SMP model, PSM protocols, and their quantum analogues

Harumichi Nishimura (Grad. School of Informatics, Nagoya U) Based on joint work with Akinori Kawachi (Mie U)

June 22, 2021

SUSTech-Nagoya workshop on Quantum Science

Outline

- Setting
 - SMP
 - PSM
- Results
- Open problems

Communication Complexity

Communication complexity (CC) of $f: X \times Y \rightarrow Z$:= the length of bits communicated for computing f in the best communication protocol

- Consider the worst-case on all input pairs (x, y)
- Tool for the lower bound proofs in computational complexity

SMP Model

- SMP (Simultaneous Message Passing)
 - Most simplest setting in communication complexity
 - $CC^{smp}(f) \coloneqq CC$ of f in the SMP model

Example: PARITY

• $CC^{smp}(PARITY_n) = 2$

Example: Equality

- $CC^{smp}(EQ_n) = 2n$
- LB: Reduction to distinguishability

 m_x

 $m_{\chi\prime}$

Bounded-Error Setting

- Alice & Bob may use "randomness" (randomized protocol)
 - Referee do not always need to output the correct answer but needs to do it "with high probability" (say with probability 2/3)
 - $RCC^{smp}(f) \coloneqq$ bounded-error SMP complexity of f
 - For comparison, the case that does not use randomness is called "exact"

Bounded-Error Setting

- Alice & Bob may use randomness (randomized protocol)
 - Referee do not always need to output the correct answer but needs to do it with high probability (say with probability 2/3)
 - $RCC^{smp}(f) :=$ bounded-error SMP complexity of f (with private randomness)
- Two types for randomness
 - Private randomness: Alice & Bob (& Referee) must prepare randomness separately
 - Public (shared) randomness: Alice & Bob may share randomness
 - $RCC^{smp,pub}(f) \coloneqq bounded$ -error SMP complexity of f (with shared randomness)

Example: Equality

• $RCC^{smp,pub}(EQ_n) = O(1)$

Shared random bits: $r = r_1 r_2 \cdots r_n \in_R \{0,1\}^n$

SMP complexity of EQ

- $CC^{smp}(EQ_n) = 2n$
- $RCC^{smp,pub}(EQ_n) = O(1)$
- $RCC^{smp}(EQ_n) = \Theta(\sqrt{n})$ [Amb96,NS96,BK97]

Quantum SMP

- Alice & Bob may send qubits
 - Every party can use quantum computers
- 3 types of bounded-error QSMP
 - QCC^{smp}(f): no shared resource
 - QCC^{smp,pub}(f): shared randomness
 - QCC^{smp,*}(f): shared entanglement
- Exact case
 - $QCC_0^{smp}(f), QCC_0^{smp,pub}(f), QCC_0^{smp,*}(f)$

SMP complexity of EQ

- Classical Case
 - $CC^{smp}(EQ_n) = 2n$
 - $RCC^{smp,pub}(EQ_n) = O(1)$
 - $RCC^{smp}(EQ_n) = \Theta(\sqrt{n})$ [Amb96,NS96,BK97]
- Quantum Case
 - $QCC_0^{smp}(EQ_n) = QCC_0^{smp,pub}(EQ_n) = 2n$
 - $QCC_0^{smp,*}(EQ_n) = n$ [HSWCLS05]
 - $QCC^{smp}(EQ_n) = O(\log n)$ [BCWW01]

Extension to Multi-Party Case

- k-party SMP complexity of function $f: (\{0,1\}^n)^k \to \{0,1\} :=$ the minimum number of bits sent to the referee R so that R can compute f
- CC of the trivial protocol=kn

Outline

- Setting
 - SMP
 - PSM
- Results
- Open problems

Multi-Party Computation (MPC)

• Jointly computes $f(x_1, x_2, ..., x_k)$ with revealing nothing but $f(x_1, x_2, ..., x_k)$

Communication Complexity of MPC

- Communication complexity of k-party MPC for function $f\colon (\{0,1\}^n)^k \to \{0,1\}$
 - := the minimum number of bits sent with one other to implement a MPC for f

Q. How much is the communication complexity of MPC?

PSM model

- PSM (Private Simultaneous Message)
 - Simplest MPC model [FKN94]; SMP + Security condition

(security) Referee must not learn any information but $f(x_1, x_2, ..., x_k)$

PSM model

- PSM (Private Simultaneous Message)
 - Simplest MPC model [FKN94]; SMP + Security condition (security) Referee must not learn any information but $f(x_1, x_2, ..., x_n)$

For the security condition, P_1, \dots, P_k must mask their messages

PSM model

- PSM (Private Simultaneous Message)
 - Simplest MPC model [FKN94]; SMP + Security condition (security) Referee must not learn any information but $f(x_1, x_2, ..., x_n)$

Simulator: Formal definition of Security

 $CC^{psm}(f) \coloneqq CC \text{ of PSM for } f$

PSM (Private Simultaneous Message)

 (correctness) The output of the referee is f(x₁, x₂, ..., x_k)
 (security) There is an algorithm (simulator) that given f(x₁, x₂, ..., x_k) as input, produces the messages to the referee

PSQM model

• PSQM (Private Simultaneous Quantum Message)

(correctness) The output of the referee is $f(x_1, x_2, ..., x_k)$ (with probability 1) (security) There is a quantum algorithm (simulator) that given $f(x_1, x_2, ..., x_k)$ as input, produces the quantum messages to the referee

 $QCC_0^{psm}(f) \coloneqq CC \text{ of } PSQM \text{ for } f$

PSQM model with shared entanglement

• PSQM (Private Simultaneous Quantum Message)

(correctness) The output of the referee is $f(x_1, x_2, ..., x_k)$ (with probability 1) (security) There is a quantum algorithm (simulator) that given $f(x_1, x_2, ..., x_k)$ as input, produces the quantum messages to the referee

 $QCC_0^{psm,*}(f) \coloneqq CC \text{ of PSQM with}$ shared entanglement for f

Outline

- Setting
 - SMP
 - PSM
- Results
 - Example
 - Known results
 - Our results
- Open problems

Example: PSM for (2-party) Equality

•
$$EQ_n(x,y) = \begin{cases} 1 & (x=y) \\ 0 & (x\neq y) \end{cases}$$

- PSM for $EQ_n(x, y)$
 - Identifies *n*-bit strings with elements in F_{2^n}
 - $P_1 \& P_2$ share random elements $r_1 \in F_{2^n} \setminus \{0\} \& r_2 \in F_{2^n}$
 - 1. P_1 and P_2 send $m_1 = r_1x + r_2$ and $m_2 = r_1y + r_2$, respectively
 - 2. *R* outputs 1 iff $m_1 = m_2$

PSM for (2-party) Equality

•
$$EQ_n(x,y) = \begin{cases} 1 & (x=y) \\ 0 & (x\neq y) \end{cases}$$

- PSM for $EQ_n(x, y)$
 - Identifies *n*-bit strings with elements in F_{2^n}
 - $P_1 \& P_2$ share random elements $r_1 \in F_{2^n} \setminus \{0\} \& r_2 \in F_{2^n}$
 - 1. P_1 and P_2 send $m_1 = r_1x + r_2$ and $m_2 = r_1y + r_2$, respectively
 - 2. *R* outputs 1 iff $m_1 = m_2$
- $CC^{psm}(EQ_n) = 2n$

PSM for (2-party) Equality

•
$$EQ_n(x,y) = \begin{cases} 1 & (x=y) \\ 0 & (x\neq y) \end{cases}$$

(correctness) The output of the referee is EQ(x, y)(security) There is an algorithm (simulator) that given EQ(x, y) as input, produces the messages to the referee

- PSM for $EQ_n(x, y)$
 - Identifies *n*-bit strings with elements in F_{2^n}
 - $P_1 \& P_2$ share random elements $r_1 \in F_{2^n} \setminus \{0\} \& r_2 \in F_{2^n}$
 - 1. P_1 and P_2 send $m_1 = r_1x + r_2$ and $m_2 = r_1y + r_2$, respectively
 - 2. *R* outputs 1 iff $m_1 = m_2$

PSM for (2-party) Equality

•
$$EQ_n(x,y) = \begin{cases} 1 & (x=y) \\ 0 & (x\neq y) \end{cases}$$

(correctness) The output of the referee is EQ(x, y)(security) There is an algorithm (simulator) that given EQ(x, y) as input, produces the messages to the referee

- PSM for $EQ_n(x, y)$
 - Identifies *n*-bit strings with elements in F_{2^n}
 - $P_1 \& P_2$ share random elements $r_1 \in F_{2^n} \setminus \{0\} \& r_2 \in F_{2^n}$
 - 1. P_1 and P_2 send $m_1 = r_1x + r_2$ and $m_2 = r_1y + r_2$, respectively
 - 2. R outputs 1 iff $m_1 = m_2$
- Simulator
 - On input 1: Take $r \in_R F_{2^n}$ and output (r,r)
 - On input 0: Take different r, r' from F_{2^n} uniformly at random and output (r, r')

Results on PSM: Upper bounds

- Feige, Kilian & Naor (1994)
 - Proposal of PSM model
 - 2-party PSM for "any" Boolean function with exponential CC
- Ishai & Kushilevitz (1997)
 - Efficient *k*-party PSM for any *#L* function
- Many other PSM protocols for specific functions

Results on PSM: Lower bounds

- Feige, Kilian & Naor (1994)
 - Proposal of PSM model
 - 2-party PSM for "any" Boolean function with exponential CC
- Ishai & Kushilevitz (1997)
 - Efficient k-party PSM for any #L function
- Many other PSM protocols for specific functions
- Applebaum, Holenstein, Mishra & Shayevitz (2020)
 - (3 o(1))n lower bounds of 2-party PSM for 2n-input random functions
 - If no privacy requirement, trivial upper bound = 2n
 - →Implies privacy essentially requires additional communication cost!

Our model: PSQM model

• PSQM (Private Simultaneous Quantum Message)

(correctness) The output of the referee is $f(x_1, x_2, ..., x_k)$ (with probability 1) (security) There is a quantum algorithm (simulator) that given $f(x_1, x_2, ..., x_k)$ as input, produces the quantum messages to the referee

Our Result (1): 2-party case

- Applebaum, Holenstein, Mishra & Shayevitz (2020)
 - (3 o(1))n lower bounds of 2-party PSM for 2*n*-input random functions
 - If no privacy requirement, trivial upper bound = 2n
 - →Implies privacy essentially requires additional communication cost!

Result 1: For 1 - o(1) fraction of functions $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}, QCC_0^{psm}(f) \ge (3 - o(1))n$

• (3 - o(1))n lower bounds of 2-party PSQM for 2*n*-input random functions

Our Result (1): 2-party case

- Applebaum, Holenstein, Mishra & Shayevitz (2020)
 - (3 o(1))n lower bounds of 2-party PSM for 2*n*-input random functions
 - If no privacy requirement, trivial upper bound = 2n
 - →Implies privacy essentially requires additional communication cost!

 $\begin{array}{l} \mbox{Result 1: For } 1 - o(1) \mbox{ fraction of functions } f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}, \\ QCC_0^{psm}(f) \geq \big(3 - o(1)\big)n \end{array}$

- (3 o(1))n lower bounds of 2-party PSQM for 2*n*-input random functions
- Quantum extension of the combinatorial argument by Applebaum et al
 - Run the PSM protocol twice, and consider the collision probability $\Pr[m^1=m^2]$ of the two messages
 - $\Pr[m^1 = m^2] \ge 1/|\text{message domain}|$
 - Analyze an upper bound of $P[m^1 = m^2]$

PSQM model with shared entanglement

• PSQM (Private Simultaneous Quantum Message)

(correctness) The output of the referee is $f(x_1, x_2, ..., x_n)$ (with probability 1) (security) There is a quantum algorithm (simulator) that given $f(x_1, x_2, ..., x_n)$ as input, produces the quantum messages to the referee

Shared randomness vs shared entanglement

Q. Are $QCC^{psm}(f)$ and $QCC^{psm,*}(f)$ different?

For SMP model (=PSM with no security);

• There is a relation problem such that $CC^{smp,*}$ is exponentially smaller than $QCC^{smp,pub}$ [GKRW09]

 $\odot \mathsf{Bounded}\mathsf{-}\mathsf{error}$ result & exponential gap

 $\triangle Not$ a Boolean function

- There is a partial function such that $CC_0^{smp,*}$ is exponentially smaller than $CC_0^{smp} = CC_0^{smp,pub}$ [BCT99] \triangle Exact case
 - OPartial Boolean function
 - \odot Exponential gap

Our Result (2): 2-party case

• There is a partial function such that $CC_0^{smp,*}$ is exponentially smaller than $CC_0^{smp} = CC_0^{smp,pub}$ [BCT99]

 \triangle Exact case

OPartial Boolean function

◎Exponential gap

Result 2: There is a partial function such that $CC_0^{psm,*}$ is exponentially smaller than QCC_0^{smp}

• Uses the function in [BCT99] (distributed Deutsch-Jozsa function)

•
$$DJ_n(x,y) = \begin{cases} 1 & (x=y) \\ 0 & (Ham(x,y) = n/2) \end{cases}$$

- Adds the security condition
- Shows the quantum SMP complexity lower bound

Shared randomness vs shared entanglement

Q. Are $QCC^{psm}(f)$ and $QCC^{psm,*}(f)$ different?

For SMP model (=PSM with no security);

- There is a relation problem such that CC^{smp,*} is exponentially smaller than QCC^{smp,pub} [GKRW09]
 ◎Bounded-error result & exponential gap
 △Not a Boolean function
- There is a partial function such that $CC_0^{smp,*}$ is exponentially smaller than CC_0^{smp} [BCT99] \triangle Exact case
 - OPartial Boolean function
 - ©Exponential gap
- Total function EQ_n has $QCC_0^{smp}(EQ_n) = 2n$ and $QCC_0^{smp,*}(EQ_n) = n$ [HSWCLS05]
 - riangleExact case
 - $\ensuremath{\textcircled{O}}$ Total Boolean function
 - riangleNot large gap (but the best known gap for total functions including in the bounded-error setting)

Our Result (3): k-party case

• Total function EQ_n has $QCC_0^{smp}(EQ_n) = 2n$ and $QCC_0^{smp,*}(EQ_n) = n$ [HSWCLS05]

 $\triangle Exact case$

 \bigcirc Total Boolean function

 \triangle Not large gap (but the best known gap for total functions including in the bounded-error setting)

Result 3: A *k*-party total function $GEQ_n(x_1, x_2, ..., x_k)$ (where $x_i \in \{0,1\}^n$) has $QCC_0^{psm}(GEQ_n) = kn$ and $QCC_0^{psm,*}(GEQ_n) = \frac{kn}{2}$

- $GEQ_n(x_1, x_2, ..., x_k) = 1$ iff $\sum_{j=1}^k (x_j)_i = 0$ for all $i \in \{1, 2, ..., n\}$
- $GEQ_n(x_1, x_2) = EQ_n(x_1, x_2)$
- Multiparty extension of a protocol for $QCC_0^{smp,*}(EQ_n)$ + security
- Uses the cat state $\frac{1}{\sqrt{2}}(|0^k\rangle + |1^k\rangle)$ for two bits

Simplest case: n = k = 2

PSQM protocol for $EQ(x_1, x_2)$

- Shared: $|\Psi^{00}\rangle = \frac{1}{\sqrt{2}}(|0\rangle_1|0\rangle_2 + |1\rangle_1|1\rangle_2) \& r \in F_4$
- 1. P_j applies X (Z, resp.) on register j iff the 1st (2nd, resp) bit of rx_j is 1
- 2. P_j sends register j to R
- 3. *R* measures registers 1 & 2 in the Bell basis $\{|\Psi^{ab}\rangle = \frac{1}{\sqrt{2}}(|0\rangle|a\rangle + (-1)^{b}|1\rangle|1-a\rangle): a, b \in \{0,1\}\},\$ and the result corresponds to $|\Psi^{00}\rangle$ iff 1 is outputed

1\2	00	01	10	11
00	$ \Psi^{00}\rangle$	$ \Psi^{01}\rangle$	$ \Psi^{10}\rangle$	$ \Psi^{11}\rangle$
01	$ \Psi^{01}\rangle$	$ \Psi^{00}\rangle$	$ \Psi^{11}\rangle$	$ \Psi^{10}\rangle$
10	$ \Psi^{10}\rangle$	$ \Psi^{11}\rangle$	$ \Psi^{00} angle$	$ \Psi^{01}\rangle$
11	$ \Psi^{11}\rangle$	$ \Psi^{10} angle$	$ \Psi^{01}\rangle$	$ \Psi^{00}\rangle$

Outline

- Setting
 - SMP
 - PSM
- Results
- Open problems

Open Problems (1)

Result 1: For 1 - o(1) fraction of functions $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}, QCC_0^{psm}(f) \ge (3 - o(1))n$

OPEN:

- Extension to the shared entanglement case
- Extension to the bounded-error case
- Extension to a relaxed security condition
 - Simulator ⇒ Approximate simulator
 - Shown in the classical case by Applebaum et al. (2020)
- Not well-studied even in the classical case

Open Problems (2)

Result 2: There is a partial function such that $CC_0^{psm,*}$ is exponentially smaller than QCC_0^{smp}

Result 3: A *k*-party total function $GEQ_n(x_1, x_2, ..., x_k)$ (where $x_i \in \{0,1\}^n$) has $QCC_0^{psm}(GEQ_n) = kn$ and $QCC_0^{psm,*}(GEQ_n) = \frac{kn}{2}$

OPEN:

- Bounded-error & relaxed security cases
 - \exists relational problem $R \left[CC^{psm,*}(R) = O(\log n) \text{ but } QCC^{psm}(R) = \Omega(\frac{n^{1/3}}{\log n}) \right] \left[\text{GKRW09} \right]$
- Bigger gaps for total functions (even in the SMP case)

Open Problems (3)

• QCC^{psm} vs CC^{psm}

Cf. $QCC^{smp}(EQ_n) = O(\log n)$ but $CC^{smp}(EQ_n) = \Theta(\sqrt{n})$

• PSQM for "quantum" problems

