Distributed private randomness distillation

Dong Yang

Shenzhen Institute for Quantum Science and Engineering, SUSTech
joint work [PRL 123, 170501 (2019)] with
Karol Horodecki (Univ. Gdansk) and Andreas Winter (Univ. Autonoma Barcelona)
SUSTech-Nagoya workshop on Quantum Science 2022, 2 June 2022

Outline

(1) Introduction

Randomness
BFW
motivation
(2) Results
two-sided randomness distillation one-sided randomness distillation private randomness capacity
(3) Summary

Randomness

- randomness has various applications
- classical world: pseudo randomness
- quantum mechanics: true randomness

Figure: $|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$, measurement basis $\{|0\rangle,|1\rangle\}$

private randomness

Figure: $|\Phi\rangle_{A E}=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$, measurement basis $\{|0\rangle,|1\rangle\}$

Local noise $\left.\left.\Phi_{A}=\frac{1}{2}(|0\rangle 0|+| 1\rangle 1 \right\rvert\,\right)$ is useless by itself.

Berta/Fawzi/Wehner [IEEE Trans. Inf. Theory 60, 1168 (2014)]

$\rho_{A E}^{\otimes n} \stackrel{U_{A A^{n} \rightarrow K A^{\prime}}}{\longmapsto} \sigma_{K A^{\prime} E^{n}} \stackrel{\operatorname{Tr}_{A^{\prime}}}{\longrightarrow} \sigma_{K E^{n}} \stackrel{M:|i\rangle_{K}}{\longmapsto} \sigma_{\hat{K} E^{n}} \stackrel{1-\epsilon}{\approx} \frac{1}{K} \sum_{i=1}^{K}|i\rangle\langle i| \otimes \rho_{E}^{\otimes n}$

- question: $R_{A}=\sup \frac{\log K}{n}$, s.t. $n \rightarrow \infty, \epsilon \rightarrow 0$?
- answer: $R_{A}=\log |A|+[S(A \mid E)]_{-}$, where $[t]_{-}:=\min \{0, t\}$, $S(A \mid E)=S(A E)-S(E), S(X)=-\operatorname{Tr} X \log X$

motivation

- a hidden point in BFW: a trusted but passive Bob
- idea: a trusted and active Bob?

$$
\psi_{A B E}^{\otimes n} \frac{w / o \text { noise }}{w / o c c} \rightsquigarrow \stackrel{1-\epsilon}{\approx} \frac{1}{K_{A}} \sum_{i=1}^{K_{A}}|i\rangle\langle i| \otimes \frac{1}{K_{B}} \sum_{i=1}^{K_{B}}|j\rangle\langle j| \otimes \psi_{E}^{\otimes n}
$$

- a dual setting to distributed data compression (Slepian/Wolf) in classical IT whose natural dual setting does not exist classically, but does quantumly!
- the rate region of $\left(R_{A}, R_{B}\right)$, where $R_{A}=\frac{\log K_{A}}{n}, R_{B}=\frac{\log K_{B}}{n}$, s.t. $n \rightarrow \infty, \epsilon \rightarrow 0$?
allowed operations: restricted closed local operations and classical communication (RCLOCC)
- adding $|0\rangle$
- local unitary
- partial tracing
- local noise: $\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)$
- classical communication: exchanging subsystems by a dephasing channel $\mathcal{N}(\rho)=\sum\langle i| \rho|i\rangle|i\rangle\langle i|$

In the standard picture, a state of two independent random bits

$$
\rho_{A B E}=\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)_{A} \otimes \frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)_{B} \otimes \rho_{E}
$$

in the dual picture, an ibit is

$$
\alpha_{A A^{\prime} B B^{\prime}}=\frac{1}{4} \sum_{i, j, k, l=0}^{1}|i\rangle\left\langle\left. j\right|_{A} \otimes \mid k\right\rangle\left\langle\left. I\right|_{B} \otimes U_{i k} \sigma_{A^{\prime} B^{\prime}} U_{j l}^{\dagger}\right.
$$

warmup: entanglement swapping

Local noise can help.

Quantum State Merging

Figure: $S(A \mid E)<0$, classical communication $I(A: B)$, entanglement between A^{\prime} and E^{\prime} is $-S(A \mid E)$.

Local noise can be created from QSM.
The communicating part is random against E if not sent.

Doubly decoupling Theorem

Given $\epsilon, \delta>0$, for n copies of a pure tripartite state $|\psi\rangle_{A B E}$ where n is large, there exists a unitary $U: A^{n} \rightarrow K A^{\prime}$ with a fixed basis $\{|i\rangle\}$ of subsystem K,

$$
\left(U_{A^{n}} \otimes \mathbb{1}_{B^{n} E^{n}}\right)|\psi\rangle_{A B E}^{\otimes n}=\sum_{i=1}^{|K|} \sqrt{p_{i}}|i\rangle_{K}\left|\psi_{i}\right\rangle_{A^{\prime} B^{n} E^{n}},
$$

such that after measurement on K in the fixed basis,

$$
\begin{aligned}
& \|\left.\sum_{i=1}^{|K|} p_{i}|i\rangle i\right|_{K} \otimes \psi_{B^{n}}^{i}-\frac{1}{|K|} \sum_{i=1}^{|K|}|i\rangle\left\langle\left. i\right|_{K} \otimes \psi_{B}^{\otimes n} \|_{1} \leq \epsilon,\right. \\
& \|\left.\sum_{i=1}^{|K|} p_{i}|i\rangle i\right|_{K} \otimes \psi_{E^{n}}^{i}-\left.\frac{1}{|K|} \sum_{i=1}^{|K|}|i\rangle i\right|_{K} \otimes \psi_{E}^{\otimes n} \|_{1} \leq \epsilon,
\end{aligned}
$$

when $\frac{1}{n} \log |K|=\min \left\{I(A: E)_{\psi}, I(A: B)_{\psi}\right\}-\delta$.
idea

Figure: $S(A \mid B)>0>S(B \mid A)$. no communication, no noise.

Local noise can be created!
no noise and no communication

$$
\begin{aligned}
R_{A} & \leq \log |A|-S(A \mid B)_{+}, \\
R_{B} & \leq \log |B|-S(B \mid A)_{+}, \\
R_{A}+R_{B} & \leq R_{G}=\log |A B|-S(A B),
\end{aligned}
$$

where $[t]_{+}=\max \{0, t\}$.
free noise but no communication

$$
\begin{aligned}
R_{A} & \leq \log |A|-S(A \mid B), \\
R_{B} & \leq \log |B|-S(B \mid A) \\
R_{A}+R_{B} & \leq R_{G}=\log |A B|-S(A B)
\end{aligned}
$$

free noise and free communication

$$
\begin{aligned}
R_{A} & \leq R_{G} \\
R_{B} & \leq R_{G} \\
R_{A}+R_{B} & \leq R_{G}=\log |A B|-S(A B)
\end{aligned}
$$

free communication but no noise

$$
\begin{aligned}
R_{A} & \leq \log |A B|-\max \{S(B), S(A B)\}, \\
R_{B} & \leq \log |A B|-\max \{S(A), S(A B)\}, \\
R_{A}+R_{B} & \leq R_{G}=\log |A B|-S(A B) .
\end{aligned}
$$

Figure: $S(A \mid B)>0>S(A)-\log |A|>S(B \mid A)$. no comm. no noise, no comm. free noise, free comm. free noise, free comm. no noise.

distributed data compression

- task: joint prob. distribution $p_{X Y}$. Alice compresses her data at the rate R_{X} and Bob at R_{Y}. Charlie can recover the whole data reliably after receiving their compressed data.
- question: what is the compression rate region of $\left(R_{X}, R_{Y}\right)$?
- answer: $R_{X} \geq H(X \mid Y), R_{Y} \geq H(Y \mid X), R_{X Y} \geq H(X Y)$ [Slepian-Wolf Theorem]

Remarks

- no cc, no/free noise is dual to the Slepian-Wolf theorem!
- local noise can boost randomness extraction
- no bound randomness state
- the rate regions are tight in
- no cc, no noise
- no cc, free noise
- free cc, free noise.

> tight for free cc, no noise ?

one-sided randomness distillation

- task: Bob helps Alice to extract randomness against Eve.
- the rate $R_{A}=\log |A B|-\inf \frac{1}{n} \max \left\{S\left(E^{\prime(n)}\right), S\left(B^{\prime(n)}\right)\right\}$ Infimum is taken over n and all RCLOCC : $\rho_{A B}^{\otimes n} \longmapsto \sigma_{A^{\prime n} B^{\prime n}}$
- If $S(B)<S(E)$, then $R_{A}=\log |A B|-S(A B)$. PPT class. $S\left(E^{\prime(n)}\right) \geq n S(E)$.
- not strongly additive $R_{A}(\rho \otimes \sigma)>R_{A}(\rho)+R_{A}(\sigma)$
- Bell state $R_{A}(\Phi)=\frac{3}{2}, R_{A}(I / 2)=0$, but $R_{A}(\Phi \otimes I / 2)=2$.
- upper bound

$$
\begin{aligned}
R_{A} & \leq \log |A B|-\max \left\{\frac{1}{2}\left[E_{r}^{\infty}\left(\rho_{A B}\right)+S(A B)\right], S(A B)\right\} \\
& \leq \log |A B|-\frac{1}{2} \max \{S(A), S(B)\}
\end{aligned}
$$

private randomness capacity

Figure: server-client model: $|\phi\rangle_{A A^{\prime}} \xrightarrow{\mathcal{N}} \stackrel{A^{\prime} \rightarrow B}{\longrightarrow} \rho_{A B}$

- task: Bob extract randomness secure against Eve.
- question: what is the maximal rate?
- in line with the standard model of transmitting information
- server-client structure in future quantum networks

private randomness capacity

Answer

- $\log d_{B}+\max _{|\phi\rangle_{A A^{\prime}}}\left\{S(A)-S\left(\mathcal{N}_{A^{\prime} \rightarrow B}\left(\phi_{A A^{\prime}}\right)\right)\right\}!$
- reverse coherent information of a channel

$$
I_{r e v}(\mathcal{N})=\max _{|\phi\rangle_{A A^{\prime}}}\left\{S(A)-S\left(\mathcal{N}_{A^{\prime} \rightarrow B}\left(\phi_{A A^{\prime}}\right)\right)\right\}
$$

Remark

- single-letter formula, computable.
- $I_{\text {rev }}(\mathcal{N} \otimes \mathcal{M})=I_{\text {rev }}(\mathcal{N})+I_{\text {rev }}(\mathcal{M})$
[CMP266, 37 (2006)], [PRL102, 210501 (2009)]
- But its interpretation has been missing since then.

In contrast with coherent information

- $I_{\text {coh }}(\mathcal{N})=\max _{|\phi\rangle_{A A^{\prime}}}\left\{S(B)-S\left(\mathcal{N}_{A^{\prime} \rightarrow B}\left(\phi_{A A^{\prime}}\right)\right)\right\}$
- $I_{\text {coh }}(\mathcal{M} \otimes \mathcal{N}) \neq I_{\text {coh }}(\mathcal{M})+I_{\text {coh }}(\mathcal{N})$
- $Q(\mathcal{N})=\sup \frac{1}{n} I_{c o h}\left(\mathcal{N}^{\otimes n}\right)$

Summary

Our scenario

distributed private randomness distillation

Results

- two-sided private randomness distillation
- one-sided private randomness distillation
- the private randomness capacity of a channel

Questions

- Q1. what is the tight region for free cc, no noise?
- Q2. is regularization necessary in the one-sided setting ?
- Q3. multipartite case, single-shot case?

