THE JONES POLYNOMIAL
OF A KNOT:
THE BIRTH OF QUANTUM TOPOLOGY

SUSTECH-NAGOYA
WORKSHOP ON QUANTUM
SCIENCE 2022
SHENZHEN 3 JUNE 2022

JONES POLYNOMIAL (V.JONES ~1983)

Knots, links \quad in $q^{1 / 2}\left(\right.$ and $\left.q^{-1 / 2}\right)$
with integer coefficients

Example

$$
\begin{aligned}
& J_{O}(q)=1 \\
& J_{G}(q)=-q^{-4}+q^{-3}+q^{-2} \\
& J_{S}(q)=q^{-2}-q^{-1}+1-q+q^{2}
\end{aligned}
$$

Rule (linear system of equations)

$$
q J_{尺}(q)-q^{-1} J_{X^{-1}}(q)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) J_{\tau \tau}(q)
$$

$J_{0}(q)=1$ (initial condition

Every physicist knows: $\infty-\infty=00$!

$$
\left.\left.q J_{C O}(q)-q^{-1}\right] C\right)^{\left.(q)=\left(q^{1 / 2}-q^{-1 / 2}\right) J O O^{(q)},{ }^{(q)}\right)}
$$

So $J_{00}(q)=\frac{q-q^{-1}}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}}=q^{\frac{1}{2}}+q^{-\frac{1}{2}}$
Special value $q=1$
$J_{K}(1)=1$ for all knots
$J_{L}(1)=0$ for all links with at most 2 components

Russian school Kirillov, Reshetikhin, Turaer Drienteld,
Japanese Schod Jumbo, Miwa, ... quantum realized that the Jones polynomial is the simplest example of $\mathrm{slc}_{2} \mathbb{C}$ (simplest simple lie alg) and its fundamental \mathbb{C}^{2}-representation

$$
\operatorname{slC}_{2}=\left\{\left(\begin{array}{l}
a \\
a \\
c
\end{array}\right) \left\lvert\, \begin{array}{|c}
a+d=0 \\
a, c, c, d \in \mathbb{C}
\end{array}\right.\right\} \text {, acts on } \mathbb{C}^{2}
$$

Lie algebra

$$
[x, y]=x y-y x
$$

However, there is one irreducible report $s l \mathbb{2}$ of $\operatorname{dim} N$, namely \mathbb{C}^{N}. Think of $\mathbb{C}^{N}=\{p(x, y) \mid$ homogeneous polys in x, y of degree $N-1\}$

$$
\mathbb{C}^{N}=\operatorname{Sym}^{N-1}\left(\mathbb{C}^{2}\right) \subset \underbrace{\mathbb{C}^{2} \otimes \ldots \otimes}_{N-1} \mathbb{C}^{2}
$$

Thus there exists a colored Jones polynomial

$$
\begin{aligned}
& J_{K, N}(q) \in \mathbb{Z}\left[q^{\frac{1}{2}}, q^{-\frac{1}{2}}\right] \quad N=1,2,3, \ldots \\
& J_{K, 1}(q)=1 \quad J_{K, 2}(q)=J_{K}(q) \\
& \left.J \otimes, 3^{(q)} \underset{\text { roughly }}{ } \quad(q) \text { (2-parallel of } k n o t\right) \\
& +J_{\phi}(q) \\
& \text { Leg } \mathbb{C}^{3}+\mathbb{C}=\mathbb{C}^{2} \otimes \mathbb{C}^{2} \text { as } \text { gl } \mathbb{C} \text { reps) }
\end{aligned}
$$

What is the colored Jones poly of a knot good for? A bit later.

Example

$$
\frac{\text { Example }}{J_{4, N}(q)}=\sum_{n=0}^{N-1} q^{-n N}\binom{N+1}{q ; q}\left(q^{N-1} ; q^{-1}\right)_{n}
$$

where $(x ; q)_{n}=(1-x)(1-q x) . .\left(1-q^{n-1} x\right)$ is the quantum n-factorial

Witten (1989) CHERN-SIMONS PATH INTEGRAL

History: Aliyah asked Witten in Swansee, UK for a relation between the SU(2)-Jones polynomial and Yang-Mills theory (Donaldson theory) in 4-dimensions.

Witter's response: dimensionally reduce the 40-Youg Mills, to 3 -dimensions, thus to topological CS -theory. He filled a stack of napkins, with:

$$
J_{K, N}\left(e^{2 \pi i}\right)=\int_{A\left(S^{3}\right)} e^{2 \pi i \operatorname{cS}(A)} \theta_{K, N}(A) d A
$$

$A\left(S^{3}\right)=\left\{\right.$ attire spaced all su(2)-valued 1 -forms on $\left.S^{3}\right\}$
(SU(2)-connections)
$\theta_{K}(A)=$ the trace of the holonomy going around K in the \mathbb{C}^{N} - representation of $S \cup(2)$

$$
C S(A)=\int_{S^{3}} \operatorname{tr}\left(A \cap d A+\frac{2}{3} A \wedge A \cap A\right)
$$

Further developments

- Asymptotic expansion of CS-theory at the trivial Hat connection led to Vassiliex (ie finite-type) inverionts of knots.
Eg $\left.\quad \frac{d^{10}}{d q^{10}}\right|_{K_{, N}}(q) \quad$ is a poly of N of degree 10 whose coefficients satisfy difference equations at If random points.
- Drinfeld, Kontsevich $(1990,92)$ constructed the universal Vassilier invariant, and connected to nonabelion algebraic geometry $/$ reps of Gal(TV|Q))
- Relation to Alexander polynomial ($\left.\begin{array}{l}\text { classical knot } \\ \text { invariant }\end{array}\right)$

$$
\begin{aligned}
& \Delta_{R}(t)-\Delta_{\lambda_{n}^{n}}(t)=\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right) \Delta_{\uparrow \tau}(t) \\
& \Delta(t)=1 \\
& 0
\end{aligned}
$$

Write $J_{K, N}\left(e^{h}\right)=\sum_{0 \leq i \leq j} a_{i j} N^{i} h^{j}$

$$
\frac{\text { Bar-Natan, } G}{(1995)} \frac{1}{\Delta\left(e^{h}\right)}=\sum_{i=0}^{\infty} a_{i i} h^{i}
$$

- Kashoer (1994) formulated the Volume Conjecture relating quantum topology to Thurstonhyperbolic geometry.

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \frac{1}{N} \log \left|J_{K, N}\left(e^{\frac{2 n i}{N}}\right)\right|=\operatorname{vol}\left(s^{3}-K\right) \\
\text { L suitably normalized }
\end{gathered}
$$

$$
\begin{aligned}
\frac{\text { Example }}{J_{4, N}}\left(e^{\left.\frac{2 n i}{N}\right)}\right. & =\sum_{n=0}^{N-1}(q ; q)_{n}\left(q^{-1} ; q^{-1}\right)_{n}, q=e^{2 \pi i / N} \\
& \sim e^{\frac{\text { vol }(4,1)}{2 \pi} N}
\end{aligned}
$$

where

$$
\begin{aligned}
& \text { where } \\
& \operatorname{vol}\left(4_{1}\right)=2 \operatorname{ImLi}_{2}\left(e^{2 \pi i / 6}\right)=2.02988321281 \ldots
\end{aligned}
$$

Thurston

edge tet	01	02	03	12	13	23		tet	012	013	023	123
0	0	0	1	1	1	0		0	0	1	2	3
1	0	0	1	1	1	0		1	2	1	0	3

edges $0=b$ lack
1 = blue
The hyperbolic metric on 4_{1} is given by the gluing of 2 ideal tetrohedra with dihedral angles $2 \pi 16$ at each edge.

Their shapes $e^{2 n i / 6}$ enters in their volume.

9-difference equations
for the colored Jones polynomial
The sequence $J_{K, N}(q) \quad N=1,2,3, \ldots$ sutisties a linear recursion relation with coefficients polys in q and q^{N}.
(G-Thang.Le 2005)
For 4 , the recursion is second order inhomogeneous of the form

$$
\begin{aligned}
& \text { of the form } \\
& a_{2}\left(q^{n}, q\right) J_{K, n+2}(q)+a\left(q^{n}, q\right) J_{k, n+1}(q)+a_{0}(q, q) J_{K, n}(q)=b\left(q, q^{n}\right) \\
& 1
\end{aligned}
$$

where a_{2}, a_{1}, a_{0}, b are courent polynomials.
Let $L J_{n}(q)=J_{n+1}(q) \quad L M=q M L$

$$
M J_{n}(q)=q^{n} J_{n}(q)
$$

Conj (A] Conjecture, G 2004)
If $P(L, M, q) J=b\left(q, q^{n}\right)$
then the polynomial $P(L, M, 1)$ defines the variety of $S L \mathbb{C}$-representations of n_{1} (knot complement)
$\operatorname{Thm}(G, 2011)$ Let $d_{K, n}=\operatorname{deg}_{q} J_{K, n}(q)$
Then $d_{k, n}$ is a quadratic quasipoly.
Ex For $(-2,3,7)$ pretzel knot

$$
\begin{array}{r}
d_{(-2,3,7), n}=\left[\frac{37}{8} n^{2}+\frac{17}{2} n\right] \\
=\frac{37}{8} n^{2}+\frac{17}{2} n+\varepsilon(n)
\end{array}
$$

where $\varepsilon(n)= \begin{cases}0 & n \equiv 0 \bmod 4 \\ \frac{1}{8} & n \equiv 1 \bmod 4 \\ \frac{\operatorname{m}}{2} & n \equiv 2 \bmod 4 \\ \frac{2}{8} & n \equiv 3\end{cases}$
Conjecture (Slope Conjecture G 2011)
The quadratic colt of $d_{k, n}$ is ${ }^{\text {times }}$ a slope of an incompressible surface in knot complement

True for $(-2,3,7) \frac{37}{2}$ is such.

9-series and analytic functions
In the last 5 years, several nonpolynomial knot invariants hove been introduced by physicists and mathematicians

- 3D index (Dimofte-Goiotto-Cokov, G Kasher - G)
- state integrals (Kashoer et al)
- factorially divergent formal power series (Dimotte-G, C-Zogier)
I will ogive only one example, a pair at a-serien with integer coefficients associated to the U. knot

$$
\begin{aligned}
& g_{m}(q)=\sum_{n=0}^{\infty}(-1)^{n} \frac{q^{n(n+1)} 2}{2}+n m \\
& (q ;)^{2} n \\
& G_{n}(q)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left.q^{n(n+1)} \frac{2 m}{2}+(q ;)^{2}\right)_{n}}{\left(2 m+E(n)+2 \sum_{j=1}^{n} \frac{1+q^{j}}{1-q^{j}}\right)}
\end{aligned}
$$

where $E_{1}(q)=1-4 \sum_{n=1}^{\infty} q^{n} /\left(1-q^{n}\right)$ is the weight-1-Eisenstein series

Thank you for your attention!

