The theory of quantum statistical comparison

- a brief overview -

Francesco Buscemi (Nagoya University)
SUSTech-Nagoya workshop on Quantum Science 2022
2 June 2022

The precursor: majorization

Lorenz curves and majorization

- two probability distributions,

$$
\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right) \text { and } \boldsymbol{q}=\left(q_{1}, \ldots, q_{n}\right)
$$

- truncated sums $P(k)=\sum_{i=1}^{k} p_{i}^{\downarrow}$ and $Q(k)=\sum_{i=1}^{k} q_{i}^{\downarrow}$, for all $k=1, \ldots, n$
- p majorizes q, i.e., $\boldsymbol{p}>\boldsymbol{q}$, whenever $P(k) \geqslant Q(k)$, for all k
- minimal element: uniform distribution $e=n^{-1}(1,1, \cdots, 1)$

$$
\left(x_{k}, y_{k}\right)=(k / n, P(k)), \quad 1 \leqslant k \leqslant n
$$

Blackwell's extension

Statistical experiments

"The basic structures in the whole affair are systems that Blackwell called experiments, and transitions between them. An experiment is a mathematical abstraction intended to describe the basic feature of an observational process if that process is contemplated in advance of its implementation."

Lucien Le Cam (1984)

Lucien Le Cam (1924-2000)

The formulation

Definition (Statistical models and decision problems)

- parameter set $\Omega=\{\omega\}$, sample set $\mathcal{X}=\{x\}$, action set $\mathcal{A}=\{a\}$
- a statistical model/experiment is a triple $\mathbf{w}=\langle\Omega, \mathcal{X}, w(x \mid \omega)\rangle$
- a statistical decision problem/game is a triple $\mathbf{g}=\langle\Omega, \mathcal{A}, c\rangle$, where $c: \Omega \times \mathcal{A} \rightarrow \mathbb{R}$ is a payoff function

Playing statistical games with experiments

- the experiment/model is the resource: it is given
- the decision is the transition: it can be optimized
$\Omega \xrightarrow{\text { experiment }} \mathcal{X} \xrightarrow{\text { decision }} \mathcal{A}$

| ξ | ξ | |
| :--- | :--- | :--- | :--- |
| $\omega \underset{w(x \mid \omega)}{ }$ | x | |
| $d(a \mid x)$ | | |$\quad a$

Definition

The (expected) maximin payoff of a statistical model $\mathbf{w}=\langle\Omega, \mathcal{X}, w\rangle$ w.r.t. a decision problem $\mathbf{g}=\langle\Omega, \mathcal{A}, c\rangle$ is given by

$$
c_{\mathbf{g}}^{*}(\mathbf{w}) \stackrel{\text { def }}{=} \max _{d(a \mid x)} \min _{\omega} \sum_{a, x} c(\omega, a) d(a \mid x) w(x \mid \omega)
$$

Comparison of statistical models

Definition (Information Preorder)

Given two statistical models $\mathbf{w}=\langle\Omega, \mathcal{X}, w\rangle$ and $\mathbf{w}^{\prime}=\left\langle\Omega, \mathcal{Y}, w^{\prime}\right\rangle$ on the same parameter set but possibly different sample sets, we say that \mathbf{w} is (always) more informative than \mathbf{w}^{\prime}, and write

$$
\mathbf{w}>\mathbf{w}^{\prime}
$$

if and only if

$$
c_{\mathbf{g}}^{*}(\mathbf{w}) \geqslant c_{\mathbf{g}}^{*}\left(\mathbf{w}^{\prime}\right)
$$

for all decision problems $\mathbf{g}=\langle\Omega, \mathcal{A}, c\rangle$.

Can we visualize the information preorder more concretely?

Information preorder $=$ statistical sufficiency

Theorem (Blackwell, 1953)
Given two statistical experiments $\mathbf{w}=\langle\Omega, \mathcal{X}, w\rangle$ and $\mathbf{w}^{\prime}=\left\langle\Omega, \mathcal{Y}, w^{\prime}\right\rangle$, the following are equivalent:

1. $\mathbf{w}>\mathbf{w}^{\prime}$;
2. \exists cond. prob. dist. $\varphi(y \mid x)$ such that

$$
w^{\prime}(y \mid \omega)=\sum_{x} \varphi(y \mid x) w(x \mid \omega) \text { for all } y \text { and } \omega
$$

David Blackwell (1919-2010)

The case of dichotomies (a.k.a. relative majorization)

- for $\Omega=\{1,2\}$, we compare two
dichotomies, i.e., two pairs of probability distributions $\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)$ and $\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right)$, of dimension m and n, respectively
- relabel entries such that ratios p_{1}^{i} / p_{2}^{i} and q_{1}^{j} / q_{2}^{j} are nonincreasing
- construct the truncated sums $P_{\omega}(k)=\sum_{i=1}^{k} p_{\omega}^{i}$ and $Q_{\omega}(k)=\sum_{j=1}^{k} q_{\omega}^{j}$
- $\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)>\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right)$ iff the relative Lorenz curve of the former is never below that of the latter

Blackwell, 1953

$\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)>\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \Longleftrightarrow \boldsymbol{q}_{\omega}=M \boldsymbol{p}_{\omega}$, for some stochastic matrix M.

Quantum extensions

Quantum statistical decision theory (Holevo, 1973)

classical case	quantum case
• decision problems $\mathbf{g}=\langle\Omega, \mathcal{A}, c\rangle$	• decision problems $\mathbf{g}=\langle\Omega, \mathcal{A}, c\rangle$
\bullet models $\mathbf{w}=\langle\Omega, \mathcal{X},\{w(x \mid \omega)\}\rangle$	\bullet quantum models $\mathcal{E}=\left\langle\Omega, \mathcal{H} \mathcal{H}_{S},\left\{\rho_{S}^{\omega}\right\}\right\rangle$
- decisions $d(a \mid x)$	\bullet POVMs $\left\{P_{S}^{a}: a \in \mathcal{A}\right\}$
$\bullet c_{\mathbf{g}}^{*}(\mathbf{w})=\max _{d(a \mid x)} \min _{\omega} \cdots$	$\bullet c_{\mathbf{g}}^{*}(\mathcal{E})=\max _{\left\{P_{S}^{a}\right\}} \min _{\omega} \sum_{a} c(\omega, a) \operatorname{Tr}\left[\rho_{S}^{\omega} P_{S}^{a}\right]$

Quantum statistical morphisms (FB, CMP 2012)

Definition (Tests)

Given a quantum statistical model $\mathcal{E}=\left\langle\Omega, \mathcal{H}_{S},\left\{\rho_{S}^{\omega}\right\}\right\rangle$, a family of operators $\left\{Z_{S}^{a}\right\}$ is said to be an \mathcal{E}-test if and only if there exists a POVM $\left\{P_{S}^{a}\right\}$ such that

$$
\operatorname{Tr}\left[\rho_{S}^{\omega} Z_{S}^{a}\right]=\operatorname{Tr}\left[\rho_{S}^{\omega} P_{S}^{a}\right], \quad \forall \omega, \forall a .
$$

Definition (Morphisms)

Given two quantum statistical models $\mathcal{E}=\left\langle\Omega, \mathcal{H}_{S},\left\{\rho_{S}^{\omega}\right\}\right\rangle$ and
$\mathcal{E}^{\prime}=\left\langle\Omega, \mathcal{H}_{S^{\prime}},\left\{\sigma_{S^{\prime}}^{\omega}\right\}\right\rangle$, a linear map $\mathcal{M}: \mathrm{L}\left(\mathcal{H}_{S}\right) \rightarrow \mathrm{L}\left(\mathcal{H}_{S^{\prime}}\right)$ is said to be an
$\mathcal{E} \rightarrow \mathcal{E}^{\prime}$ quantum statistical morphism iff

1. \mathcal{M} is trace-preserving;
2. $\mathcal{M}\left(\rho_{A}^{\omega}\right)=\sigma_{S^{\prime}}^{\omega}$, for all $\omega \in \Omega$;
3. the trace-dual map $\mathcal{M}^{\dagger}: \mathrm{L}\left(\mathcal{H}_{S^{\prime}}\right) \rightarrow \mathrm{L}\left(\mathcal{H}_{S}\right)$ maps \mathcal{E}^{\prime}-tests into \mathcal{E}-tests.

Quantum statistical comparison (FB, CMP 2012)

- let $\mathcal{E}=\left\langle\Omega, \mathcal{H}_{S},\left\{\rho_{S}^{\omega}\right\}\right\rangle$ and $\mathcal{E}^{\prime}=\left\langle\Omega, \mathcal{H}_{S^{\prime}},\left\{\sigma_{S^{\prime}}^{\omega}\right\}\right\rangle$ be given
- information ordering: $\mathcal{E}>\mathcal{E}^{\prime}$ iff $c_{\mathbf{g}}^{*}(\mathcal{E}) \geqslant c_{\mathbf{g}}^{*}\left(\mathcal{E}^{\prime}\right)$ for all \mathbf{g}
- complete information ordering: $\mathcal{E} \gg \mathcal{E}^{\prime}$ iff $\mathcal{E} \otimes \mathcal{F}>\mathcal{E}^{\prime} \otimes \mathcal{F}$ for all ancillary models $\mathcal{F}=\left\langle\Theta, \mathcal{H}_{A},\left\{\tau_{A}^{\theta}\right\}\right\rangle$
- Theorem $1 / 3: \mathcal{E}>\mathcal{E}^{\prime}$ iff there exists a quantum statistical morphism $\mathcal{M}: \mathrm{L}\left(\mathcal{H}_{S}\right) \rightarrow \mathrm{L}\left(\mathcal{H}_{S^{\prime}}\right)$ such that $\mathcal{M}\left(\rho_{S}^{\omega}\right)=\sigma_{S^{\prime}}^{\omega}$ for all $\omega \in \Omega$
- Theorem 2/3: $\mathcal{E} \gg \mathcal{E}^{\prime}$ iff there exists a completely positive trace-preserving linear map $\mathcal{N}: \mathrm{L}\left(\mathcal{H}_{S}\right) \rightarrow \mathrm{L}\left(\mathcal{H}_{S^{\prime}}\right)$ such that $\mathcal{N}\left(\rho_{S}^{\omega}\right)=\sigma_{S^{\prime}}^{\omega}$ for all $\omega \in \Omega$
- Theorem 3/3: if \mathcal{E}^{\prime} is commutative, that is, if $\left[\sigma_{S^{\prime}}^{\omega_{1}}, \sigma_{S^{\prime}}^{\omega_{2}}\right]=0$ for all $\omega_{1}, \omega_{2} \in \Omega$, then $\mathcal{E} \gg \mathcal{E}^{\prime}$ iff $\mathcal{E}>\mathcal{E}^{\prime}$

Applications in information theory

Classical broadcast channels

How to capture the idea that Y carries more information than Z ?
(i) (stochastically) degradable: \exists channel $Y \rightarrow Z$
(ii) less noisy: for all $M, H(M \mid Y) \leqslant H(M \mid Z)$
(iii) less ambiguous: for all M, $\max \mathbb{P}\left\{\hat{M}_{1}=M\right\} \geqslant \max \mathbb{P}\left\{\hat{M}_{2}=M\right\}$
(iv) less ambiguous (reformulation): for all $M, H_{\min }(M \mid Y) \leqslant H_{\min }(M \mid Z)$

Theorem (Körner-Marton, 1977; FB, 2016)

Quantum broadcast channels

(i) (CPTP) degradable: \exists channel $B \rightarrow E$
(ii) completely less noisy: for all M and all symmetric side-channels $R \rightarrow S \tilde{S}$, $H(M \mid B S) \leqslant H(M \mid E \tilde{S})$
(iii) completely less ambiguous: for all M and all symmetric side-channels $R \rightarrow S \tilde{S}, H_{\min }(M \mid B S) \leqslant H_{\min }(M \mid E \tilde{S})$

Theorem (FB-Datta-Strelchuk, 2014)
completely less noisy $\underset{\text { degradable } \Longleftrightarrow \text { completely less ambiguous }}{\leftrightarrows}$

Applications in open quantum systems dynamics

Discrete-time stochastic processes

Formulation of the problem:

- for $i \in \mathbb{N}$, let x_{i} index the state of a system at time $t=t_{i}$
- given the system's initial state at time $t=t_{0}$, the process is fully predicted by the conditional distribution $p\left(x_{N}, \ldots, x_{1} \mid x_{0}\right)$
- if the system evolving is quantum, we only have a quantum dynamical mapping $\left\{\mathcal{N}_{Q_{0} \rightarrow Q_{i}}^{(i)}\right\}_{i \geqslant 1}$
- the process is divisible if there exist channels $\mathcal{D}^{(i)}$ such that $\mathcal{N}^{(i+1)}=\mathcal{D}^{(i)} \circ \mathcal{N}^{(i)}$ for all $i \geqslant 1$
- problem: to provide a fully information-theoretic characterization of divisibility

Divisibility as "information flow"

Theorem (FB-Datta, 2016; FB, 2018)
Given an initial open quantum system Q_{0}, a quantum dynamical mapping $\left\{\mathcal{N}_{Q_{0} \rightarrow Q_{i}}^{(i)}\right\}_{i \geqslant 1}$ is divisible if and only if, for any initial state $\omega_{R Q_{0}}$,

$$
H_{\min }\left(R \mid Q_{1}\right) \leqslant H_{\min }\left(R \mid Q_{2}\right) \leqslant \cdots \leqslant H_{\min }\left(R \mid Q_{N}\right) .
$$

Applications in quantum thermodynamics

Quantum thermodynamics from relative majorization

Basic idea (FB, arXiv:1505.00535)

Thermal accessibility $\rho \rightarrow \sigma$ can be characterized as the statistical comparison between quantum dichotomies (ρ, γ) and (σ, γ), for γ thermal state

Two main problems:

- for dimension larger than 2 and $[\sigma, \gamma] \neq 0$, we need a complete (i.e., extended) comparison
- moreover, Gibbs-preserving channels can create coherence between energy levels, while a truly thermal operation should not

Complete comparison of quantum dichotomies 1/2

Definition (ON/OFF channels)

Given a d-dimensional quantum dichotomy $\mathcal{E}=(\rho, \gamma)$, we define the corresponding ON/OFF channel $\mathcal{N}_{\mathcal{E}}: \mathscr{L}\left(\mathbb{C}^{2}\right) \rightarrow \mathscr{L}\left(\mathbb{C}^{d}\right)$ as

$$
\mathcal{N}_{\mathcal{E}}(\cdot):=\gamma\langle 0| \cdot|0\rangle+\rho\langle 1| \cdot|1\rangle
$$

Complete comparison of quantum dichotomies 2/2

For a quantum channel $\mathcal{N}: A \rightarrow B$ and a state $\omega_{R A}$, define the singlet fraction as

$$
\Phi_{\omega}^{*}(\mathcal{N}):=\max _{\mathcal{D}: B \rightarrow \tilde{R}}\left\langle\Phi_{R \tilde{R}}^{+}\right|\left(\mathrm{id}_{R} \otimes \mathcal{D} \circ \mathcal{N}\right)\left(\omega_{R A}\right)\left|\Phi_{R \tilde{R}}^{+}\right\rangle,
$$

where \mathcal{D} is a decoding quantum channel with output system $R \cong \tilde{R}$

Theorem (FB, 2015)
Given two quantum dichotomies $\mathcal{E}=\left(\rho_{1}, \rho_{2}\right)$ and $\mathcal{F}=\left(\sigma_{1}, \sigma_{2}\right)$, let $\mathcal{N}_{\mathcal{E}}$ and $\mathcal{N}_{\mathcal{F}}$ the corresponding ON/OFF channels. Then, $\mathcal{E} \gg \mathcal{F}$ if and only if

$$
\Phi_{\omega}^{*}\left(\mathcal{N}_{\mathcal{E}}\right) \geqslant \Phi_{\omega}^{*}\left(\mathcal{N}_{\mathcal{F}}\right), \quad \forall \omega
$$

Dealing with quantum coherence (sketch)

For quantum dichotomies $\mathcal{E}=(\rho, \gamma)$ and $\mathcal{F}=(\sigma, \gamma)$ and group $\mathscr{T}=\left\{e^{-i t \log \gamma}\right\}_{t \in \mathbb{R}}$, we write $\mathcal{E} \gg \mathscr{T} \mathcal{F}$ iff \exists CPTP linear \mathcal{M} such that:
(i) $\mathcal{M}(\rho)=\sigma$ and $\mathcal{M}(\gamma)=\gamma$;
(ii) $\mathcal{M}\left(U_{t} \cdot U_{t}^{\dagger}\right)=U_{t} \mathcal{M}(\cdot) U_{t}^{\dagger}$, for all $t \in \mathbb{R}$

Theorem (Gour-Jennings-FB-Duan-Marvian, 2018)
$\mathcal{E}>_{\mathscr{T}} \mathcal{F}$ if and only if

$$
\widetilde{\Phi}_{\omega}^{*}\left(\mathcal{N}_{\mathcal{E}}\right) \geqslant \widetilde{\Phi}_{\omega}^{*}\left(\mathcal{N}_{\mathcal{F}}\right), \quad \forall \omega
$$

(see picture below)

Conclusions

Conclusions

- the theory of statistical comparison studies morphisms (preorders) of one "statistical system" X into another "statistical system" Y
- equivalent conditions are given in terms of (finitely or infinitely many) monotones, e.g., $f_{i}(X) \geqslant f_{i}(Y)$
- such monotones quantify the resources at stake in the operational framework at hand, e.g.
- the expected maximin payoff in decision problems for experiments
- the information asymmetry for broadcast channels
- the non-divisibility for open systems dynamics
- the joint time-energy information for quantum thermodynamics

