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Classical representation theory of finite group: group algebra

Fix an algberaically closed field k of characteristic 0. The group algebra of a finite
group G, denoted as k[G], has the underlying vector space spanned by elements of G
and its multiplication is induced from the group multiplication of G. In detail, k[G] has
a Hopf algebra structure:

m: k[G] @ k[G] = k[G]; g® h+> gh
ik kG 1o e
A k6] = k[G]@k[G]; g—g@g
e k[G] =k g—1
S:k[G] = Kk[G]; g—~g!

A G-representation is a left module over k[G], while a homomorphism between
G-representations is a homomorphism between left k[G]-modules. Let's denote the
category of finite dimensional G-representations as Rep(G).
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Classical representation theory of finite group: finite semisimplicity

Consider the pairing: (-,-) : k[G] @ k[G] — k; g @ h +— dc(g~1h). It is non-degenerate
and G-invariant, i.e.
e (u,v) =0 for all u € k[G] implies v = 0;
e (g.u,g.v) = (u,v) forany g € G and u, v € k[G].
Thus, any G-submodule M of k[G] has a complementary G-submodule,
M+ = {v € k[G] : (u,v) =0, Yu € M}, hence k[G] is finite semisimple.
Lemma

Rep(G) is a finite semisimple linear category.

Moreover, the Hopf algebra structure on k[G] induces a symmetric monoidal structure
on Rep(G).
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Classical representation theory of finite group: monoidal product

e monoidal product of two G-representations (V/, py) and (W, py ) is defined to be
the tensor product of their underlying vector spaces, with an induced G-action

pvew defined via pyaw(g)(v® w) := py(g)(v) & pw(g)(w) for any g € G,
veVand we W;

e monoidal unit is the one-dimensional space k with the trivial G-action;

e associator, unitors and half-braiding for this monoidal product are the same as
those for tensor product of underlying vector spaces.

The symmetric monoidal structure induces an Zx>q-algebra structure on isomorphism
classes of simple objects in Rep(G), which we will refer to as the representation ring
of Rep(G).
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Classical representation theory of finite group: character

A function x : G — k is a class function if x(hgh™!) = x(g) for any g, h € G.

Given a finite dimensional G-representation (V/, p), its character is defined to be the
function chy : G — k; g — Tr(p(g)).

Group characters have the following properties: suppose V' and W are two finite

dimensional G-representations, then we have

1. chygw = chy + chw,
2. chygw = chy - chyy,
3. chys =chy oS, ie. forany g € G, we have chy«(g) = chy(g™1).

As a consequence, the algebra of characters is the representation ring with coefficients
extended to field k.
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Classical representation theory of finite group: fixed point formula

Suppose (U, p) is a G-representation, then we denote the subrepresentation of G-fixed
points as U® := {u € U : p(g)(u) = u, Vg € G}.

[Fixed point formula] Consider linear map 7 : U — U; u ‘—(1” > gec P(g)(u). It
turns out to be a projection, i.e. for u € U, we have

1
() = g 3 AEne) = 15 2 plew) = 7(w)

The image of this projection is U®. Hence, we obtain

dim U® = ‘G| > chy(g)
geaqG
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Classical representation theory of finite group: class function

Representations are controlled by class functions

All class functions on G form a subalgebra of Fun(G), and characters of simple
G-representations form a basis.

First, let's show {chy : U simple representation (up to isomorphism)} is a linearly
independent subset in the space of class functions. Define the pairing (-, -) on the space

of class functions via (x, 6) := |G| Y gcc x(g Ho(g).

For any simple G—representatlon U and V, we have
(chy,chy) = |G\ Z (chyoS)-chy = |G] ZChU*®V = @ ZChHom(U,V)

1, UV

= dim Hom(U, V)¢ = dim Homg(U, V) = { 0 Uz
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Classical representation theory of finite group: class function

where we apply the fact Hom(U, V)¢ = Homg(U, V), and the last equality follows
from Schur's Lemma.

Finally, we need to show the linearly independent subset is maximal. By
Artin-Wedderburn Theorem, the number of isomorphism classes of simple modules for a
finite dimensional semisimple k-algebra equals the dimension of its center.

Meanwhile, the center of group algebra, Z(k[G]), turns out to be isomorphic to the
algebra of class funcions on G.

Summary of classical representation theory of finite group

Simple objects in Rep(G) are in one-to-one correspondence with basis elements in
Z(k[G]).
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Higher representation theory of finite group

Next, let's review the categorification of the classical representation theory of finite

group.
categorical level 0 categorical level 1
group algebra k[G] graded vector spaces Vecg
Rep(G) 2Rep(G)
G-representation linear category with G-action
tensor product of vector spaces | Deligne tensor product of linear categories
center of an algebra Drinfel'd center of a tensor category
Z([6]) Z:(Veco)
class function on G G-graded G-representation
irreducible G-character Lagrangian algebra in Z1(Vecg)
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Higher representation theory of finite group: algebras in braided category

Next, let's recall some important types of algebras within a braided monoidal category.
Fix an ambient braided monoidal category (B, ®, /,~), where we omit the associators

and unitors of B due to a general coherence theorem, see [JS93].

An algebra in B consists of an object A in B, multiplication m: A® A — A, unit
e : | — A subject to the following conditions:

ida®m 1dA®e

ARARA — AR A AR A
m®1dAl m e®1dAl \J/
ARA —T 5 A ARA —T S A

An algebra (A, m, e) in B is commutative if it satisfies an additional condition:
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Higher representation theory of finite group: algebras in braided category

An algebra (A, m, e) in B is separable if there exists A : A — A ® A satistying
ida = mo A and the following Frobenius conditions:

AR A da®A ARAR A
N
A®ida A mRida
X
AQARA da®m AR A
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Higher representation theory of finite group: algebras in braided category

Given an algebra (A, m, e) in B, a left A-module in B consists of an object M in B
with a left A-action p: A® M — M, subject to the following conditions:

A®A®MM>A®M

s - R

A M —L— M AaM —L— M

Similarly, a right A-module in B consists of an object N in B with a right A-action
A:N®A— N, subject to the following conditions:

NoA®A W No A N IS oA

- s \ b

NoA—2 5N
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Higher representation theory of finite group: algebras in braided category

A left (resp. right) module homomorphism is a morphism in B which commutes
with the corresponding left (resp. right) A-actions.

Let's denote the category of finite projective left (resp. right) A-modules in B as 43
(resp. Ba).
Theorem [Ost03, EGNO16, KZ17, etc.]

Given an algebra (A, m, e) in a tensor category C, the category of right (resp. left)
A-modules, C4 (resp. AC), is a left (resp. right) C-module category.

Conversely, with some mild finiteness conditions, every left (resp. right) C-module
category is of this form.

In particular, when C is finite semisimple, C4 (or aC) is finite semisimple if and only if
algebra A is separable.
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Higher representation theory of finite group: algebras in braided category

When B is a braided tensor category, an algebra (A, m, e) in B is indecomposable if
B4 is indecomposable as left 3-module category.

[Example] Artin-Wedderburn Theorem tells us that a separable algebra in Vec is a
finite sum of matrix algebras. Moreover, an indecomposable separable algebra in Vec is

just a matrix algebra.

[Example] An indecomposable separable algebra in Rep(G) is isomorphic to V* & V/,
for some simple G-representation. In particular, for one-dimensional simple
G-representation V/, we have V* ® V isomorphic to the trivial G-representation k.
Theorem [Ost03]

Indecomposable separable algebras in Rep(G) are classified by pair (H, ¢)'s, where H
is a subgroup of G and ¢ € H?(H;k>).
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Higher representation theory of finite group: algebras in braided category

An étale algebra is an indecomposable commutative separable algebra.

[Example] By Artin-Wedderburn Theorem, a commutative separable algebra in Vec is
a finite sum of trivial algebra k's. Hence, up to isomorphism, the only étale algebra in
Vec is the trivial algebra k.

[Example] A commutative separable algebra in Rep(G) is a finite sum of trivial algebra
together with a G-action. Hence, we can pick a basis closed under that G-action, i.e. a
finite G-set. Moreover, if the algebra is indecomposable then the basis is a transitive
G-set. As a result, an étale algebra in Rep(G) is isomorphic to the function algebra on
a coset space, i.e. Fun(G/H) for some subgroup H.
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Higher representation theory of finite group: étale algebras in Z;(Vecg)

Theorem [Dav10]

Etale algebras in Z;(Vecg) are classified up to isomorphism by triple (H, N, ¢)'s,
where H is a subgroup of G, N is a normal subgroup of H and

T

# € coker(H?(H/N;k*) = H?(H;k*)), where 7 : H — H/N is the quotient

homomorphism.

In particular, when H = N, we have ¢ € H?(H;k*); the corresponding étale algebras in
Z1(Vecg) are called Lagrangian algebras.

Corollary

Simple objects in 2Rep(G), which by definition are Morita classes of indecomposable
separable algebras in Rep(G), are in one-to-one correspondence with Lagrangian
algebras in Z1(Vecg).
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representation theory of finite group: Summary

categorical level 0 categorical level 1

group algebra k[G] graded vector spaces Vecg
Rep(G) 2 Rep(G)

G-representation linear category with G-action
tensor product of vector spaces | Deligne tensor product of linear categories

center of an algebra Drinfel'd center of a tensor category
Z(k[G]) Z1(Vecg)

class function on G G-graded G-representation

irreducible G-character Lagrangian algebra in Z1(Vecg)
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