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Em-algorithm
• em-algorithm is similar to EM (Expectation 

and Maximization) algorithm, but it is 

different from EM algorithm.

• em-algorithm is a generalization of 

Boltzmann machine.

• Generally, em-algorithm is an algorithm to 

minimize KL-divergence between 

exponential family and mixture family, 

which are key concepts of information 

geometry.



Rate distortion theory
• Data compression method for analogue 

data

• We can consider its quantum analogue.

• To make this, we need to solve 

minimization of mutual information under 

certain cost constraint.

• Arimoto-Blahut algorithm is known for this 

aim. But, it minimizes a different quantity, 

which is a modification of original target 

function.

• No efficient algorithm exists.



Data       is generated subject to

Task of rate distortion theory

Receiver does not need to recover full 

information      .
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Rate distortion theory
Given        distribution on  :

X
P X

Cost function: ( , )d x y
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Mutual information
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Code construction (Random coding method)

Protocol by rate distortion theory

We randomly choose                         elements   

.                       from      . 
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Existing method for rate distortion

Minimization (Arimoto-Blahut) 
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If     is a suitable value, the minimizer 

satisfies the condition; 
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However, it is not so easy to find such s.



Information geometry for 

probability distributions
Exponential family
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Information geometry based on 

Bregman divergence
Information geometry structure can be 

recovered only by a convex function         

defined on a convex set            .
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Information geometry based on 

Bregman divergence
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Information geometry for 

probability distributions
Exponential family

0

1

( ) : ( )exp( ( ) ( ))
d

i

i

i

P x P x f x   
=

= −
: { | }P = E

Mixture family

: { | ( ) ( ) }
i i

x

P P x f x c


= =
X

M

with constants 1
, ,

d
c c

The above is recovered by Bregman

divergence system. 
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Information geometry 

for quantum states
Exponential family
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Pythagorean theorem
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em-algorithm
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em-algorithm is an iterative algorithm.

We set initial point
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However, the convergence to the global 

minimum has not been discussed.
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em-algorithm
Theorem
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Rate distortion theory
Given        distribution on  :

X
P X

Cost function: ( , )d x y
Conditional distribution: |Y X

W P

Minimum compression rate
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Application of em-algorithm

to rate-distortion theory
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Application of em-algorithm

to rate-distortion theory
E-step can be done by calculating the 

marginal distribution      . 

We repeat this process.
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Numerical calculation
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Numerical calculation
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Further results

(1) We made various types of evaluations on em-

algorithm.

(2) We applied em-algorithm to several variants of 

rate-distortion theory including the quantum setting. 
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Conclusion

• We have studied the convergence of em-

algorithm under the framework of 

Bregman divergence.

• We have applied our result to the rate-

distortion theory.

• Our algorithm rapidly converges to the true 

value.
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