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Classical representation theory of finite group: group algebra

Fix an algberaically closed field k of characteristic 0. The group algebra of a finite
group G , denoted as k[G ], has the underlying vector space spanned by elements of G
and its multiplication is induced from the group multiplication of G . In detail, k[G ] has
a Hopf algebra structure:

m : k[G ]⊗ k[G ] → k[G ]; g ⊗ h 7→ gh

i : k → k[G ]; 1 7→ e

∆ : k[G ] → k[G ]⊗ k[G ]; g 7→ g ⊗ g

ϵ : k[G ] → k; g 7→ 1
S : k[G ] → k[G ]; g 7→ g−1

A G -representation is a left module over k[G ], while a homomorphism between
G -representations is a homomorphism between left k[G ]-modules. Let’s denote the
category of finite dimensional G -representations as Rep(G ).

2 / 20



Classical representation theory of finite group: finite semisimplicity

Consider the pairing: ⟨·, ·⟩ : k[G ]⊗ k[G ] → k; g ⊗ h 7→ δe(g
−1h). It is non-degenerate

and G -invariant, i.e.

• ⟨u, v⟩ = 0 for all u ∈ k[G ] implies v = 0;

• ⟨g .u, g .v⟩ = ⟨u, v⟩ for any g ∈ G and u, v ∈ k[G ].

Thus, any G -submodule M of k[G ] has a complementary G -submodule,
M⊥ := {v ∈ k[G ] : ⟨u, v⟩ = 0, ∀u ∈ M}, hence k[G ] is finite semisimple.

Lemma

Rep(G ) is a finite semisimple linear category.

Moreover, the Hopf algebra structure on k[G ] induces a symmetric monoidal structure
on Rep(G ).
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Classical representation theory of finite group: monoidal product

• monoidal product of two G -representations (V , ρV ) and (W , ρW ) is defined to be
the tensor product of their underlying vector spaces, with an induced G -action
ρV⊗W defined via ρV⊗W (g)(v ⊗ w) := ρV (g)(v)⊗ ρW (g)(w) for any g ∈ G ,
v ∈ V and w ∈ W ;

• monoidal unit is the one-dimensional space k with the trivial G -action;

• associator, unitors and half-braiding for this monoidal product are the same as
those for tensor product of underlying vector spaces.

The symmetric monoidal structure induces an Z≥0-algebra structure on isomorphism
classes of simple objects in Rep(G ), which we will refer to as the representation ring
of Rep(G ).

4 / 20



Classical representation theory of finite group: character

A function χ : G → k is a class function if χ(hgh−1) = χ(g) for any g , h ∈ G .

Given a finite dimensional G -representation (V , ρ), its character is defined to be the
function chV : G → k; g 7→ Tr(ρ(g)).

Group characters have the following properties: suppose V and W are two finite
dimensional G -representations, then we have

1. chV⊕W = chV + chW ,

2. chV⊗W = chV · chW ,

3. chV ∗ = chV ◦ S , i.e. for any g ∈ G , we have chV ∗(g) = chV (g
−1).

As a consequence, the algebra of characters is the representation ring with coefficients
extended to field k.
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Classical representation theory of finite group: fixed point formula

Suppose (U, ρ) is a G -representation, then we denote the subrepresentation of G -fixed
points as UG := {u ∈ U : ρ(g)(u) = u, ∀g ∈ G}.

[Fixed point formula] Consider linear map π : U → U; u 7→ 1
|G |

∑
g∈G ρ(g)(u). It

turns out to be a projection, i.e. for u ∈ U, we have

π(π(u)) =
1

|G |2
∑

g ,h∈G
ρ(gh)(u) =

1
|G |

∑
g∈G

ρ(g)(u) = π(u)

The image of this projection is UG . Hence, we obtain

dimUG = Tr(π) =
1
|G |

∑
g∈G

chU(g)
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Classical representation theory of finite group: class function

Representations are controlled by class functions

All class functions on G form a subalgebra of Fun(G ), and characters of simple
G -representations form a basis.

First, let’s show {chU : U simple representation (up to isomorphism)} is a linearly
independent subset in the space of class functions. Define the pairing ⟨·, ·⟩ on the space
of class functions via ⟨χ, θ⟩ := 1

|G |
∑

g∈G χ(g−1)θ(g).

For any simple G -representation U and V , we have

⟨chU , chV ⟩ =
1
|G |

∑
G

(chU ◦ S) · chV =
1
|G |

∑
G

chU∗⊗V =
1
|G |

∑
G

chHom(U,V )

= dimHom(U,V )G = dimHomG (U,V ) =

{
1, U ∼= V

0, U ̸∼= V
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Classical representation theory of finite group: class function

where we apply the fact Hom(U,V )G = HomG (U,V ), and the last equality follows
from Schur’s Lemma.

Finally, we need to show the linearly independent subset is maximal. By
Artin-Wedderburn Theorem, the number of isomorphism classes of simple modules for a
finite dimensional semisimple k-algebra equals the dimension of its center.

Meanwhile, the center of group algebra, Z (k[G ]), turns out to be isomorphic to the
algebra of class funcions on G .

Summary of classical representation theory of finite group

Simple objects in Rep(G ) are in one-to-one correspondence with basis elements in
Z (k[G ]).
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Higher representation theory of finite group

Next, let’s review the categorification of the classical representation theory of finite
group.

categorical level 0 categorical level 1
group algebra k[G ] graded vector spaces VecG

Rep(G ) 2Rep(G )

G -representation linear category with G -action
tensor product of vector spaces Deligne tensor product of linear categories

center of an algebra Drinfel’d center of a tensor category
Z (k[G ]) Z1(VecG )

class function on G G -graded G -representation
irreducible G -character Lagrangian algebra in Z1(VecG )
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Higher representation theory of finite group: algebras in braided category

Next, let’s recall some important types of algebras within a braided monoidal category.
Fix an ambient braided monoidal category (B,⊗, I , γ), where we omit the associators
and unitors of B due to a general coherence theorem, see [JS93].

An algebra in B consists of an object A in B, multiplication m : A⊗ A → A, unit
e : I → A subject to the following conditions:

A⊗ A⊗ A A⊗ A

A⊗ A A

m⊗idA

idA⊗m

m

m

A A⊗ A

A⊗ A A

e⊗idA

idA⊗e

m

m

An algebra (A,m, e) in B is commutative if it satisfies an additional condition:
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Higher representation theory of finite group: algebras in braided category

A⊗ A A⊗ A

A

m

γA,A

m

An algebra (A,m, e) in B is separable if there exists ∆ : A → A⊗ A satistying
idA = m ◦∆ and the following Frobenius conditions:

A⊗ A A⊗ A⊗ A

A

A⊗ A⊗ A A⊗ A

∆⊗idA

idA⊗∆

m

m⊗idA

∆

idA⊗m
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Higher representation theory of finite group: algebras in braided category

Given an algebra (A,m, e) in B, a left A-module in B consists of an object M in B
with a left A-action ρ : A⊗M → M, subject to the following conditions:

A⊗ A⊗M A⊗M

A⊗M M

m⊗idM

idA⊗ρ

ρ

ρ

M

A⊗M M

e⊗idM

ρ

Similarly, a right A-module in B consists of an object N in B with a right A-action
λ : N ⊗ A → N, subject to the following conditions:

N ⊗ A⊗ A N ⊗ A

N ⊗ A N

λ⊗idA

idN⊗m

λ

λ

N N ⊗ A

N

idN⊗e

λ
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Higher representation theory of finite group: algebras in braided category

A left (resp. right) module homomorphism is a morphism in B which commutes
with the corresponding left (resp. right) A-actions.

Let’s denote the category of finite projective left (resp. right) A-modules in B as AB
(resp. BA).

Theorem [Ost03, EGNO16, KZ17, etc.]

Given an algebra (A,m, e) in a tensor category C, the category of right (resp. left)
A-modules, CA (resp. AC), is a left (resp. right) C-module category.

Conversely, with some mild finiteness conditions, every left (resp. right) C-module
category is of this form.

In particular, when C is finite semisimple, CA (or AC) is finite semisimple if and only if
algebra A is separable.
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Higher representation theory of finite group: algebras in braided category

When B is a braided tensor category, an algebra (A,m, e) in B is indecomposable if
BA is indecomposable as left B-module category.

[Example] Artin-Wedderburn Theorem tells us that a separable algebra in Vec is a
finite sum of matrix algebras. Moreover, an indecomposable separable algebra in Vec is
just a matrix algebra.

[Example] An indecomposable separable algebra in Rep(G ) is isomorphic to V ∗ ⊗ V ,
for some simple G -representation. In particular, for one-dimensional simple
G -representation V , we have V ∗ ⊗ V isomorphic to the trivial G -representation k.

Theorem [Ost03]

Indecomposable separable algebras in Rep(G ) are classified by pair (H, ϕ)’s, where H

is a subgroup of G and ϕ ∈ H2(H;k×).

14 / 20



Higher representation theory of finite group: algebras in braided category

An étale algebra is an indecomposable commutative separable algebra.

[Example] By Artin-Wedderburn Theorem, a commutative separable algebra in Vec is
a finite sum of trivial algebra k’s. Hence, up to isomorphism, the only étale algebra in
Vec is the trivial algebra k.

[Example] A commutative separable algebra in Rep(G ) is a finite sum of trivial algebra
together with a G -action. Hence, we can pick a basis closed under that G -action, i.e. a
finite G -set. Moreover, if the algebra is indecomposable then the basis is a transitive
G -set. As a result, an étale algebra in Rep(G ) is isomorphic to the function algebra on
a coset space, i.e. Fun(G/H) for some subgroup H.
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Higher representation theory of finite group: étale algebras in Z1(VecG )

Theorem [Dav10]

Étale algebras in Z1(VecG ) are classified up to isomorphism by triple (H,N, ϕ)’s,
where H is a subgroup of G , N is a normal subgroup of H and
ϕ ∈ coker(H2(H/N;k×) π∗

−→ H2(H; k×)), where π : H → H/N is the quotient
homomorphism.

In particular, when H = N, we have ϕ ∈ H2(H; k×); the corresponding étale algebras in
Z1(VecG ) are called Lagrangian algebras.

Corollary

Simple objects in 2Rep(G ), which by definition are Morita classes of indecomposable
separable algebras in Rep(G ), are in one-to-one correspondence with Lagrangian
algebras in Z1(VecG ).
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Higher representation theory of finite group: Summary

categorical level 0 categorical level 1
group algebra k[G ] graded vector spaces VecG

Rep(G ) 2Rep(G )

G -representation linear category with G -action
tensor product of vector spaces Deligne tensor product of linear categories

center of an algebra Drinfel’d center of a tensor category
Z (k[G ]) Z1(VecG )

class function on G G -graded G -representation
irreducible G -character Lagrangian algebra in Z1(VecG )
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