Bregman divergence based emalgorithm and its application to classical and quantum rate distortion theory arXiv:2201.02447
 Masahito Hayashi
 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology

Graduate School of Mathematics, Nagoya University

角而 NAGOYA UNIVERSITY

Em-algorithm

- em-algorithm is similar to EM (Expectation and Maximization) algorithm, but it is different from EM algorithm.
- em-algorithm is a generalization of Boltzmann machine.
- Generally, em-algorithm is an algorithm to minimize KL-divergence between exponential family and mixture family, which are key concepts of information geometry.

Rate distortion theory

- Data compression method for analogue data
- We can consider its quantum analogue.
- To make this, we need to solve minimization of mutual information under certain cost constraint.
- Arimoto-Blahut algorithm is known for this aim. But, it minimizes a different quantity, which is a modification of original target function.
- No efficient algorithm exists.

Task of rate distortion theory

Data X^{n} is generated subject to $\boldsymbol{P}_{\boldsymbol{X}}{ }^{n}$
Receiver does not need to recover full information X^{n}.

It is sufficient to recover Y^{n} such that

$$
d\left(X^{n}, Y^{n}\right)=\sum_{i=1}^{n} d\left(X_{i}, Y_{i}\right) \leq C
$$

$d(x, y):$ error function

Rate distortion theory

Given P_{X} : distribution on X
Cost function: $\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y})$
Conditional distribution: $W \in \mathscr{P}_{Y \mid X}$

$$
\mathscr{P}_{Y \mid X, c}:=\left\{W \in \mathscr{P}_{Y \mid X} \mid\right.
$$

$$
\left.\sum_{x, y} P_{X}(x) W(y \mid x) d(x, y)=c\right\}
$$

Minimum compression rate

$\min \left\{I(X ; Y)_{W \times P_{X}} \mid W \in \mathscr{P}_{Y \mid X, c}\right\}$

$$
W \times P_{X}(y, x):=W(y \mid x) P_{X}(x)
$$

$I(X ; Y)_{W \times P_{X}}:$ Mutual information

Mutual information

Mutual information
$I(X ; Y)_{W \times P_{X}}$
$:=\boldsymbol{H}(X)_{W \times P_{X}}+\boldsymbol{H}(\boldsymbol{Y})_{W \times P_{X}}-\boldsymbol{H}(X, Y)_{W \times P_{X}}$
Entropy
$\underset{\text { KL-divergence }}{H(X})_{W \times P_{X}}:=-\sum_{x \in X} P_{X}(x) \log P_{X}(x)$
$D(P \| Q):=\sum_{x} P(x)(\log P(x)-\log Q(x))$
Another expression for mutual information

$$
\begin{aligned}
I(X ; Y)_{W \times P_{X}} & =D\left(W \times P_{X} \| W_{Y \mid P_{X}} \times P_{X}\right) \\
W_{Y \mid P_{X}}(y) & :=\sum_{x \in X} W(y \mid x) P_{X}(x)
\end{aligned}
$$

Protocol by rate distortion theory

 Assumption: Data X^{n} obeys $\boldsymbol{P}_{X}{ }^{n}$.
Code construction (Random coding method)

We randomly choose $\boldsymbol{M}=\boldsymbol{e}^{n\left(X ; Y Y_{W x P_{x}}\right.}$ elements $\boldsymbol{y}(\mathbf{1}), \ldots, \boldsymbol{y}(\boldsymbol{M})$ from $\boldsymbol{\Upsilon}^{n}$.

Encoding

For data X^{n}, encoder choose K as

$$
K:=\arg \min d\left(X^{n}, y(k)\right)
$$

Encoder sends \boldsymbol{K} to receiver.
Decoding
Receiver converts \boldsymbol{K} to $\boldsymbol{y}(\boldsymbol{K})$.

Existing method for rate distortion

Minimization (Arimoto-Blahut)

$$
\min _{W \in P_{\mid X X}} I(X ; Y)_{W \times P_{X}}+s \sum_{x, y} P_{X}(x) W(y \mid x) d(x, y)
$$

If \boldsymbol{s} is a suitable value, the minimizer satisfies the condition;

$$
\sum_{x, y} P_{X}(x) W(y \mid x) d(x, y)=c
$$

However, it is not so easy to find such s.

Information geometry for probability distributions

$$
\begin{aligned}
& \text { Exponential family } \\
& \boldsymbol{P}_{\theta}(x):=P_{0}(x) \exp \left(\sum_{i=1}^{d} \theta^{i} f_{i}(x)-\mu(\theta)\right) \\
& \mathcal{E}:=\left\{P_{\theta} \mid \theta \in \Theta\right\} \quad \sum_{i=1} \\
& \mu(\theta):=\log \sum_{x \in X} P_{0}(x) \exp \left(\sum_{i=1}^{d} \theta^{i} f_{i}(x)\right)
\end{aligned}
$$

Mixture family ${ }^{x \in X}$

$$
\mathcal{M}:=\left\{P \mid \sum P(x) f_{i}(x)=c_{i}\right\}
$$

with constants c_{1}, \ldots, c_{d}

Information geometry based on Bregman divergence

Information geometry structure can be recovered only by a convex function $\mu(z)$ defined on a convex set $\Theta \subset \mathbb{R}^{m}$.
Exponential family: $\mathcal{E}:=\left\{\boldsymbol{e}_{0}+\sum_{i=1}^{d} \boldsymbol{\theta}^{i} \boldsymbol{e}_{i}\right\} \subset \Theta$
Mixture family $\mathcal{M}:=\left\{z_{0} \in \Theta \left\lvert\, \sum_{j=1}^{m} e_{i}^{j} \frac{\partial \mu}{\partial z^{j}}=c_{i}\right.\right\}$
Bregman divergence

$$
D^{\mu}\left(z_{1} \| z_{2}\right):=\sum_{i=1}^{m} \frac{\partial \mu}{\partial z^{i}}\left(z_{1}\right)\left(z_{1}^{i}-z_{2}^{i}\right)-\mu\left(z_{1}\right)+\mu\left(z_{2}\right)
$$

Information geometry based on Bregman divergence

$$
D^{\mu}\left(z_{1} \| z_{2}\right):=\sum_{i=1}^{m} \frac{\partial \mu}{\partial z^{i}}\left(z_{1}\right)\left(z_{1}^{i}-z_{2}^{i}\right)-\mu\left(z_{1}\right)+\mu\left(z_{2}\right)
$$

Information geometry for probability distributions

Exponential family

$$
\begin{aligned}
& \boldsymbol{P}_{\theta}(x):=\boldsymbol{P}_{0}(x) \exp \left(\sum_{i=1}^{d} \theta^{i} f_{i}(x)-\mu(\theta)\right) \\
& \mathcal{E}:=\left\{P_{\theta} \mid \theta \in \Theta\right\} \\
& \mu(\theta):=\log \sum_{x \in X} P_{0}(x) \exp \left(\sum_{i=1}^{d} \theta^{i} f_{i}(x)\right)
\end{aligned}
$$

Mixture family

$$
\mathscr{M}:=\left\{P \mid \sum P(x) f_{i}(x)=c_{i}\right\}
$$

with constánts c_{1}, \ldots, c_{d}
The above is recovered by Bregman divergence system. $D^{\mu}\left(\boldsymbol{\theta}_{1} \| \boldsymbol{\theta}_{2}\right)=\boldsymbol{D}\left(\boldsymbol{P}_{\theta_{1}} \| \boldsymbol{P}_{\theta_{2}}\right)$

Information geometry for quantum states

Exponential family

$$
\begin{aligned}
& \rho_{\theta}:=\exp \left(X_{0}+\sum_{i=1}^{d} \theta^{i} X_{i}-\mu(\theta)\right) \\
& \mathcal{E}:=\left\{\rho_{\theta} \mid \theta \in \Theta\right\}^{i} \\
& \mu(\theta):=\log \operatorname{Tr} \exp \left(X_{0}+\sum_{i=1}^{d} \theta^{i} X_{i}\right)
\end{aligned}
$$

Mixture family $\mathscr{M}:=\left\{\rho \mid \operatorname{Tr} \rho X_{i}=c_{i}\right\}$ with constants c_{1}, \ldots, c_{d}
The above is recovered by Bregman divergence system.

$$
D^{\mu}\left(\theta_{1} \| \theta_{2}\right)=D\left(\rho_{\theta_{1}} \| \rho_{\theta_{2}}\right):=\operatorname{Tr} \rho_{\theta_{1}}\left(\log \rho_{\theta_{1}}-\log \rho_{\theta_{2}}\right)
$$

Pythagorean theorem

 $\boldsymbol{\theta}_{2}\left\{\begin{array}{l}\text { Exponential family } \\ \mathcal{E}:=\left\{e_{0}+\sum_{i=1}^{d} \theta^{i} e_{i}\right\} \subset \Theta \\ \boldsymbol{\theta}_{\mathbf{1}} \\ \mathcal{M}:=\left\{z_{0} \in \Theta \left\lvert\, \sum_{j=1}^{m} e_{i}^{j} \frac{\partial \mu}{\partial z^{j}}=c_{i}\right.\right\}\end{array}\right.$$\boldsymbol{\theta}_{3}$ Mixture family
$D^{\mu}\left(\theta_{1} \| \theta_{2}\right)=D^{\mu}\left(\theta_{1} \| \theta_{3}\right)+D^{\mu}\left(\theta_{3} \| \theta_{2}\right)$
e-Projection m-Projection
$\Gamma_{E}^{(e)}\left(\theta_{1}\right):=\theta_{3}$
$\Gamma_{M}^{(m)}\left(\theta_{2}\right):=\theta_{3}$

em-algorithm

$\min _{\boldsymbol{\theta}_{2} \in \mathcal{E}} \min _{\theta_{1} \in \mathcal{M}} D^{\mu}\left(\boldsymbol{\theta}_{1} \| \boldsymbol{\theta}_{\mathbf{2}}\right)$

em-algorithm is an iterative algorithm.
We set initial point $\quad \theta_{2(1)} \in \mathcal{E}$
m-step $\quad \theta_{1(t+1)}:=\arg \min _{\theta_{1} \in \mathcal{M}} D^{\mu}\left(\theta_{1} \| \theta_{2(t)}\right)$
e-step $\quad \theta_{2(t+1)}:=\arg \min _{\theta_{2} \in \mathcal{E}} D^{\mu}\left(\theta_{1(t+1)} \| \theta_{2}\right)$
However, the convergence to the global minimum has not been discussed.

em-algorithm

$\min _{\theta_{2} \in \mathcal{E}} \min _{\theta_{1} \in \mathcal{M}} D^{\mu}\left(\theta_{1} \| \theta_{2}\right)$

em-algorithm is an iterative algorithm.
We set initial point $\quad \theta_{2(1)} \in \mathcal{E}$
m-step $\quad \theta_{1(t+1)}:=\arg \min _{\theta_{1} \in M} D^{\mu}\left(\theta_{1} \| \theta_{2(t)}\right)$
e-step $\quad \theta_{2(t+1)}:=\arg \min _{\theta_{2} \in \mathcal{E}} D^{\mu}\left(\theta_{1(t+1)} \| \theta_{2}\right)$
$D^{\mu}\left(\theta_{1(t+1)} \| \theta_{2(t+1)}\right) \leq D^{\mu}\left(\theta_{1(t+1)} \| \theta_{2(t)}\right) \leq D^{\mu}\left(\theta_{1(t)} \| \theta_{2(t)}\right)$
However, the convergence to the global minimum has not been discussed.

em-algorithm

em-algorithm

Theorem
$D^{\mu}\left(\theta_{1} \| \theta_{2}\right) \geq D^{\mu}\left(\Gamma_{\mathcal{E}}^{(e)}\left(\theta_{1}\right) \| \Gamma_{\mathcal{E}}^{(e)}\left(\theta_{2}\right)\right) \quad \theta_{1}, \theta_{2} \in \mathcal{M}$

$\left(\theta_{1(t)}, \theta_{2(t)}\right)$ converges to global minimum.
Convergence speed
$D^{\mu}\left(\theta_{1(t)} \| \Gamma_{\mathcal{E}}^{(e)}\left(\theta_{1, t)}\right)\right)-\min _{\theta \in \mathcal{M}} D^{\mu}\left(\theta \| \Gamma_{\mathcal{E}}^{(e)}(\theta)\right)$
$\sup D^{\mu}\left(\theta \| \theta_{2(1)}\right)$
$\leq \underline{\theta \in \mathcal{M}}$

$$
t-1
$$

Rate distortion theory

Given P_{X} : distribution on X
Cost function: $\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y})$
Conditional distribution: $W \in \mathscr{P}_{Y \mid X}$

$$
\mathscr{P}_{Y \mid X, c}:=\left\{W \in \mathscr{P}_{Y \mid X} \mid\right.
$$

$$
\left.\sum_{x, y} P_{X}(x) W(y \mid x) d(x, y)=c\right\}
$$

Minimum compression rate

$\min \left\{I(X ; Y)_{W \times P_{X}} \mid W \in \mathscr{P}_{Y \mid X, c}\right\}$

$$
W \times P_{X}(y, x):=W(y \mid x) P_{X}(x)
$$

$I(X ; Y)_{W \times P_{X}}:$ Mutual information

Application of em-algorithm to rate-distortion theory
$\min _{W \in P_{Y \mid X, \mathcal{C}}} I(X ; Y)_{W \times P_{X}}$
$=\min _{W \in P_{\mid X X,}} D\left(W \times P_{X} \| W_{Y \mid P_{X}} \times P_{X}\right)$
$=\min _{W \in \mathcal{P}_{Y}, X} \min _{O_{Y}} D\left(W \times P_{X} \| Q_{Y} \times P_{X}\right)$ $W \in \mathbb{P}_{Y \mid X, c} Q_{Y}$
Mixture family
Exponential family
Convergence condition holds.

$$
\begin{aligned}
& \boldsymbol{D}\left(\boldsymbol{W} \times \boldsymbol{P}_{X} \| \boldsymbol{W}{ }^{\prime} \times \boldsymbol{P}_{X}\right) \\
& \geq \boldsymbol{D}\left(W_{Y \mid P_{X}} \| \boldsymbol{W}_{Y \mid P_{x}}\right)=\boldsymbol{D}\left(W_{Y \mid P_{x}} \times \boldsymbol{P}_{X} \| \boldsymbol{W}_{Y \mid P_{X}}{ }^{\prime} \times \boldsymbol{P}_{X}\right)
\end{aligned}
$$

Application of em-algorithm to rate-distortion theory

E-step can be done by calculating the marginal distribution $P_{Y}^{(t)}:=\sum_{x \in X} P_{Y \mid X}^{(t-1)}(y \mid x) P_{X}(x)$
M-step needs to solve the following for τ

$$
\frac{\partial}{\partial \tau} \sum_{x \in X} P_{X}(x) \log \left(\sum_{y \in Y} P_{Y}^{(t)}(y) e^{\tau d(x, y)}\right)=c
$$

convex function

$$
P_{Y \mid X}^{(t)}(y \mid x):=P_{Y}^{(t)}(y) e^{\tau d(x, y)}\left(\sum_{y \in Y} P_{Y}^{(t)}(y) e^{\tau d(x, y)}\right)^{-1}
$$

We repeat this process.

Numerical calculation

$$
\begin{aligned}
& \left(\begin{array}{l}
P_{X}(1) \\
P_{X}(2) \\
P_{X}(3)
\end{array}\right)=\left(\begin{array}{l}
0.5 \\
0.3 \\
0.2
\end{array}\right)\left(\begin{array}{lll}
d(1,1) & d(1,2) & d(1,3) \\
d(2,1) & d(2,2) & d(2,3) \\
d(3,1) & d(3,2) & d(3,3)
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 0 \\
3 & 0 & 1
\end{array}\right) \\
& c=1.5 \\
& P_{Y \mid X}^{*}=\left(\begin{array}{lll}
0.0856 & 0.1886 & 0.4310 \\
0.2243 & 0.4944 & 0.1296 \\
0.6901 & 0.3170 & 0.4294
\end{array}\right)
\end{aligned}
$$

$I(X ; Y)_{P_{Y \mid X}^{*} \times P_{X}}=\mathbf{0 . 1 0 0 0 3 9}$

Numerical calculation

$$
I(X ; Y)_{W^{(t)} \times P_{X}}-I(X ; Y)_{P_{Y \mid x}^{0} \times P_{X}} \text { Blue: }
$$

Error Theoretical
0.10 F

Numerical calculation

Behavior of $\boldsymbol{\tau}$

Further results

arXiv:2201.02447
(1) We made various types of evaluations on emalgorithm.
(2) We applied em-algorithm to several variants of rate-distortion theory including the quantum setting.

Conclusion

- We have studied the convergence of emalgorithm under the framework of Bregman divergence.
- We have applied our result to the ratedistortion theory.
- Our algorithm rapidly converges to the true value.

References

[1] S. Amari, "Information geometry of the EM and em algorithms for neural networks," Neural Networks 8, 1379 1408 (1995).
[2] S. Amari, K. Kurata and H. Nagaoka, "Information geometry of Boltzmann machines," IEEE Transactions on Neural Networks, 3, 260 - 271, (1992).
[3] R. Blahut, "Computation of channel capacity and ratedistortion functions," IEEE Trans. IT, 18, 460 - 473 (1972). [4] S. Arimoto, "An algorithm for computing the capacity of arbitrary discrete memoryless channels," IEEE Trans. IT, 18, 14 - 20 (1972).
[5] N. Datta, M.-H. Hsieh, and M. M. Wilde, "Quantum rate distortion, reverse Shannon theorems, and source-channel separation," IEEE Trans. IT, 59, 615 - 630 (2013).
[6] S. Toyota, "Geometry of Arimoto algorithm," Information Geometry 3, 183 (2020).

