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Em-algorithm

* em-algorithm iIs similar to EM (Expectation
and Maximization) algorithm, but It IS
different from EM algorithm.

* em-algorithm is a generalization of
Boltzmann machine.

* Generally, em-algorithm is an algorithm to
minimize KL-divergence between
exponential family and mixture family,
which are key concepts of information
geometry.



Rate distortion theory

Data compression method for analogue
data

We can consider its quantum analogue.

To make this, we need to solve
minimization of mutual information under
certain cost constraint.

Arimoto-Blahut algorithm is known for this
aim. But, it minimizes a different quantity,
which is a modification of original target
function.

No efficient algorithm exists.



Task of rate distortion theory

Data X" is generated subject to P,"

Recelver does not need to recover full
information X".

It is sufficient to recover Y " such that
d(X",Y") =Y d(X,Y;)<C
=1

d(X, y) :error function



Rate distortion theory

Given P, :distribution on X

Cost function: d(X, Y)
Conditional distribution: W € ®,,

(‘l)Y|X,C :={VV E(wa ‘
> P, (X)W (y | x)d(x, y)=c}
X,y
Min{1(X5Y )yup, IW €@ 5 .}

W x P, (Y, x) =W (y | X)Py (X)
I (X5Y dwwp, Mutual information



Mutual information

Mutual information

I (X;Y)WXPX

= H (X)WxPx +H (Y)prx - H (X’Y)prx
Entropy

H (X)WxF’x = _Z Py (X)logPy (X)
KL-divergence Xex

D(P|Q) := > P(x)(log P(x)—log Q(x))

Another expression for mutual information

L(X5Y Dyysp, = DOW x Py [W,,0 x Py )

W, e (V)= 2 W (Y[ X)Py (X)

xeX



Protocol by rate distortion theory
Assumption: Data X" obeys Py".

Code construction (Random coding method
nI(X;Y)WxPX

We randomly choose M =¢ elements

y@,...,y(M) froma™".

Encoding
For data X" encoder choose K as

K:=argmind(X", y(k))
Encoder senkds K to receiver.

Decoding
Receiver converts K to Y(K) .



Existing method for rate distortion

Minimization (Arimoto-Blahut

min 1(X;Y )y,e. 45D, Py (OW (Y| x)d(X, y)

WE@YlX

If S IS a suitable value, the minimizer
satisfies the condition:

Z Py (W (y | x)d (X, y)=c

However, It Is not so easy to find such s.



Information geometry for
probabillity distributions

Exponential family 4
Py (X) = Py (x)exp(D, 6" f,(x)— u(6))
E={P,|0®} =
p(0) = IOQZ P (X)exp(zé’ f;(x))

Mixture family =

M:={P| D P(x)fi(x)=c}

XeX
with constants Cis---: Cq



Information geometry based on

Bregman divergence

Information geometry structure can be
recovered only by a convex function £(z)
defined on a convex set ®c Rm

Exponential family: & ._ {e +Zg' }c@)

Mixture family , S a,u \
M=12.€0 eij—.=Ci
0 Zj=1 57/ ,

Bregman divergence

D*(z,|2,): —Za“(z Nz, —2,)— p(z,) + p(2,)

l



Information geometry based on
Bregman divergence

m

" (2,2,) = 3 2E (2.)(2,  2,) - p(2,) + (2,

1=1
A

H(2) D*(z, sz)




Information geometry for
probabillity distributions

Exponential family 4
Py (X) = Py (x)exp(D, 6" f,(x)— u(6))
E={P,|0®} = ‘.
u(6):=log ) Po(X)eXp(Z 0" 1,(x))

Mixture family =

M ={P| Z P(x) T,(X)=c¢;}
] XeX
with constants Cis---: Cq

The above Is recovered by Bregman
divergence system. pD#(g, 16,) = D(P,

P, )



Information geometry

for guantum states
Exponential family ¢4

Po =EXP(X,+ 2,0 X, — p(6))
E:={p,|0e®}
1(0) = log Trexp(X, +ZHX)

Mixture family M : {p\TrpX =C }
with constants C;:---1Cq

The above is recovered by Bregman divergence

system.
Dﬂ(gl ng) = D(pel

pez) = Trpel (log Po, — log pez)



Pythagorean theorem
I
6,9 Exponential family

E =<

o, M =4

Z,€0®

:
d
i
e, + Y 0'e,rc®
L =1

1

J

m

Zeij a_lu'z Cir
= 07 J

0, I\/Iixtu\re family
D”(01 Hez) — D”(91 Hgs) + Dﬂ(es ng)

e-Projection m-Projection
FS)(gl) = 93 ]._‘;T)(gz) = 03



em-algorithm
minmin D*(6, |6,)

0,cE O, eMm

em-algorithm is an iterative algorithm.
We set initial point 6, €E

m-step Gy =arg gje'g D*(0, Haz(t))

e-step 0,1 =arg gZ\E'Q D*(6, 14y ‘92)

However, the convergence to the globa
minimum has not been discussed.




em-algorithm
minmin D*(6,(6,)
em-algorithm is an iterative algorithm.
We set initial point 6, €E

m-step Gy =arg gje'g D*(0, Haz(t))

eStep g, :=argmin D“ (6, [6,)

D*(B11) [Brc1)) < D* Bty [Boy) < D* (B [ 61))

However, the convergence to the global
minimum has not been discussed.




em-algorithm
iterative algorithm to find
minimum divergence.
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em-algorithm
Theorem
D“(6,]16,)= D*(TY (8|S (6,)) 6.6, eM

(€,),0,) converges to global minimum.
Convergence speed
D* (8,4, [T (6,.,)) - min D*(8]r(6))

sup D”(9H92(1))

< OeMm

t-1



Rate distortion theory

Given P, :distribution on X

Cost function: d(X, Y)
Conditional distribution: W € ®,,

(‘l)Y|X,C :={VV E(wa ‘
> P, (X)W (y | x)d(x, y)=c}
X,y
Min{1(X5Y )yup, IW €@ 5 .}

W x P, (Y, x) =W (y | X)Py (X)
I (X5Y dwwp, Mutual information



Application of em-algorithm

to rate-distortion theory
min TOX5Y )y e,

WE@Y|x,c
=WT@1|T,C DOW > Py HVVY|PX xPx)
= Min min DW x P, |Q, x Py )
€Rixc .
| X, | Exponential
Mixture family family

Convergence condition holds.
D(W x P, W "x P,)

2 D(VVY|PX lVV\(|F>X )= D(VVY|PX x Py H\NY|PX *x Py)




Application of em-algorithm
to rate-distortion theory

E-step can be done by calculating the
marginal distribution R =Y RV (Y1 )Py (X)

XeX

M-step needs to solve the following for ¢

0 d(x
a—Z PX(X)IOQ(Z PP (y)e™ '”j= c
T XeX yeY

convex function
Prx (Y] %)= Py(”(y)em‘x’”(z PV (y)em¥)™
yeY

We repeat this process.



Numerical calculation

(P,()) (05)  (d@,1) d(L2) d(,3))
P, (2) |=| 0.3 d(2,1) d(2,2) d(2,3)
Px(3)) 0.2, d(3,1) d(3,2) d(3,3),
c=15 :
Solution
(0.0856 0.1886 0.4310)
P/ =| 0.2243 0.4944 0.1296
L 0.6901 0.3170 0.4294,
1(X;Y) =(0.100039

PY|X><PX

(0 1 2)
1 2 0

3 0 1,



Numerical calculation
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Numerical calculation
Behavior of T
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Further results

arXiv:2201.02447
(1) We made various types of evaluations on em-

algorithm.
(2) We applied em-algorithm to several variants of
rate-distortion theory including the quantum setting.



Conclusion

* We have studied the convergence of em-
algorithm under the framework of
Bregman divergence.

* We have applied our result to the rate-
distortion theory.

* Our algorithm rapidly converges to the true
value.
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