}_{1+t}(\rho \| \sigma):=\frac{1}{t} \log \operatorname{Tr}\left(\rho^{-t / 2(1+t)} \sigma \rho^{-t / 2(1+t)}\right)^{1+t} . \\
& H_{1+t}^{\downarrow}\left(A|B| \rho_{A B}\right):=-D_{1+t}\left(\rho_{A B} \| I_{A} \otimes \rho_{B}\right), \\
& \tilde{H}_{1+t}^{\uparrow}\left(A|B| \rho_{A B}\right):=-\inf _{\sigma_{B} \in \mathcal{D}\left(\mathcal{H}_{B}\right)} \tilde{D}_{1+t}\left(\rho_{A B} \| I_{A} \otimes \sigma_{B}\right) . \\
& I_{1+t}^{\downarrow}\left(A ; B \mid \rho_{A B}\right):=\inf _{\sigma_{B} \in \mathcal{D}\left(\mathcal{H}_{B}\right)} D_{1+t}\left(\rho_{A B} \| \rho_{A} \otimes \sigma_{B}\right), \\
& \tilde{I}_{1+t}^{\downarrow}\left(A ; B \mid \rho_{A B}\right):=\inf _{\sigma_{B} \in \mathcal{D}\left(\mathcal{H}_{B}\right)} \tilde{D}_{1+t}\left(\rho_{A B} \| \rho_{A} \otimes \sigma_{B}\right) .
\end{aligned}
$$

\boldsymbol{n}-fold i.i.d. case

- For n-fold symmetric channel, define the sacrificed rate $R_{2}=\frac{\log L_{2}}{n}$
- The symmetry condition reveals a connection

$$
\tilde{I}_{1+t}^{\downarrow}\left(X ; E \mid W_{E} \times P_{\mathcal{L}}\right) \quad \rightarrow \quad \tilde{I}_{1+t}^{\downarrow}\left(X ; E \mid W_{E} \times P_{\mathcal{X}}\right)
$$

$$
\text { leakage } \leq \min _{0 \leq t \leq 1} 2^{\frac{1-t}{1+t}} 2^{\frac{t}{1+t} n\left(-R_{2}+\tilde{I}_{1+t}^{\perp}\left(X ; E \mid W_{E} \times P_{\mathcal{X}}\right)\right)}
$$

Improvement on exponent term

- Decreasing exponent

$$
e_{d}\left(R_{2} \mid W_{E}\right) \geq \max _{0 \leq t \leq 1} \frac{t}{1+t}\left(R_{2}-\tilde{I}_{1+t}^{\downarrow}\left(X ; E \mid W_{E} \times P_{\mathcal{X}}\right)\right)
$$

- Previous result

$$
e_{d}\left(R_{2} \mid W_{E}\right) \geq \max _{0 \leq t \leq 1} \frac{t}{2}\left(R_{2}-I_{1+t}^{\downarrow}\left(X ; E \mid W_{E} \times P_{X}\right)\right)
$$

Application to our framework

- Using the above modular code, the performance of our PDC protocol:

$$
\begin{aligned}
& \epsilon_{C}\left(P\left(\varphi, n_{2}, n_{3}, q\right)\right) \leq \epsilon(\varphi) \\
& \left.\epsilon_{E}\left(P\left(\varphi, n_{2}, n_{3}, q\right)\right) \leq \min _{0 \leq t \leq 1} 2^{-\frac{1-t}{1+t}} 2^{\frac{t n}{1+t}\left(-\frac{n_{1}-n_{2}-n_{3}}{n}\right.} \log q+\log d_{A}-\tilde{H}_{1+t}^{\uparrow}\left(A|E| \tau_{A E}\right)\right) \\
& \epsilon_{B}\left(P\left(\varphi, n_{2}, n_{3}, q\right)\right) \leq q^{-n_{3}}
\end{aligned}
$$

A typical example

- Generalized Pauli operator X, Z for dimension d
- Shared state is generated by Bell state + Pauli channel

$$
\begin{array}{cl}
\Lambda\left[P_{X Z}\right](\rho)=\sum_{(x, z) \in \mathbb{Z}_{d}^{2}} P_{X Z}(x, z) \mathbf{W}(x, z) \rho \mathbf{W}(x, z)^{\dagger} . & \mathbf{W}(x, z)=\mathbf{X}^{x} \mathbf{Z}^{z} \\
\rho\left[P_{X Z}\right]:=\sum_{(x, z) \in \mathbb{Z}_{d}^{2}} P_{X Z}(x, z) \mathbf{W}(x, z)^{\dagger}|\Phi\rangle\langle-\cdots| \mathbf{W}(x, z)^{\dagger} . & \mathbf{X}=\sum_{j \in \mathbb{F}_{p}}|j+1\rangle\langle j|, \\
& \mathbf{Z}=\sum_{j \in \mathbb{F}_{p}} \omega^{j}|j\rangle\langle j|
\end{array}
$$

- Eve is the environment

- Asymptotic (left) and finite-length (right) rate in a

depolarizing channel

R : final rate, R_{1} : error correcting rate
R_{2} : sacrificed rate in coding, R_{3} : sacrificed rate in error verification

Practical linear code

- "Practical" requires:
- Easily encoded and decoded
- Bob's measurement is simple

- Conditions

(B1) The group G forms a vector space over a finite field \mathbb{F}_{q}.
(B2) The states $\left\{U_{g} \Lambda\left(\tau_{A B}\right) U_{g}^{\dagger}\right\}_{g \in G}$ are commutative with each other.

Parameter estimation for unknown state

- Need to perform test and estimate key parameters
- Apply discrete twirling operation

$$
T\left(\tau_{A B}\right):=\frac{1}{d^{2}} \sum_{x, z}\left(\mathbf{W}(x, z)_{A} \otimes \overline{\mathbf{W}(x, z)}_{B}\right) \tau_{A B}\left(\mathbf{W}(x, z)_{A} \otimes{\overline{\mathbf{W}(x, z)_{B}}}^{)^{\dagger}}\right.
$$

- Simplify the estimation

Summary

- A general private dense coding framework
- Improved finite-length secrecy bound
- Practical linear code implementation
- Parameter estimation method for high-dimensional unkown
state

