Strongly-fusion 2-category is grouplike

Chun-Yu Bai

June 2, 2022

Shenzhen Institute for Quantum Science and Engineering

This talk is based on Theo Johnson-Freyd and Matthew Yu's proof of the following result [TY20, arXiv:2010.07950]:

Theorem

If **C** is a strong fusion 2-category, then the equivalence classes of indecomposable objects of **C** form a finite group under the fusion product. Similar to Schur's lemma in 1-category, the equivalence relation is "related by a nonzero morphism".

This result was first introduced and proved on a physical level of rigor by Tian Lan, Liang Kong, Xiao-Gang Wen, [LKW17, arXiv:1704.04221].

The definition and basic theory of semisimple and multifusion 2-categories were first introduced in [DR18, arXiv:1812.11933]. Let's first review the main features. \mathbb{C} is complex number field.

Definition

A 2-category **C** is \mathbb{C} -linear if all hom-sets of 2-morphisms are vector spaces over \mathbb{C} , and both vertical composition and horizontal composition of 2-morphisms are bilinear.

Definition

An object in a linear 2-category is **decomposable** if it is equivalent to a direct sum of nonzero objects, and **indecomposable** if it is nonzero and not decomposable.

Remark

A simple object X in a 2-category is one such that any injective 1-morphism $A \hookrightarrow X$ is either 0 or an equivalence. In finite semisimple 2-categories all indecomposable objects are simple [DR18, arXiv:1812.11933]. I will use the terms "simple" and "indecomposable" interchangeably.

In particular the objects which we consider in the 2-category will only be sums of finitely many simple objects. In our goal to define a semisimple 2-category, we present some definitions for the higher categorical generalization of the notion of idempotent complete, see [GJF19, arXiv:1905.09566].

Definition

A 2-category **C** is **locally idempotent complete** if all objects $A, B \in \mathbf{C}$, the 1-category hom_C(A, B) is idempotent complete. It is **locally finite semisimple** if hom_C(A, B) is furthermore a finite semisimple \mathbb{C} -linear category (i.e. an abelian \mathbb{C} -linear category with finitely many isomorphism classes of simple object and in which every object decomposes as a finite direct sum of simple objects).

In what follows, we will assume C is a locally idempotent complete 2-category.

A condensation $A \rightarrow B$ in 2-category **C** consists of the following data:

- 1-morphisms $f : A \rightarrow B$ and $g : B \rightarrow A$;
- 2-morphisms $\varepsilon : fg \Rightarrow id_B$ and $\gamma : id_B \rightarrow fg$ such that $\varepsilon \gamma = id_{id_B}$.

Definition

A unital condensation in 2-category **C** is a condensation $A \rightarrow B$ equipped with a 2-morphism $\eta : id_A \Rightarrow gf$ such that $f \dashv g \equiv (f, g, \eta, \varepsilon)$ is an adjunction.

Let A be a simple object in **C**. A monad $(p : A \to A, m : p \circ p \to p, u : id_A \to p)$ in a 2-category is **separable** if there exists an (p, p)-bimodule map $c : p \to p \circ p$ such that $m \circ c = id_p$.

Example

A separable monad in a 2-category with one object \star is a separable algebra in the E_1 -monoidal endomorphism category End(\star).

Definition

A separable monad (p, m, u) is **split** if there exist a unital condensation $(f, g, \varepsilon, \gamma, \eta)$ and $gf \simeq p$.

You can check this definition is well-defined. (hint: $m : gfgf \xrightarrow{\operatorname{id}_g \varepsilon \operatorname{id}_f} gf; u : \operatorname{id}_A \xrightarrow{\eta} gf;$ $c : gf \xrightarrow{\operatorname{id}_g \gamma \operatorname{id}_f} gfgf; \varepsilon \gamma = \operatorname{id}_{\operatorname{id}_B}$ leads that monad (p, m, u) is separable).

A 2-category C is 2-idempotent complete if it is

- 1. locally idempotent complete;
- 2. every separable monad splits.

Remark

Requiring the unitality of p differs slightly from the situation in 1-categories. In 1-categories there is an equality of $p^2 = p$ but there is no equality of 1 and p. [GJF19, arXiv:1905.09566] developed a nonunital version of separable monad for 2-categories and showed that if **C** has adjoints for 1-morphisms, then the notion of 2-idempotent completion above and in [GJF19, arXiv:1905.09566] agree.

A $\mathbb C\text{-linear}$ 2-category \boldsymbol{C} is finite semisimple if

- 1. it has finitely many isomorphism classes of simple objects;
- 2. it is locally finite semisimple;
- 3. has adjoints for all 1-morphisms;
- 4. has direct sums of objects;
- 5. is 2-idempotent complete.

Definition

A **multifusion 2-category** is a finite semisimple monoidal 2-category in which all objects have duals.

Remark

As noted in [DR18, arXiv: 1812.11933, Definition 2.1.6], in a multifusion 2-category, left and right duals are the same.

A multifusion 1-categories \mathcal{C} is **fusion** if the endomorphism algebra $\Omega(\mathcal{C}, \mathbb{1}_{\mathcal{C}}) = \mathsf{End}_{\mathcal{C}}(\mathbb{1}_{\mathcal{C}}) \simeq \mathbb{C}$, where $\mathbb{1}_{\mathcal{C}} \in \mathcal{C}$ denotes the tensor unit.

There are two reasonable categorifications of 'fusion' when ${\bf C}$ is a multifusion 2-category:

Definition

The stronger generalization, which we will call **strongly fusion**, is to ask that the endomorphism 1-category $\Omega(\mathbf{C}, \mathbb{1}_{\mathbf{C}}) = \text{End}_{\mathbf{C}}(\mathbb{1}_{\mathbf{C}}) \simeq \text{Vect}_{\mathbb{C}}$.

The weak notion, which we will call merely **fusion**, is to ask only that $\Omega^2(\mathbf{C}, \mathbb{1}_{\mathbf{C}}) = \mathsf{End}_{\Omega(\mathbf{C}, \mathbb{1}_{\mathbf{C}})}(\mathbb{1}_{\mathbb{1}_{\mathbf{C}}}) \simeq \mathbb{C}, \text{ where } \mathbb{1}_{\mathbb{1}_{\mathbf{C}}} \in \Omega(\mathbf{C}, \mathbb{1}_{\mathbf{C}}) \text{ is the tensor unit.}$

Remark

The particle-like topological excitations (which form the UMTC) are 0d domain walls between trivial 1d domain walls. The condition of strong fusion tells us ${\bf C}$ has no

```
particle-like excitation.
Chun-Yu Bai
```

Strongly-fusion 2-category is grouplike

9 / 19

We now begin to develope the necessary graphical calculus in order to prove the main results. For an object $X \in \mathbf{C}$, we denote $\int_{S^1} X$ as the wrapping of X around a S^1 . This integral is a map $\int_{S^1} : \mathbf{C} \to \Omega(\mathbf{C}, \mathbb{1}_{\mathbf{C}})$.

We now describe this operation \int_{S^1} algebraically. Because we are working with a strongly fusion 2-category each object has a dual and we have a unit $\eta_X : \mathbb{1}_{\mathbb{C}} \to X \otimes X^*$. It corresponds to the half-circle:

Also, since all 1-morphisms have adjoints, there is a right adjoint (unital condensation) $\eta_X^* : X \otimes X^* \to \mathbb{1}_{\mathbf{C}}$:

All together, we find the algebraic definition:

$$\int_{S^1} X := \eta_X^* \circ \eta_X.$$

State-operator correspondence

In a multifusion 2-category ${\boldsymbol{\mathsf{C}}}$ there is an isomorphism

$$\operatorname{End}_{\operatorname{End}_{\operatorname{\mathsf{C}}}(X)}(\operatorname{id}_X) \simeq \hom_{\Omega(\operatorname{\mathsf{C}},\mathbb{1}_{\operatorname{\mathsf{C}}})}(\operatorname{id}_{\mathbb{1}_{\operatorname{\mathsf{C}}}}, \int_{S^1} X)$$

Proof.

The duality of X with X^* provides an equivalence of

$$\operatorname{End}_{\mathbf{C}}(X) \simeq \operatorname{hom}_{\mathbf{C}}(\mathbb{1}_{\mathbf{C}}, X \otimes X^*)$$

This equivalence identities id_X with η_X , and so in particular

$$\operatorname{End}_{\operatorname{End}_{\operatorname{\mathsf{C}}}(X)}(\operatorname{id}_X) \simeq \operatorname{End}_{\operatorname{hom}(\mathbb{1}_{\operatorname{\mathsf{C}}},X\otimes X^*)}(\eta_X)$$

Since **C** is multifusion , all 1-morphisms $f : A \to B$ have adjoints $f^* : B \to A$, i.e. $\operatorname{End}_{\operatorname{hom}(A,B)}(f) \simeq \operatorname{hom}_{\operatorname{End}(A)}(\operatorname{id}_A, f^* \circ f)$. Taking $f = \eta_X$, with $A = \mathbb{1}_{\mathbf{C}}$ and $P \xrightarrow{C \operatorname{hun-Yu}}_{\operatorname{End}} \operatorname{State}_{\operatorname{End}} \operatorname{End}_{\operatorname{End}} \operatorname{State}_{\operatorname{End}} \operatorname{End}_{\operatorname{End}} \operatorname{State}_{\operatorname{End}} \operatorname{End}_{\operatorname{End}} \operatorname{State}_{\operatorname{End}} \operatorname{State}_{\operatorname{End}} \operatorname{State}_{\operatorname{End}} \operatorname{State}_{\operatorname{End}} \operatorname{State}_{\operatorname{End}} \operatorname{State}_{\operatorname{End}} \operatorname{State}_{\operatorname{End}} \operatorname{State}_{\operatorname{End}} \operatorname{End}_{\operatorname{End}} \operatorname{State}_{\operatorname{End}} \operatorname{End}_{\operatorname{End}} \operatorname{State}_{\operatorname{End}} \operatorname{State}_{\operatorname{End}} \operatorname{State}_{\operatorname{End}} \operatorname{End}_{\operatorname{End}} \operatorname{State}_{\operatorname{End}} \operatorname{End}_{\operatorname{End}} \operatorname{$ How to understand "state-operator correspondence $\operatorname{End}_{\operatorname{End}_{\mathsf{C}}(X)}(\operatorname{id}_X) \simeq \operatorname{hom}_{\Omega(\mathsf{C},\mathbb{1}_{\mathsf{C}})}(\operatorname{id}_{\mathbb{1}_{\mathsf{C}}}, \int_{S^1} X)$ " in geometry? A element P in $\operatorname{End}_{\operatorname{End}_{\mathsf{C}}(X)}(\operatorname{id}_X)$ is a "point" on X-sheet.

Every P gives an "way" from id_{1c} to $\int_{S^1} X$.

Chun-Yu Bai

14 / 19

Remark

Suppose ${\bf C}$ is fusion. According to the above isomorphism

$$\mathsf{End}_{\mathsf{End}_{\mathsf{C}}(X)}(\mathsf{id}_X) \simeq \hom_{\Omega(\mathbf{C},\mathbb{1}_{\mathsf{C}})}(\mathsf{id}_{\mathbb{1}_{\mathsf{C}}}, \int_{S^1} X)$$

X is simple iff $\hom_{\Omega(\mathbf{C},\mathbb{1}_{\mathbf{C}})}(\operatorname{id}_{\mathbb{1}_{\mathbf{C}}},\int_{S^1} X)$ is one-dimensional. This is self-consistent with the definition of when multifusion is fusion.

Theorem

Suppose **C** is strong fusion. If $X \in \mathbf{C}$ is indecomposable, then $\int_{S^1} X = \mathbb{C}$.

Proof.

Since **C** is strong fusion, $\Omega(\mathbf{C}, \mathbb{1}_{\mathbf{C}}) \simeq \operatorname{Vect}_{\mathbb{C}}$. In order to self-consistent with the definition of strong fusion, X is indecomposable iff $\operatorname{End}_{\mathbf{C}}(X) \simeq \operatorname{Vect}_{\mathbb{C}}$. Then $\operatorname{End}_{\operatorname{End}_{\mathbf{C}}(X)}(\operatorname{id}_X) \simeq \operatorname{End}_{\operatorname{Vect}_{\mathbb{C}}}(\mathbb{C}, \mathbb{C}) \simeq \mathbb{C}$. So we must have $\int_{S^1} X = \mathbb{C}$.

We now consider the tensor product of two indecomposable objects $X \otimes Y$ mapped by the integral \int_{S^1} . This represents a cylinder within a cylinder as follows:

In general, we see that \int_{S^1} is not monoidal: a cylinder within a cylinder is not the same as two adjacent cylinders. However, in the strongly fusion case, if X and Y are simple then we may collapse down the inner cylinder via the state operator map into the vaacum \mathbb{C} . We may then collapse the out cylinder.

So we have the following corollary:

Theorem

In a strong fusion 2-category, the tensor product of indecomposable objects is indecomposable.

Theorem

If **C** is a strong fusion 2-category, then the equivalence classes of indecomposable objects of **C** form a finite group under the fusion product. Similar to Schur's lemma in 1-category, the equivalence relation is "related by a nonzero morphism".

Proof.

If $X \in \mathbf{C}$ is a indecomposable object, then X^* is as well (since $\operatorname{End}(X) \simeq \operatorname{End}(X^*)$), and hence so is $X \otimes X^*$. Since $\eta_X : \mathbb{1}_{\mathbf{C}} \to X \otimes X^*$ is nonzero, the idecomposable objects $\mathbb{1}_{\mathbf{C}} \simeq X \otimes X^*$. The identity in group is given by $\mathbb{1}_{\mathbf{C}}$. The associativity is given by the associator of \mathbf{C} . In a strong fusion 2-category, the tensor product of indecomposable objects is indecomposable. Thus the equivalence of classes of indecomposable objects of \mathbf{C} form a finite group under the fusion product. \Box

Chun-Yu Bai

- 1, Fusion 2-categories with no line operators are grouplike, Theo and Matthew.
- 2, [DR18] Fusion 2-categories and a state-sum invariant for 4-manifolds, Douglas and Reutter;
- 3, [GJF19] Condensation in higher categories, Gaiotto and Theo;
- 4, [LKW17] Tian Lan, Liang Kong, and Xiao-Gang Wen. Classification of (2+1)-dimensional topological order and symmetry-protected topological order for bosonic and fermionic systems with on-site symmetries.