# The theory of quantum statistical comparison

- a brief overview -

Francesco Buscemi (Nagoya University) SUSTech-Nagoya workshop on Quantum Science 2022 2 June 2022

# The precursor: majorization

## Lorenz curves and majorization

- two probability distributions,  $p = (p_1, \dots, p_n)$  and  $q = (q_1, \dots, q_n)$
- truncated sums  $P(k) = \sum_{i=1}^{k} p_i^{\downarrow}$  and  $Q(k) = \sum_{i=1}^{k} q_i^{\downarrow}$ , for all  $k = 1, \dots, n$
- p majorizes q, i.e., p > q, whenever  $P(k) \ge Q(k)$ , for all k
- minimal element: uniform distribution  $e = n^{-1}(1, 1, \cdots, 1)$

#### Hardy–Littlewood–Pólya, 1934

 $p > q \iff q = Mp$ , for some bistochastic matrix M.



$$(x_k, y_k) = (k/n, P(k)), \quad 1 \le k \le n$$

1/19

## **Blackwell's extension**

#### **Statistical experiments**



Lucien Le Cam (1924-2000)

"The basic structures in the whole affair are systems that Blackwell called experiments, and transitions between them. An experiment is a mathematical abstraction intended to describe the basic feature of an observational process if that process is contemplated in advance of its implementation."

Lucien Le Cam (1984)

## The formulation





- parameter set  $\Omega = \{\omega\}$ , sample set  $\mathcal{X} = \{x\}$ , action set  $\mathcal{A} = \{a\}$
- a statistical model/experiment is a triple  $\mathbf{w} = \langle \Omega, \mathcal{X}, w(x|\omega) \rangle$
- a statistical decision problem/game is a triple  $\mathbf{g} = \langle \Omega, \mathcal{A}, c \rangle$ , where  $c : \Omega \times \mathcal{A} \to \mathbb{R}$  is a payoff function

## Playing statistical games with experiments

the experiment/model is the resource: it is given
 the decision is the transition: it can be optimized
 Ω experiment X decision
 ξ
 ξ
 ψ(x|ω)
 x → d(a|x)

#### Definition

The (expected) maximin payoff of a statistical model  $\mathbf{w} = \langle \Omega, \mathcal{X}, w \rangle$  w.r.t. a decision problem  $\mathbf{g} = \langle \Omega, \mathcal{A}, c \rangle$  is given by

$$c_{\mathbf{g}}^{*}(\mathbf{w}) \stackrel{\text{\tiny def}}{=} \max_{d(a|x)} \min_{\omega} \sum_{a,x} c(\omega,a) d(a|x) w(x|\omega) \;.$$

4/19

A

Ş

a

### **Comparison of statistical models**

#### **Definition (Information Preorder)**

Given two statistical models  $\mathbf{w} = \langle \Omega, \mathcal{X}, w \rangle$  and  $\mathbf{w}' = \langle \Omega, \mathcal{Y}, w' \rangle$  on the same parameter set but possibly different sample sets, we say that  $\mathbf{w}$  is (always) more informative than  $\mathbf{w}'$ , and write

if and only if

$$c_{\mathbf{g}}^{*}(\mathbf{w}) \ge c_{\mathbf{g}}^{*}(\mathbf{w}')$$

for all decision problems  $\mathbf{g} = \langle \Omega, \mathcal{A}, c \rangle$ .

# Can we visualize the information preorder more concretely?

## Information preorder = statistical sufficiency

#### Theorem (Blackwell, 1953)

Given two statistical experiments  $\mathbf{w} = \langle \Omega, \mathcal{X}, w \rangle$ and  $\mathbf{w}' = \langle \Omega, \mathcal{Y}, w' \rangle$ , the following are equivalent:

- 1. w > w';
- 2.  $\exists$  cond. prob. dist.  $\varphi(y|x)$  such that  $w'(y|\omega) = \sum_{x} \varphi(y|x)w(x|\omega)$  for all y and  $\omega$ .





David Blackwell (1919-2010)

## The case of dichotomies (a.k.a. relative majorization)

- for  $\Omega = \{1, 2\}$ , we compare two dichotomies, i.e., two pairs of probability distributions  $(\boldsymbol{p}_1, \boldsymbol{p}_2)$  and  $(\boldsymbol{q}_1, \boldsymbol{q}_2)$ , of dimension m and n, respectively
- relabel entries such that ratios  $p_1^i/p_2^i$  and  $q_1^j/q_2^j$  are nonincreasing
- construct the truncated sums  $P_{\omega}(k) = \sum_{i=1}^{k} p_{\omega}^{i}$  and  $Q_{\omega}(k) = \sum_{j=1}^{k} q_{\omega}^{j}$
- $(p_1, p_2) > (q_1, q_2)$  iff the relative Lorenz curve of the former is never below that of the latter

#### Blackwell, 1953

 $(p_1, p_2) > (q_1, q_2) \iff q_\omega = M p_\omega$ , for some stochastic matrix M.



7/19

### Quantum extensions

## Quantum statistical decision theory (Holevo, 1973)

| classical case                                                               | quantum case                                                                                                                                  |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| • decision problems $\mathbf{g} = \langle \Omega, \mathcal{A}, c \rangle$    | • decision problems $\mathbf{g} = \langle \Omega, \mathcal{A}, c \rangle$                                                                     |
| • models $\mathbf{w} = \langle \Omega, \mathcal{X}, \{w(x \omega)\} \rangle$ | • quantum models $\mathcal{E}=ig\langle \Omega,\mathcal{H}_S,\{ ho_S^\omega\}ig angle$                                                        |
| • decisions $d(a x)$                                                         | • POVMs $\{P_S^a: a \in \mathcal{A}\}$                                                                                                        |
| • $c_{\mathbf{g}}^{*}(\mathbf{w}) = \max_{d(a x)} \min_{\omega} \cdots$      | • $c_{\mathbf{g}}^{*}(\mathcal{E}) = \max_{\{P_{S}^{a}\}} \min_{\omega} \sum_{a} c(\omega, a) \operatorname{Tr}[\rho_{S}^{\omega} P_{S}^{a}]$ |

## Quantum statistical morphisms (FB, CMP 2012)

#### **Definition** (Tests)

Given a quantum statistical model  $\mathcal{E} = \langle \Omega, \mathcal{H}_S, \{\rho_S^{\omega}\} \rangle$ , a family of operators  $\{Z_S^a\}$  is said to be an  $\mathcal{E}$ -test if and only if there exists a POVM  $\{P_S^a\}$  such that

 $\operatorname{Tr}[\rho^{\omega}_{S} \ Z^{a}_{S}] = \operatorname{Tr}[\rho^{\omega}_{S} \ P^{a}_{S}] \ , \quad \forall \omega, \forall a \ .$ 

#### **Definition (Morphisms)**

Given two quantum statistical models  $\mathcal{E} = \langle \Omega, \mathcal{H}_S, \{\rho_S^{\omega}\} \rangle$  and  $\mathcal{E}' = \langle \Omega, \mathcal{H}_{S'}, \{\sigma_{S'}^{\omega}\} \rangle$ , a linear map  $\mathcal{M} : L(\mathcal{H}_S) \to L(\mathcal{H}_{S'})$  is said to be an  $\mathcal{E} \to \mathcal{E}'$  quantum statistical morphism iff

- 1.  $\mathcal{M}$  is trace-preserving;
- 2.  $\mathcal{M}(\rho_A^{\omega}) = \sigma_{S'}^{\omega}$ , for all  $\omega \in \Omega$ ;
- 3. the trace-dual map  $\mathcal{M}^{\dagger} : \mathsf{L}(\mathcal{H}_{S'}) \to \mathsf{L}(\mathcal{H}_S)$  maps  $\mathcal{E}'$ -tests into  $\mathcal{E}$ -tests.

## Quantum statistical comparison (FB, CMP 2012)

- let  $\mathcal{E} = \langle \Omega, \mathcal{H}_S, \{ \rho_S^{\omega} \} \rangle$  and  $\mathcal{E}' = \langle \Omega, \mathcal{H}_{S'}, \{ \sigma_{S'}^{\omega} \} \rangle$  be given
- information ordering:  $\mathcal{E} > \mathcal{E}'$  iff  $c^*_{\mathbf{g}}(\mathcal{E}) \ge c^*_{\mathbf{g}}(\mathcal{E}')$  for all  $\mathbf{g}$
- complete information ordering:  $\mathcal{E} \gg \mathcal{E}'$  iff  $\mathcal{E} \otimes \mathcal{F} > \mathcal{E}' \otimes \mathcal{F}$  for all ancillary models  $\mathcal{F} = \langle \Theta, \mathcal{H}_A, \{\tau_A^\theta\} \rangle$
- Theorem 1/3: *E* > *E*' iff there exists a *quantum statistical* morphism *M* : L(*H<sub>S</sub>*) → L(*H<sub>S'</sub>*) such that *M*(*ρ*<sup>ω</sup><sub>S</sub>) = *σ*<sup>ω</sup><sub>S'</sub> for all ω ∈ Ω
- Theorem 2/3: *E* ≫ *E'* iff there exists a completely positive trace-preserving linear map *N* : L(*H<sub>S</sub>*) → L(*H<sub>S'</sub>*) such that *N*(*ρ*<sup>ω</sup><sub>S</sub>) = σ<sup>ω</sup><sub>S'</sub> for all ω ∈ Ω
- Theorem 3/3: if  $\mathcal{E}'$  is commutative, that is, if  $[\sigma_{S'}^{\omega_1}, \sigma_{S'}^{\omega_2}] = 0$  for all  $\omega_1, \omega_2 \in \Omega$ , then  $\mathcal{E} \gg \mathcal{E}'$  iff  $\mathcal{E} > \mathcal{E}'$ 10/19

## **Applications in information theory**

#### **Classical broadcast channels**



How to capture the idea that Y carries more information than Z?

- (i) (stochastically) degradable:  $\exists$  channel  $Y \rightarrow Z$
- (ii) less noisy: for all M,  $H(M|Y) \leq H(M|Z)$
- (iii) less ambiguous: for all M,  $\max \mathbb{P}\{\hat{M}_1 = M\} \ge \max \mathbb{P}\{\hat{M}_2 = M\}$
- (iv) less ambiguous (reformulation): for all M,  $H_{\min}(M|Y) \leq H_{\min}(M|Z)$

#### Theorem (Körner–Marton, 1977; FB, 2016)

 $\underset{\Longrightarrow}{\textit{less noisy}} \underset{\Longrightarrow}{\longleftarrow} \ \textit{degradable} \iff \textit{less ambiguous}$ 

#### Quantum broadcast channels



- (i) (CPTP) degradable:  $\exists$  channel  $B \rightarrow E$
- (ii) completely less noisy: for all M and all symmetric side-channels  $R \to S\tilde{S}$ ,  $H(M|BS) \leq H(M|E\tilde{S})$
- (iii) completely less ambiguous: for all M and all symmetric side-channels  $R \to S\tilde{S}$ ,  $H_{\min}(M|BS) \leq H_{\min}(M|E\tilde{S})$

#### Theorem (FB–Datta–Strelchuk, 2014)

 $\begin{array}{c} \textit{completely less noisy} & \longleftarrow \\ & \Rightarrow \end{array} \textit{ degradable } & \longleftrightarrow \textit{ completely less ambiguous} \end{array}$ 

12/19

11/19

# Applications in open quantum systems dynamics

#### Discrete-time stochastic processes

Formulation of the problem:

- for  $i \in \mathbb{N}$ , let  $x_i$  index the state of a system at time  $t = t_i$
- given the system's initial state at time  $t = t_0$ , the process is fully predicted by the conditional distribution  $p(x_N, \ldots, x_1 | x_0)$
- if the system evolving is quantum, we only have a quantum dynamical mapping  $\left\{\mathcal{N}_{Q_0 \to Q_i}^{(i)}\right\}_{i \ge 1}$
- the process is divisible if there exist channels  $\mathcal{D}^{(i)}$ such that  $\mathcal{N}^{(i+1)} = \mathcal{D}^{(i)} \circ \mathcal{N}^{(i)}$  for all  $i \ge 1$
- **problem**: to provide a *fully information-theoretic characterization* of divisibility



## Divisibility as "information flow"

#### Theorem (FB–Datta, 2016; FB, 2018)

Given an initial open quantum system  $Q_0$ , a quantum dynamical mapping  $\left\{\mathcal{N}_{Q_0 \to Q_i}^{(i)}\right\}_{i \ge 1}$  is divisible if and only if, for any initial state  $\omega_{RQ_0}$ ,

$$H_{\min}(R|Q_1) \leq H_{\min}(R|Q_2) \leq \cdots \leq H_{\min}(R|Q_N)$$
.



14/19

# **Applications in quantum thermodynamics**

## Quantum thermodynamics from relative majorization

#### Basic idea (FB, arXiv:1505.00535)

Thermal accessibility  $\rho \rightarrow \sigma$  can be characterized as the statistical comparison between quantum dichotomies  $(\rho, \gamma)$  and  $(\sigma, \gamma)$ , for  $\gamma$  thermal state

Two main problems:

- for dimension larger than 2 and [σ, γ] ≠ 0, we need a complete (i.e., extended) comparison
- moreover, Gibbs-preserving channels can create coherence between energy levels, while a truly thermal operation should not

## Complete comparison of quantum dichotomies 1/2

#### Definition (ON/OFF channels)

Given a *d*-dimensional quantum dichotomy  $\mathcal{E} = (\rho, \gamma)$ , we define the corresponding ON/OFF channel  $\mathcal{N}_{\mathcal{E}} : \mathscr{L}(\mathbb{C}^2) \to \mathscr{L}(\mathbb{C}^d)$  as

$$\mathcal{N}_{\mathcal{E}}(\cdot) := \gamma \left\langle 0 | \cdot | 0 \right\rangle + \rho \left\langle 1 | \cdot | 1 \right\rangle$$



## Complete comparison of quantum dichotomies 2/2

For a quantum channel  $\mathcal{N}: A \to B$  and a state  $\omega_{RA}$ , define the singlet fraction as

$$\Phi_{\omega}^{*}(\mathcal{N}) := \max_{\mathcal{D}: B \to \tilde{R}} \langle \Phi_{R\tilde{R}}^{+} | (\mathsf{id}_{R} \otimes \mathcal{D} \circ \mathcal{N})(\omega_{RA}) | \Phi_{R\tilde{R}}^{+} \rangle ,$$

where  $\mathcal{D}$  is a decoding quantum channel with output system  $R \cong \tilde{R}$ 



#### **Theorem (FB, 2015)**

Given two quantum dichotomies  $\mathcal{E} = (\rho_1, \rho_2)$  and  $\mathcal{F} = (\sigma_1, \sigma_2)$ , let  $\mathcal{N}_{\mathcal{E}}$  and  $\mathcal{N}_{\mathcal{F}}$  the corresponding ON/OFF channels. Then,  $\mathcal{E} \gg \mathcal{F}$  if and only if

$$\Phi^*_{\omega}(\mathcal{N}_{\mathcal{E}}) \ge \Phi^*_{\omega}(\mathcal{N}_{\mathcal{F}}) , \quad \forall \omega$$
17/19

## Dealing with quantum coherence (sketch)

For quantum dichotomies  $\mathcal{E} = (\rho, \gamma)$  and  $\mathcal{F} = (\sigma, \gamma)$  and group  $\mathscr{T} = \{e^{-it \log \gamma}\}_{t \in \mathbb{R}}$ , we write  $\mathcal{E} \gg_{\mathscr{T}} \mathcal{F}$  iff  $\exists$  CPTP linear  $\mathcal{M}$  such that:

(i) 
$$\mathcal{M}(\rho) = \sigma$$
 and  $\mathcal{M}(\gamma) = \gamma$ ;

(ii) 
$$\mathcal{M}(U_t \cdot U_t^{\dagger}) = U_t \mathcal{M}(\cdot) U_t^{\dagger}$$
, for all  $t \in \mathbb{R}$ 

## Theorem (Gour–Jennings–FB–Duan–Marvian, 2018)



$$\widetilde{\Phi}^*_{\omega}(\mathcal{N}_{\mathcal{E}}) \geqslant \widetilde{\Phi}^*_{\omega}(\mathcal{N}_{\mathcal{F}}) , \quad \forall \omega$$



# Conclusions

## Conclusions

- the theory of statistical comparison studies morphisms (preorders) of one "statistical system" X into another "statistical system" Y
- equivalent conditions are given in terms of (finitely or infinitely many) monotones, e.g.,  $f_i(X) \ge f_i(Y)$
- such monotones quantify the resources at stake in the operational framework at hand, e.g.
  - the expected maximin payoff in decision problems for experiments
  - the information asymmetry for broadcast channels
  - the non-divisibility for open systems dynamics
  - the joint time-energy information for quantum thermodynamics

#### Thank you