SUSTech-Nagoya workshop on Quantum Science

Higher Representation Theory of finite group

Hao Xu
Mathematical Institute, Georg-August-Universität Göttingen
hao.xu@mathematik.uni-goettingen.de
Jun 2022

Classical representation theory of finite group: group algebra

Fix an algberaically closed field \mathbb{k} of characteristic 0 . The group algebra of a finite group G, denoted as $\mathbb{k}[G]$, has the underlying vector space spanned by elements of G and its multiplication is induced from the group multiplication of G. In detail, $\mathbb{k}[G]$ has a Hopf algebra structure:

$$
\begin{aligned}
m: \mathbb{k}[G] \otimes \mathbb{k}[G] \rightarrow \mathbb{k}[G] ; & g \otimes h \mapsto g h \\
i: \mathbb{k} \rightarrow \mathbb{k}[G] ; & 1 \mapsto e \\
\Delta: \mathbb{k}[G] \rightarrow \mathbb{k}[G] \otimes \mathbb{k}[G] ; & g \mapsto g \otimes g \\
\epsilon: \mathbb{k}[G] \rightarrow \mathbb{k} ; & g \mapsto 1 \\
S: \mathbb{k}[G] \rightarrow \mathbb{k}[G] ; & g \mapsto g^{-1}
\end{aligned}
$$

A G-representation is a left module over $\mathbb{k}[G]$, while a homomorphism between G-representations is a homomorphism between left $\mathbb{k}[G]$-modules. Let's denote the category of finite dimensional G-representations as $\operatorname{Rep}(G)$.

Classical representation theory of finite group: finite semisimplicity

Consider the pairing: $\langle\cdot, \cdot\rangle: \mathbb{k}[G] \otimes \mathbb{k}[G] \rightarrow \mathbb{k} ; g \otimes h \mapsto \delta_{e}\left(g^{-1} h\right)$. It is non-degenerate and G-invariant, i.e.

- $\langle u, v\rangle=0$ for all $u \in \mathbb{k}[G]$ implies $v=0$;
- $\langle g \cdot u, g \cdot v\rangle=\langle u, v\rangle$ for any $g \in G$ and $u, v \in \mathbb{k}[G]$.

Thus, any G-submodule M of $\mathbb{k}[G]$ has a complementary G-submodule, $M^{\perp}:=\{v \in \mathbb{k}[G]:\langle u, v\rangle=0, \forall u \in M\}$, hence $\mathbb{k}[G]$ is finite semisimple.

Lemma

$\operatorname{Rep}(G)$ is a finite semisimple linear category.

Moreover, the Hopf algebra structure on $\mathbb{k}[G]$ induces a symmetric monoidal structure on $\operatorname{Rep}(G)$.

Classical representation theory of finite group: monoidal product

- monoidal product of two G-representations $\left(V, \rho_{V}\right)$ and $\left(W, \rho_{W}\right)$ is defined to be the tensor product of their underlying vector spaces, with an induced G-action $\rho_{V \otimes W}$ defined via $\rho_{V \otimes W}(g)(v \otimes w):=\rho_{V}(g)(v) \otimes \rho_{W}(g)(w)$ for any $g \in G$, $v \in V$ and $w \in W$;
- monoidal unit is the one-dimensional space \mathbb{k} with the trivial G-action;
- associator, unitors and half-braiding for this monoidal product are the same as those for tensor product of underlying vector spaces.

The symmetric monoidal structure induces an $\mathbb{Z}_{\geq 0 \text {-algebra structure on }}$ isomorphism classes of simple objects in $\operatorname{Rep}(G)$, which we will refer to as the representation ring of $\operatorname{Rep}(G)$.

Classical representation theory of finite group: character

A function $\chi: G \rightarrow \mathbb{k}$ is a class function if $\chi\left(h g h^{-1}\right)=\chi(g)$ for any $g, h \in G$.
Given a finite dimensional G-representation (V, ρ), its character is defined to be the function $\operatorname{ch}_{V}: G \rightarrow \mathbb{k} ; g \mapsto \operatorname{Tr}(\rho(g))$.

Group characters have the following properties: suppose V and W are two finite dimensional G-representations, then we have

1. $\operatorname{ch}_{V \oplus W}=\operatorname{ch}_{V}+\operatorname{ch}_{W}$,
2. $\operatorname{ch}_{V \otimes W}=\operatorname{ch}_{V} \cdot \operatorname{ch}_{W}$,
3. $\operatorname{ch}_{V^{*}}=\operatorname{ch}_{V} \circ S$, i.e. for any $g \in G$, we have $\operatorname{ch}_{V^{*}}(g)=\operatorname{ch} V\left(g^{-1}\right)$.

As a consequence, the algebra of characters is the representation ring with coefficients extended to field \mathbb{k}.

Classical representation theory of finite group: fixed point formula

Suppose (U, ρ) is a G-representation, then we denote the subrepresentation of G-fixed points as $U^{G}:=\{u \in U: \rho(g)(u)=u, \forall g \in G\}$.
[Fixed point formula] Consider linear map $\pi: U \rightarrow U ; u \mapsto \frac{1}{|G|} \sum_{g \in G} \rho(g)(u)$. It turns out to be a projection, i.e. for $u \in U$, we have

$$
\pi(\pi(u))=\frac{1}{|G|^{2}} \sum_{g, h \in G} \rho(g h)(u)=\frac{1}{|G|} \sum_{g \in G} \rho(g)(u)=\pi(u)
$$

The image of this projection is U^{G}. Hence, we obtain

$$
\operatorname{dim} U^{G}=\operatorname{Tr}(\pi)=\frac{1}{|G|} \sum_{g \in G} \operatorname{ch}_{U}(g)
$$

Classical representation theory of finite group: class function

Representations are controlled by class functions

All class functions on G form a subalgebra of $\operatorname{Fun}(G)$, and characters of simple G-representations form a basis.

First, let's show $\left\{\operatorname{ch}_{U}: U\right.$ simple representation (up to isomorphism) $\}$ is a linearly independent subset in the space of class functions. Define the pairing $\langle\cdot, \cdot\rangle$ on the space of class functions via $\langle\chi, \theta\rangle:=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{-1}\right) \theta(g)$.
For any simple G-representation U and V, we have

$$
\begin{aligned}
\left\langle\operatorname{ch}_{U}, \operatorname{ch} V\right\rangle & =\frac{1}{|G|} \sum_{G}\left(\operatorname{ch}_{U} \circ S\right) \cdot \operatorname{ch} V=\frac{1}{|G|} \sum_{G} \operatorname{ch}_{U * \otimes V}=\frac{1}{|G|} \sum_{G} \operatorname{ch}_{\operatorname{Hom}(U, V)} \\
& =\operatorname{dim} \operatorname{Hom}(U, V)^{G}=\operatorname{dim} \operatorname{Hom}_{G}(U, V)= \begin{cases}1, & U \cong V \\
0, & U \nsubseteq V\end{cases}
\end{aligned}
$$

Classical representation theory of finite group: class function

where we apply the fact $\operatorname{Hom}(U, V)^{G}=\operatorname{Hom}_{G}(U, V)$, and the last equality follows from Schur's Lemma.

Finally, we need to show the linearly independent subset is maximal. By Artin-Wedderburn Theorem, the number of isomorphism classes of simple modules for a finite dimensional semisimple \mathbb{k}-algebra equals the dimension of its center.

Meanwhile, the center of group algebra, $Z(\mathbb{k}[G])$, turns out to be isomorphic to the algebra of class funcions on G.

Summary of classical representation theory of finite group

Simple objects in $\operatorname{Rep}(G)$ are in one-to-one correspondence with basis elements in $Z(\mathbb{k}[G])$.

Higher representation theory of finite group

Next, let's review the categorification of the classical representation theory of finite group.

categorical level 0	categorical level 1
group algebra $\mathbb{k}[G]$	graded vector spaces Vec_{G}
$\operatorname{Rep}(G)$	$2 \operatorname{Rep}(G)$
G-representation	linear category with G-action
tensor product of vector spaces	Deligne tensor product of linear categories
center of an algebra	Drinfel'd center of a tensor category
$Z(\mathbb{k}[G])$	$\mathcal{Z}_{1}\left(\operatorname{Vec}_{G}\right)$
class function on G	G-graded G-representation
irreducible G-character	Lagrangian algebra in $\mathcal{Z}_{1}\left(\operatorname{Vec}_{G}\right)$

Next, let's recall some important types of algebras within a braided monoidal category. Fix an ambient braided monoidal category $(\mathcal{B}, \otimes, I, \gamma)$, where we omit the associators and unitors of \mathcal{B} due to a general coherence theorem, see [JS93].

An algebra in \mathcal{B} consists of an object A in \mathcal{B}, multiplication $m: A \otimes A \rightarrow A$, unit $e: I \rightarrow A$ subject to the following conditions:

An algebra (A, m, e) in \mathcal{B} is commutative if it satisfies an additional condition:

An algebra (A, m, e) in \mathcal{B} is separable if there exists $\Delta: A \rightarrow A \otimes A$ satistying $\mathrm{id}_{A}=m \circ \Delta$ and the following Frobenius conditions:

Given an algebra (A, m, e) in \mathcal{B}, a left A-module in \mathcal{B} consists of an object M in \mathcal{B} with a left A-action $\rho: A \otimes M \rightarrow M$, subject to the following conditions:

Similarly, a right A-module in \mathcal{B} consists of an object N in \mathcal{B} with a right A-action $\lambda: N \otimes A \rightarrow N$, subject to the following conditions:

A left (resp. right) module homomorphism is a morphism in \mathcal{B} which commutes with the corresponding left (resp. right) A-actions.

Let's denote the category of finite projective left (resp. right) A-modules in \mathcal{B} as ${ }_{A} \mathcal{B}$ (resp. \mathcal{B}_{A}).

Theorem [Ost03, EGNO16, KZ17, etc.]

Given an algebra (A, m, e) in a tensor category \mathcal{C}, the category of right (resp. left) A-modules, \mathcal{C}_{A} (resp. ${ }_{A} \mathcal{C}$), is a left (resp. right) \mathcal{C}-module category.

Conversely, with some mild finiteness conditions, every left (resp. right) \mathcal{C}-module category is of this form.

In particular, when \mathcal{C} is finite semisimple, $\mathcal{C}_{A}\left(\operatorname{or}_{A} \mathcal{C}\right)$ is finite semisimple if and only if algebra A is separable.

Higher representation theory of finite group: algebras in braided category

When \mathcal{B} is a braided tensor category, an algebra (A, m, e) in \mathcal{B} is indecomposable if \mathcal{B}_{A} is indecomposable as left \mathcal{B}-module category.
[Example] Artin-Wedderburn Theorem tells us that a separable algebra in Vec is a finite sum of matrix algebras. Moreover, an indecomposable separable algebra in Vec is just a matrix algebra.
[Example] An indecomposable separable algebra in $\operatorname{Rep}(G)$ is isomorphic to $V^{*} \otimes V$, for some simple G-representation. In particular, for one-dimensional simple G-representation V, we have $V^{*} \otimes V$ isomorphic to the trivial G-representation \mathbb{k}.

Theorem [Ost03]

Indecomposable separable algebras in $\operatorname{Rep}(G)$ are classified by pair (H, ϕ) 's, where H is a subgroup of G and $\phi \in H^{2}\left(H ; \mathbb{k}^{\times}\right)$.

An étale algebra is an indecomposable commutative separable algebra.
[Example] By Artin-Wedderburn Theorem, a commutative separable algebra in Vec is a finite sum of trivial algebra \mathbb{k} 's. Hence, up to isomorphism, the only étale algebra in Vec is the trivial algebra \mathbb{k}.
[Example] A commutative separable algebra in $\operatorname{Rep}(G)$ is a finite sum of trivial algebra together with a G-action. Hence, we can pick a basis closed under that G-action, i.e. a finite G-set. Moreover, if the algebra is indecomposable then the basis is a transitive G-set. As a result, an étale algebra in $\operatorname{Rep}(G)$ is isomorphic to the function algebra on a coset space, i.e. $\operatorname{Fun}(G / H)$ for some subgroup H.

Higher representation theory of finite group: étale algebras in $\mathcal{Z}_{1}\left(\operatorname{Vec}_{G}\right)$

Theorem [Dav10]

Étale algebras in $\mathcal{Z}_{1}\left(\operatorname{Vec}_{G}\right)$ are classified up to isomorphism by triple (H, N, ϕ) 's, where H is a subgroup of G, N is a normal subgroup of H and $\phi \in \operatorname{coker}\left(\mathrm{H}^{2}\left(H / N ; \mathbb{k}^{\times}\right) \xrightarrow{\pi^{*}} \mathrm{H}^{2}\left(H ; \mathbb{k}^{\times}\right)\right)$, where $\pi: H \rightarrow H / N$ is the quotient homomorphism.

In particular, when $H=N$, we have $\phi \in H^{2}\left(H ; \mathbb{K}^{\times}\right)$; the corresponding étale algebras in $\mathcal{Z}_{1}\left(\operatorname{Vec}_{G}\right)$ are called Lagrangian algebras.

Corollary

Simple objects in $2 \operatorname{Rep}(G)$, which by definition are Morita classes of indecomposable separable algebras in $\operatorname{Rep}(G)$, are in one-to-one correspondence with Lagrangian algebras in $\mathcal{Z}_{1}\left(\operatorname{Vec}_{G}\right)$.

Higher representation theory of finite group: Summary

categorical level 0	categorical level 1
group algebra $\mathbb{k}[G]$	graded vector spaces Vec_{G}
$\operatorname{Rep}(G)$	$2 \operatorname{Rep}(G)$
G-representation	linear category with G-action
tensor product of vector spaces	Deligne tensor product of linear categories
center of an algebra	Drinfel'd center of a tensor category
$Z(\mathbb{k}[G])$	$\mathcal{Z}_{1}\left(\operatorname{Vec}_{G}\right)$
class function on G	G-graded G-representation
irreducible G-character	Lagrangian algebra in $\mathcal{Z}_{1}\left(\operatorname{Vec}_{G}\right)$

Reference

- [JS93] Street, A. Joyal R., and A. Joyal. "Braided tensor categories." Advances in Math 102 (1993): 20-78.
- [Ost03] Ostrik, Victor. "Module categories, weak Hopf algebras and modular invariants." Transformation groups 8.2 (2003): 177-206.
- [DGNO10] Drinfeld, Vladimir, et al. "On braided fusion categories I." Selecta Mathematica 16.1 (2010): 1-119.
- [Dav10] Davydov, Alexei. "Modular invariants for group-theoretical modular data. I." Journal of Algebra 323.5 (2010): 1321-1348.
- [ENO10] Etingof, Pavel, Dmitri Nikshych, and Victor Ostrik. "Fusion categories and homotopy theory." Quantum topology 1.3 (2010): 209-273.
- [ENO11] Etingof, Pavel, Dmitri Nikshych, and Victor Ostrik. "Weakly group-theoretical and solvable fusion categories." Advances in Mathematics 226.1 (2011): 176-205.

Reference

- [DMNO13] Davydov, Alexei, et al. "The Witt group of non-degenerate braided fusion categories." Journal für die reine und angewandte Mathematik (Crelles Journal) 2013.677 (2013): 135-177.
- [DNO13] Davydov, Alexei, Dmitri Nikshych, and Victor Ostrik. "On the structure of the Witt group of braided fusion categories." Selecta Mathematica 19.1 (2013): 237-269.
- [EGNO16] P. Etingof et al. Tensor categories. Vol. 205. American Mathematical Soc., 2016.
- [KZ18] Kong, Liang, and Hao Zheng. "The center functor is fully faithful." Advances in Mathematics 339 (2018): 749-779.
- [DR18] Douglas, Christopher L., and David J. Reutter. "Fusion 2-categories and a state-sum invariant for 4-manifolds." arXiv preprint arXiv:1812.11933 (2018).

Reference

- [GJF19] Gaiotto, Davide, and Theo Johnson-Freyd. "Condensations in higher categories." arXiv preprint arXiv:1905.09566 (2019).
- [She19] Sheikh, Raza Sohail. Group-crossed extensions of representation categories in algebraic quantum field theory. Diss. [SI]:[Sn], 2019.
- [JFR21] Johnson-Freyd, Theo, and David Reutter. "Minimal nondegenerate extensions." arXiv preprint arXiv:2105.15167 (2021).
- [DN21] Davydov, Alexei, and Dmitri Nikshych. "Braided Picard groups and graded extensions of braided tensor categories." Selecta Mathematica 27.4 (2021): 1-87.

