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1.1. Conclusion: The discrete probability distribution P, ,, «; (1/5)

The (generalized) hypergeometric series

r+1Fr

aip, a2, ..., adrt1 - (al)i(az)i'"(ar)i(3r+1)i i
= z| = z
by, by, ..., b } ; (b1)i(b2)i - -~ (br)i(1);
with (a); :=a(a+1)---(a+ i — 1) the rising factorial.

Theorem 1

Let n, m, k, | € Z satisfy
0<2m,k,I<n M:=m—-—I1>0and N:=n—m—k-+/>0. Then

) n—k\ (D) n—2x+1 —x, x—n—1, — M, —N1
x) = _ ;
2 m—1) (") n—x+1*3 —mm-n —-M-N '
gives a discrete probability distribution P, ./ for x € {0,1,..., n}.

(7) = %a(a—1)---(a— k+1) € Q[a] for k € Z>o.
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1.1. Conclusion: The discrete probability distribution P, ,, «; (2/5)

Our function again:

p(x) = (;__kl)

(n,m,k, 1 €Z,0<2m, kI <n M:=m—/>0and N:=n—m—k+/>0.)

(") n—2x+1 {—x,x—n—l7 - M, —N.1

(") n—x+1*3 —mm—n —M-N

m

Immediate but non-trivial remarks:

MAN
; G5
e The 4F3-term is expanded as E (-1)’
= (M5 ())(S

Theorem 1 says that this sum is non-negative for

M~+N

i )

x <

e Theorem 1 also says that the total sum is 1: Y7 p(x) = 1, which
is extended to a nontrivial identity in the next page.
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1.1. Conclusion: The discrete probability distribution P, ,, «; (3/5)

The probability distribution function (pdf) again:

n—k (")n—2x+1 —x, x—n—1, — M, —N
P x=x= ("""} ’ I B
b X m— | (,'7’1) n—xt+1+3 -m, m—n, —M—N

(n,m,k,1 €Z,0<2m,k,| <n, M:=m—[>0and N:=n—m—k+12>0.)

Theorem 2

The cumulative distribution function (cdf) satisfies

Pt X < x] = (:’;) )

R

Moreover, we have P[X < m|=P[X <m+1]=---=P[X <n =1

—x, x —n, — M, —N_1
-m, m—n, —M—-N""|

MAN x\ (n—x\ (M\ (N
The 4F3-term is expanded as Z (—l)iM.

= (OO
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1.1. Conclusion: The discrete probability distribution P, ,, «; (4/5)

e For our distribution P, ks, both pdf and cdf are 4F3-series.

e There seems no distribution in literature whose pdf and cdf are both

r+1Fp-series.

distribution

‘ pdf Pr[X = x] cdf Pr[X < x]

binomial

(7 (—or R it

' lipjl <x

hypergeometric

M/ ~ R ]

our
distribution

—m, m—n, —M—N"

S. Yanagida

—x, x—n—1, —M, —N —x, x—n, —M, —N
N4F3|: —m, m—n, —M—N ] N4F3|: 1]

(~ denotes that some factor is suppressed.)
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1.1. Conclusion: The discrete probability distribution P, ,, «; (5/5)

0.12
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pdf Pp.m,k,i[X = x] with
(n, m, k, 1) = (100, 30,40, 20) in left and (100,40, 60, 30) in right.
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cdf Pomii[X < x] with (2, % 1) =(0.4,0.6,0.3),

n’n’n

n =100 (left), 1000 (middle) and 10000 (right).
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1.2. Setting: The state =, ,,x in the Schur-Weyl bimodule (C?)®" (1/4)

Consider the classical Schur-Weyl duality of SU(2) and &,,.

e SU(2) ~ C?: the vector repr. of the special unitary group SU(2).

SU(2) ~ (C?)@": the n-th fold tensor representation.

e (C?)®" A &,: permuting tensor factors by the symmetric group &,,.

e These two actions of SU(2) and &, commute:
SU(2) ~H = (C?)®" A G,
e The irreducible decomposition of the bimodule is
[n/2]
(C?)® @ Un—2x41 B V(n—x x)-

x=0

U,: the highest weight SU(2)-irrep of dimension r.
V(n—x,x): the &-irrep corresponding to the partition (n —
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1.2. Setting: The state =, ,,x in the Schur-Weyl bimodule (C?)®" (2/4)

Examples of the irreducible decomposition of the SU(2)-&,-bimodule

Ln/2]
((C2 @ un 2x4+1 IXV(n X,X)»
x=0
for n = 1,2,3, using the basis C> = C|0) + C|1) and
sl(2,C) = CE+CF +CH, E|0) = |1), F|1) =|0), H|b) = (=1)*1 |b).

[ ] (C2 = u2 X V(l,O) = (C2 X (Ctriv =C ‘0> + C ‘1>
o (C2)®2 = Z/{3 X V(2,0) @Z/[l X V(l,l) = (C?’ X (Ctriv @ CK (ngn
= (C100) + C(]01) + |10)) 4+ C|11)) G C(|01) — |10)).
o (C)® = Uy R Viz0)DUs B V(2 1) = C* R Cei, PC2RC2,,
= (C|000) + C(]001) + perm.) + C(]011) + perm.) + C |111))
@[ (C(j001) — [100)) + C(j011) — [110)))
®(C(|010) — |100)) + C(Jo11) — \101>))]
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1.2. Setting: The state =, .« in the Schur-Weyl bimodule (C?)*" (3/4)

e The decomp. (C2)®" = EB&’;/OZJ Un—2x+1 ¥ V(,_x x) gives projectors
PXZ H = (C2)®n — Up—2x+1 X V(n—x,x) (X - 07 17 000y Ln/2J)

Then any element |v) € (C?)®", normalized for the standard
hermitian pairing, gives a discrete probability

Pr[X = x] :=(v|Px|v) (x=0,1,...,[n/2]).

e Qur choice of the normalized element:
Znmi) =10 @ |Znkmt) € (C?)®",

- 1 e
|=n—k,m—1) = ﬁ Z w o € (CH)=h,

n—k
(m—l W€‘1m7,0"7m7k+l>.6n_k
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1.2. Setting: The state =, .« in the Schur-Weyl bimodule (C?)*" (4/4)

Definitions again:

Pe: (CB)®" — Up—2x41 B V(nx gy (x=0,1,...,|n/2]).

1
| mik,s) = [0 @ ——7 > w € (C?)®n,

n—ky\1/2
mf/) we|1m=lon—m—k+l).&,

Main Theorem (coincise form of Theorem 1)

The discrete probability associated to {E,,Tm‘k_/> coincides with Pp ks
in Theorem 1, i.e.,

<En,m\k,l| Px En,m|k,l>

n—k\ (0) n—2x+1 —X, x—n—1, =M, =N
= o —— Sl
m—1)(") n—x+1 -m, m—n, —M—N
forx=0,1,...,|n/2]. M:=m—I,N:=n—m—k+I, M+ N=n—k.)

End of first half.
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2. How to prove Main Theorem

1. Conclusion and setting

2. How to prove Main Theorem (7 pages)
Based on §4 of our paper [HHY].

2.1. Projector formula

2.2. Gelfand pairs and zonal spherical functions.
2.3. Hahn summation formula

2.4. Main Theorem — Racah formula

3. Asymptotic behavior of Py 1 ks

4. Concluding remarks
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2.1. Projector formula (1/2)

Recollection of Main Theorem
Using M:=m — [ and N :=n— m — k + [, define
PXZ (C2)®n —» Up—2x+1 & v(n—x,x) (X = 0, 1, ceey Ln/2J)

- _ 1 n
Ermen) = OO G >, W €(E)

M+N
( M w6|1MON>.GM+N

Then we have

<En,m|k,l| Px |En,m\k,l>

n—k (:)nf2x+1 —x, x—n—-1, — M, — N
= ——— 43 1.
m—1) (") n—x+1 -m, m—n, —M—N

We will calculate <En)m|k,,’ Px ’Emm‘k’,) by &,-representation theory.
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2.1. Projector formula (2/2)

Regarding the decomposition as & ,-representation, we have
P,: (C2)®" . V(n—x,x)® dime Un—2x11 _ V(n_x,x)®(nf2x+1).
To calculate (Z,, k1| Px |Zn,mjk,1), we want some formula for P,.

Representation theory of finite groups tells us:
Fact (projector formula)

Denoting by ¢ the &,-action, we have

®(n—2x+1)

PX _ Z dimc V(nfx,x)

("_va)
X (o) (o)
ceS, |6n|

with (") the character of the irreducible representation Vin—x,x)-

dimc V(n—x,x) is given by the well-known hook length formula.
Thus, we next want some formula for the part 3°_ -+ - x("™*)(0')p(0).
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2.2. Gelfand pairs and zonal spherical functions

Consider the subgroup &, x &6,,_,,, C &,,.

The pair (G, K) :=(6,,6, X 6,_p) is a Gelfand pair, i.e., the induced
representation Indﬁ Crriv has multiplicity free irreducible decomposition:
For this Gelfand pair, zonal spherical function wip,_xx): G — Cis

1 n—x,x —
Wr—x)(8) = Tier > X (kg ™).
keK

The value w(,—x x)(g) depends only on the double coset KgK,
and we have the induced w(,_, ): K\G/K — C.

Fact [Delsarte 1973, 1978]

The set G/K, equipped with a certain distance function, has the
structure of Johnson graph J(n, m), which induces bijections

K\G/K = {K-orbits of J(n,m)} ={0,1,...,m}.
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2.3. Hahn summation formula

Zonal spherical function w(,_xx): K\G/K — C is now totally
determined by the values {w(,—x (i) | i =0,1,..., m}.

Fact [Delsarte]
The value w,_x (i) is given by

Wpxoy() = sFa| 0 "X X=n=1, 1] =3 (=Na(=x)alx =n—1)a

-m, m—n 7| = (1)a(=m)a(m — n)a,
The RHS is known as Hahn polynomial with variable i, degree x.

Hahn summation formula [HHY, Theorem 4.1.1]
Using M:=m—1/and N:=n— m— k+ [/, we have

_ _ (") n—2x+1" & M\ (N _
<:n,m|k,/| Px |:n,m|k,/> = @m — < : > (l.)w(n—x,x)(/)-
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2.4. Main Theorem — Racah formula (1/2)

The Hahn summation formula is a double sum, and difficult to use for analysis.
MAN 4

(= Px|Z) = (2) n—2x-+1 Z (_)(N)3Fz[_i’ —x,x—n—l;l}'

(M) n—x+1 i/ \i —m, m—n

Racah formula (Main Theorem) [HHY, Theorem 4.2.1]

We have the following hypergeometric summation formula

MAN .

> <M> (I\./>3F2[_I7 — % X_n_l;l] = (n_k>Rx(M)7
—~ \ i i —m, m—n m— |/

—Xx, x—n—1, —M, —Nll}

RM) ::4,:3[ —-m, m—n, —M—-N

R«(M) is known as Racah polynomial. It yields Main Theorem:
= |P|= >_@n—2x—|—1 n—k Ru(M)
—n,m|k,l| Ux |=n,m|k,|) — (,,;’) n—x—+1 i — || X .
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2.4. Main Theorem — Racah formula (2/2)

Profile of Racah polynomial

e Racah polynomial Ry(z) of variable z and degree x =0,1,...,n:
—x, x+a+b+1l, —z, z+c+d+1
a+1l, bt+c+1,d+1 '
witha+1l=—-norb+c+1=—-nord+1=—n.
e The family {Rx(z; a,b,c,d) | x=0,1,...,n} is orthogonal with respect to some
discrete weight function w(z): 7 o Re(i)Ry (i)w(i) = x,y.

e It sits in the top line of Askey scheme of hypergeometric orthogonal polynomials.

R«(z;a, b, c,d) := 4F3 1

Wilson Racah 4F3(4)
Contiuous(  Continuous H\Lh \dAIH h 3F2(3)
dual Hahn Hahn ahn ual Hahn

¥ J | >

Meixner- Jacobi PSEUd? Meixner Krawtchouk 2F1(2)
Pollaczek\ \L \L/

Laguerre Bessel Charlier 1F1(1)/2Fo(1)

Hermite 2Fo(0)

S. Yanagida  Probability distribution by Racah hypergeometric orthogonal polynomial 17/23



3. Asymptotic behavior of P, , «

1. Conclusion and setting
2. How to prove Main Theorem (Racah formula)

Pr,m ki [X = x] =

(Z) n—2x+1(n—k)4 3{—x, x—n—1, —M, —N;1 '

(:q) n—x+1
(n,m,k, 1 €Z, 0<2m,k,/<n, M:=m—1>0, N:=n—m—k+1/2>0,
x €{0,1,...,n}.)

m— | -m, m—n, —M—N

3. Asymptotic behavior of P, m k. (3 pages)
Based on §5 of our paper [HHY].

3.1. What is Racah formula useful for?
3.2. Central limit theorem

4. Concluding remarks
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3.1. What is Racah formula useful for?

Racah polynomial R, of degree x (and variable M) in Main Theorem

W) n—2x+1/n—k 9 ooc
Pn,m,k,l[X:X] = ((i))ﬁ(;_I)Rx, Ry := 4F3[ X ,1:|
m .

is an orthogonal polynomial, and satisfies three-term recursive formula of
the form a,Ryi1 + by Rx + cxRx—1 = 0. It is rewritten as:
Three-term recursive formula [HHY, Lemma 4.3.3]
p(x) = Pn.m.k,i[X = x] satisfies the recursive formula

Axp(x + 1)+ Byp(x) + Cup(x — 1) =0,
(m—=—x)(n—m—x)(n—k—x)(n—x+1)n—2x—1x+1

Ax = )
(n—2x)(n—2x+1) n—x n—x

C__x(x—k—l)(m—x+1)(n—m—x+1)n—2x+3 x—1

X'_ (n—2x+1)(n—2x+2) n—x+2n—x+1"

It enables us to do asymptotic analysis for Py, m k.1, 1 — o0.
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3.2. Central limit theorem (1/2)

Consider the limit n — oo with the ratios 7, % % fixed. We use
I — k—1 m—k+ 1/
o= —, ﬂ = m , Y= s J = n— + .
n n n n

Central limit theorem for generic type Il limit [HHY, Thm 5.2.9]
In the above limit n — oo with a+ v, 3,6 > 0, we have

—nu 1 —u2/2
< = — d
Vo = \/ﬂ/ ¢ @

im Prmk [r <2
n—oo

with p and o given by

1—+vD _ [(a+7)Bs

5 9= = , D:=1—4(ay+ ad+ py).

pi=

We guessed the expectation value p and the variance o by taking a formal limit of the
recursive formula Axp(x + 1) + Bxp(x) + Cxp(x — 1) =0 to get a differential equation

d log p(nt) x ———— (n — o00).

dt /f
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3.2. Central limit theorem (2/2)

Pdf P, m.k,i[X = x] by cyan dots and the limit normal distribution by pink lines
with (2, % 1) = (0.4,0.6,0.3) fixed and n = 100 (left), 1000 (middle), 10000

(right). The limit distribution has u = 0.3 and o = 0.3354....
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4. Concluding remarks (1/2)

Conclusions again:

e We found a discrete probability distribution P, m «,; whose pdf is a
Racah 4F3-polynomial, and cdf is a 4F3-polynomial. < the first (7)
appearance of higher hypergeometric orthogonal polynomial in
probability theory.

e Central limit theorem holds for generic type Il limit:

n — oo with ratios ™ & L fixed, satisfying a generic condition.

n’n’n

Topics in [HHY] not explained in this talk:

Asymptotic analysis beyond central limit theorem [§5.5]
Another limit of P, 5, ;2 n — oo with =k, [ fixed. [§5.1]

Meanings and applications in quantum information theory. [§1, §3]

Computation using slo-Casimir operator. [§4.4, §5.5]

g-analogue of the distribution P, m « ;. [Appendix C]
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4. Concluding remarks (2/2)

Logically we started with the distinguished element
|Znmik) = [0 ® [Znckym—i) € H = (C*)®"

and succeeded in the computation of <E,,,,T,‘k,,] P ‘En7m|k,,>, obtaining explicit
and useful hypergeometric formulas.

However, at this moment, we do not have a conceptual reason why we were
able to get nice formulas of the distribution.

Naive open problem

What property of the state |En’m‘k,,> enabled us to get nice formulas?

Is there some characterization of ’E,,,m‘k,/> among all the normalized states of
H so that the associated distribution can be expressed by a hypergeometric
orthogonal polynomial?

(I expect some hidden “integrability” of the state |E,,,m‘k7,>.)
Thank you for your attention.
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Appendix: g-analogue of the distribution P, ,, «

g-hypergeometric series and g-binomial coefficient:

(@q)n:=(1—a)(1—aq)---(1—ag"™"), [nlg:=1+q+---+q" %,
ar, ..., art1 (a1, ---,ar )i _; n (9: q)n
L by, by g(bh--.,bs;q); {m]q (a:9)m(q: @)n—m

[HHY, Theorems C.3.1, C.3.2]
Let n,m k,l € Zst.0<2m,k,I <n M:=m—I,N:=n—m—k+/2>0.
Then, for g € R~o, the function

(K] B il —2x 411 { AR N ]
(X‘ ) - |:m_/:| [;l]qq [n_X+1]q 4¢3 q-", q" ", q° v—n 99
q

defines a discrete probability distribution for x € {0,1,..., n}, and

>~ o) = [Z,‘_k,} q [[m]]

g g™ g " }

43 g, q|-
[ q—m, qm", q=M-N
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