Pseudo standard entanglement structure cannot be distinguished from standard entanglement structure

```
Hayato Arai^{1} and Masahito Hayashi^{2,1}
```

¹ Graduate School of Mathematics, Nagoya University Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology

SUSTech-Nagoya workshop on Quantum Science arXiv:2203.07968

Brief Summary

- Entanglement structures (ES)
 - is a possible structure of quantum composite system in General Probabilistic Theories (GPTs)
 - is not uniquely determined even if local structures are equivalent to the standard quantum theory.
- Pseudo standard entanglement structure (PSES) :
 - self-duality (via repeatability)
 - small error verification of all maximally entangled states
- Problem : Is there any possibility of PSES except for the standard entanglement structure?
- \rightarrow infinitely many!
- $\rightarrow\,$ perfect discrimination of non-orthogonal states
 - Variety of ES with group symmetry
 - global unitary symmetry determines ES as the standard entanglement structure (SES)

Preliminary:Structure of Positive cones

- GPT is a generalization of probabilistic models including quantum theory
- positive (proper) cone $\mathcal{K} \subset \mathcal{V}$ (\mathcal{V} :real vector space)
 - closed convex set with non-empty interior
 - $\blacktriangleright \ \forall x \in \mathcal{K}, \ \forall r \geq 0, \ rx \in \mathcal{K}$
 - $\blacktriangleright \mathcal{K} \cap (-\mathcal{K}) = \{0\}$

• GPT extends "positivity" in quantum theory by positive cone

Preliminary: Definition of Quantum Theory

Model of standard quantum theory on composite system $\mathcal{H}_A \otimes \mathcal{H}_B$ (here we call it "standard entanglement structure (SES)")

- State ρ (density matrix)
 - $\rho \in \mathcal{T}_+(\mathcal{H}_A \otimes \mathcal{H}_B)$
 - Tr $\rho = 1$
- Measurement $\{M_i\}_i$ (POVM)
 - $M_i \in \mathcal{T}_+(\mathcal{H}_A \otimes \mathcal{H}_B)$
 - $\Leftrightarrow \underline{\mathrm{Tr}} \, \rho M_i \ge 0 \, (\forall \rho \in \mathcal{T}_+(\mathcal{H}_A \otimes \mathcal{H}_B))$
 - $\blacktriangleright \quad \sum_i M_i = I$

 $\dim(\mathcal{H}_A) = \dim(\mathcal{H}_B) = d$ $\mathcal{T}(\mathcal{H}) : \text{set of Hermitian}$

matrices on $\ensuremath{\mathcal{H}}$

 $\mathcal{T}_+(\mathcal{H}):\mathsf{set}$ of positive

semi-definite matrices on $\ensuremath{\mathcal{H}}$

- Probability to get a measurement outcome
 - outcome i is measured with probability $\operatorname{Tr} \rho M_i$

 \rightarrow the SES is defined by $\mathcal{T}_+(\mathcal{H}_A \otimes \mathcal{H}_B)$

Definition of Entanglement Structure

A model of GPTs is a generalization $\mathcal{T}_+(\mathcal{H}) \to \mathcal{K}$ \mathcal{K} : positive cone with $\operatorname{SEP}(A; B) \subset \mathcal{K} \subset \operatorname{SEP}^*(A; B)$

- State ρ
 - $\blacktriangleright \ \rho \in \mathcal{K}$
 - Tr $\rho = 1$
- Measurement $\{M_i\}_i$
 - $M_i \in \mathcal{K}^*$ $\Leftrightarrow \operatorname{Tr} \rho M_i \ge 0 \ (\forall \rho \in \mathcal{K})$ $\sum_i M_i = I$

$$\begin{split} & \operatorname{SEP}(A; B) := \{ \Sigma_i A_i \otimes B_i \mid \\ & A_i \in \mathcal{T}_+(\mathcal{H}_A), B_i \in \mathcal{T}_+(\mathcal{H}_B) \}, \\ & \operatorname{SEP}^*(A; B) := \{ Y \in \mathcal{T}(\mathcal{H}_A \otimes \mathcal{H}_B) \mid \\ & \operatorname{Tr} XY \ge 0 \ \forall X \in \operatorname{SEP}(A; B) \} \end{split}$$

- Probability to get a measurement outcome
 - outcome i is measured with probability ${
 m Tr}\,
 ho M_i$
- $\rightarrow\,$ ES is defined by a cone ${\cal K}$
 - Main Motivation : Characterization of a cone $\mathcal{T}_+(\mathcal{H}_A\otimes\mathcal{H}_B)$

Motivation : Peculiarity of the SES

- Self-duality
 - self-dual : $\mathcal{K}^* = \mathcal{K}$

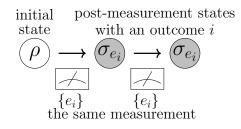
$$\mathcal{K}^* := \{ Y \in \mathcal{T}(\mathcal{H}) \mid \\ \operatorname{Tr} XY \ge 0 \ \forall X \in \mathcal{K} \}$$

- In the case K = SEP(A; B), non-orthogonal separable states are distinguishable [AYH2019] (because of non-self-duality)
- Symmetry of Global Unitary operators
 - global unitary operators generate all pure states from a single pure state
- self-duality + homogeneity \rightarrow Eucledian Jordan Algebra (in cones) [JNW1934] (\rightarrow SES in our setting [this paper])
- self-duality + symmetric condition \rightarrow SES (in ESs) [this paper]
- Q. Is symmetric condition essentially necessary?
 - no example of self-dual ES is known
- Q. more operational characterization can?
 - repeatability
 - verification of maximally entangled states

[JNW1934] P. Jordan, J. v. Neumann, and E. Wigner, Annals of Mathematics, 35(1):29-64, (1934). [AYH2019] H. Arai, Y. Yoshida, and M. Hayashi, J. Phys. A 52,

Repeatability and pre-duality

- Repeatability
 - ensures that post-measurement states cannot be changed by the same measurement



- there exists a correspondence $e_i \mapsto \sigma_{e_i}$
- $\rightarrow\,$ Repeatability derives pre-duality, i.e., $\mathcal{K}\supset\mathcal{K}^*$

Self-dual modification

Main Theorem 1

Given any pre-dual cone \mathcal{K} , there exists a self-dual scone $\tilde{\mathcal{K}}$ such that $\mathcal{K} \supset \tilde{\mathcal{K}} \supset \mathcal{K}^*$.

- Due to this theorem, self-duality is a natural consequence of repeatability.
- For proofs, we applying Zorn's Lemma for a certain ordered set (→The proof is not constructive)
- Different pre-dual cone cannot always be modified to different self-dual cone (This problem is solved by following theorem)

Main Theorem 2 (weak version)

Given a exact hierarchy of pre-dual cone $\mathcal{K}_1 \supseteq \cdots \supseteq \mathcal{K}_n$, there exists exactly different self-dual cones $\tilde{\mathcal{K}}_i$ such that $\mathcal{K}_i \supset \tilde{\mathcal{K}}_i \supset \mathcal{K}_i^*$.

Verification of maximally entangled states and ϵ -undistinguishability

Because the error probability of verification (hypothesis testing) is estimated by trace norm $\|\cdot\|_1$, we introduce the following value for \mathcal{K}

$$D(\mathcal{K}) := \max_{\sigma \in \mathrm{ME}} \min_{\rho \in \mathcal{K}} \|\sigma - \rho\|_1$$

- if $\mathcal K$ contains all maximally entangled states, then $D(\mathcal K)=0$
- *e*-undistinguishability
 - $D(\mathcal{K}) \leq \epsilon$
 - if \mathcal{K} is ϵ -undistinguishable, we cannot deny the possibility of \mathcal{K} by any verification of maximally entangled states with ϵ error

Definition (*c*-Pseudo Standard Entanglement Structure)

If an ES ${\cal K}$ satisfies self-duality and ϵ -undistinguishability, we say that ${\cal K}$ is an $\epsilon\text{-PSES}.$

- SES is an example of ϵ -PSES for $\epsilon \ge 0$
- Q. Is there any other example of ϵ -PSES for small ϵ ? \rightarrow Yes!

The existence of PSESs

- in order to apply main theorem 2, we construct an exact hierarchy of pre-dual cones
- in this paper, we construct \mathcal{K}_r for a parameter r > 0
 - we show that \mathcal{K}_r is pre-dual and $\mathcal{K}_r \supseteq \mathcal{K}_{r'}$ for $r' < r \le r_0$
 - \mathcal{K}_0 is equivalent to the SES
- $\tilde{\mathcal{K}}_r$ with each r is exactly different

•
$$D(\tilde{\mathcal{K}}_r) \leq D(\mathcal{K}_r^*) \leq 2\sqrt{\frac{2r}{2r+1}} \leq \epsilon$$
 for $r \leq \frac{\epsilon^2}{2(4-\epsilon^2)}$
 $\rightarrow \tilde{\mathcal{K}}_r$ is a ϵ -PSES.

Main Theorem 3

Given $\epsilon > 0$, there exists infinite models of ϵ -PSES.

Construction of pre-dual cones

$$\begin{split} \operatorname{MEOP}(A;B) &:= \left\{ \vec{E} = \{ |\psi_k\rangle \langle \psi_k| \}_{k=1}^{d^2} \mid \langle \psi_k | \psi_l \rangle = \delta_{kl}, \\ &\quad |\psi_k\rangle \langle \psi_k| : \text{ maximally entangled state on } \mathcal{H}_A \otimes \mathcal{H}_B \right\}. \\ \operatorname{NPM}_r(\mathcal{P}) &:= \left\{ \rho = -\lambda E_1 + (1+\lambda)E_2 + \frac{1}{2}\sum_{k=3}^{d^2} E_k \right| \\ &\quad 0 \leq \lambda \leq r, \vec{E} = \{E_k\} \in \mathcal{P} \right\} \quad \text{for a subset } \mathcal{P} \subset \operatorname{MEOP}(A;B), \\ &\quad \mathcal{K}_r^{(0)}(\mathcal{P}) := \operatorname{SES}(A;B) + \operatorname{NPM}_r(\mathcal{P}), \\ &\quad \mathcal{K}_r(\mathcal{P}) := \left(\mathcal{K}_r^{(0)*}(\mathcal{P}) + \operatorname{NPM}_r(\mathcal{P}) \right)^*. \end{split}$$

- Simply, K^{*}_r is convex hull of a subset of T₊ and a subset of non-positive matrices with the above form
 for any D ⊂ MEOD(A, D) and any 0 < n < n K (D) is not
- for any $\mathcal{P} \subset \operatorname{MEOP}(A; B)$ and any $0 < r \leq r_0$, $\mathcal{K}_r(\mathcal{P})$ is pre-dual

H. Arai and M. Hayashi

Non-orthogonal state discrimination in PSESs

Definition (state discrimination)

A family of states $\{\rho_k\}_{k=1}^n$ in \mathcal{K} are perfectly distinguishable if there exists a measurement $\{M_k\}_{k=1}^n$ in \mathcal{K} such that $\operatorname{Tr} \rho_k M_l = \delta_{kl}$.

• In SES, $\{\rho_k\}$ are perfectly distinguishable iff ρ_k are orthogonal, i.e., ${\rm Tr}\,\rho_k\rho_l=0$ for $k\neq l$

Main theorem 4

In $\tilde{\mathcal{K}}_r(\mathcal{P}_0)$ with a certain subset $\mathcal{P}_0 \in \text{MEOP}(A; B)$, there are a measurement $\{M_1, M_2\}$ and states ρ_1, ρ_2 such that $\text{Tr } \rho_i M_j = \delta_{i,j}$ and $\text{Tr } \rho_1 \rho_2 > 0$

- \rightarrow For any $\epsilon > 0$, there is an ϵ -PSES that contains a measurement discriminating two non-orthogonal states perfectly
 - Conjecture: Any self-dual ES contains non-orthogonal distinguishable states except for the SES

Construction of the measurement and the state

$$\mathcal{P}_0 := \{\vec{P}, \vec{P'}\}, \quad P'_1 = P_2, P'_2 = P_1, P'_k = P_k \ (k \ge 3)$$

$$M_1(r; \vec{P}) = -rP_1 + (1+r)P_2 + \frac{1}{2}\sum_{k\geq 3} P_k,$$

$$M_2(r; \vec{P}) = (1+r)P_1 - rP_2 + \frac{1}{2}\sum_{k\geq 3} P_k,$$

 $\rho_1 := |\phi_1\rangle \langle \phi_1|, \quad \rho_2 := |\phi_2\rangle \langle \phi_2|,$

 $|\psi_k
angle$: eigen vector of P_k

$$\begin{aligned} |\phi_1\rangle &:= \sqrt{\frac{r}{2r+1}} |\psi_1\rangle + \sqrt{\frac{r+1}{2r+1}} |\psi_2\rangle \,, \\ |\phi_2\rangle &:= \sqrt{\frac{r+1}{2r+1}} |\psi_1\rangle + \sqrt{\frac{r}{2r+1}} |\psi_2\rangle \,. \end{aligned}$$

Entanglement structures with group symmetry

 $\operatorname{GU}(A; B) := \{g \in \operatorname{GL}(\mathcal{T}(\mathcal{H}_A \otimes \mathcal{H}_B)) \mid g(\cdot) := U^{\dagger}(\cdot)U,$

U is a unitary matrix on $\mathcal{H}_A \otimes \mathcal{H}_B$.

$$\begin{split} \mathrm{LU}(A;B) &:= \{g \in \mathrm{GL}(\mathcal{T}(\mathcal{H}_A \otimes \mathcal{H}_B)) \mid g(\cdot) := (U_A^{\dagger} \otimes U_B^{\dagger})(\cdot)(U_A \otimes U_B), \\ U_A, U_B \text{ are unitary matrices on } \mathcal{H}_A, \mathcal{H}_B \} \end{split}$$

• G-symmetric cone \mathcal{K} : $g(x) \in \mathcal{K}$ for any $x \in \mathcal{K}$ and any $g \in G$.

Main theorem 5

For ES \mathcal{K} , \mathcal{K} is $\mathrm{GU}(A; B)$ -symmetric iff $\mathcal{K} = \mathrm{SES}$

- $\operatorname{GU}(A;B)$ -symmetry is weaker condition than homogeneity for the derivation of Jordan Algebra
- Symmetric condition is essential for derivation of the SES
- However, operationally natural condition is LU(A; B)-symmetry
- It is open whether there exists self-daul and $\mathrm{LU}(A;B)\text{-symmetric ES}$ except for the SES

Summary and open problems

- There are many possibilities of ESs different from the SES.
- There exists infinite examples of ϵ -PSESs
 - self-duality
 - ▶ *ϵ*-undistinguishability

• Some *ϵ*-PSES can discriminate non-orthogonal states OPEN. Any *ϵ*-PSES can discriminate non-orthogonal states except for the SES?

• GU(A; B)-symmetry derives the SES from ESs OPEN. there exists LU(A; B)-symmetric ϵ -PSES except for the SES ?