SMP model, PSM protocols, and their quantum analogues

Harumichi Nishimura (Grad. School of Informatics, Nagoya U)
Based on joint work with Akinori Kawachi (Mie U)

June 22, 2021
SUSTech-Nagoya workshop on Quantum Science

Outline

- Setting
- SMP
- PSM
- Results
- Open problems

Communication Complexity

Alice

Input: $x \in X$

Output $f(x, y) \in Z$

Andrew C.-C. Yao

Communication complexity (CC) of $f: X \times Y \rightarrow Z:=$ the length of bits communicated for computing f in the best communication protocol

- Consider the worst-case on all input pairs (x, y)
- Tool for the lower bound proofs in computational complexity

SMP Model

- SMP (Simultaneous Message Passing)
- Most simplest setting in communication complexity
- $C C^{\text {Smp }}(f):=C C$ of f in the SMP model

Example: PARITY

- CC $^{\operatorname{smp}}\left(\right.$ PARITY $\left._{n}\right)=2$

Example: Equality

- $C C^{s m p}\left(E Q_{n}\right)=2 n$
- LB: Reduction to distinguishability

$$
E Q_{n}=\left[\begin{array}{llllllll}
1 & 0 & & & & & & 0 \\
0 & 1 & 0 & & & & & \\
& 0 & 1 & & & & & \\
& & & 1 & & 0 & & \\
\\
& & & 0 & 1 & & & \\
& & & & & 1 & 0 & \\
0 & 0 & 0 & & & 0 & 1 & 0 \\
0 & 0 & & 0 & 1
\end{array}\right]
$$

Input $x=x_{1} x_{2} \cdots x_{n} \in\{0,1\}^{n}$
Input $y=y_{1} y_{2} \cdots y_{n} \in\{0,1\}^{n}$

Bounded-Error Setting

- Alice \& Bob may use "randomness" (randomized protocol)
- Referee do not always need to output the correct answer but needs to do it "with high probability" (say with probability $2 / 3$)
- $R C C^{\text {Smp }}(f)$:=bounded-error SMP complexity of f
- For comparison, the case that does not use randomness is called "exact"

Bounded-Error Setting

- Alice \& Bob may use randomness (randomized protocol)
- Referee do not always need to output the correct answer but needs to do it with high probability (say with probability $2 / 3$)
- $R C C^{S m p}(f)$:=bounded-error SMP complexity of f (with private randomness)
- Two types for randomness
- Private randomness: Alice \& Bob (\& Referee) must prepare randomness separately
- Public (shared) randomness: Alice \& Bob may share randomness
- $R C C^{s m p, p u b}(f):=$ bounded-error SMP complexity of f (with shared randomness)

Example: Equality

- $R C C^{s m p, p u b}\left(E Q_{n}\right)=O(1)$

Input $x=x_{1} x_{2} \cdots x_{n} \in\{0,1\}^{n} \quad$ Input $y=y_{1} y_{2} \cdots y_{n} \in\{0,1\}^{n}$

Shared random bits: $r=r_{1} r_{2} \cdots r_{n} \in_{R}\{0,1\}^{n}$

SMP complexity of EQ

- $C C^{s m p}\left(E Q_{n}\right)=2 n$
- $R C C^{s m p, p u b}\left(E Q_{n}\right)=O(1)$
- $R^{2} C^{S m p}\left(E Q_{n}\right)=\Theta(\sqrt{n})$ [Amb96,NS96,BK97]

Quantum SMP

- Alice \& Bob may send qubits
- Every party can use quantum computers
- 3 types of bounded-error QSMP
- QCC ${ }^{\text {smp }}(f)$: no shared resource
- QCC ${ }^{\text {smp,pub }}(f)$: shared randomness
- QCC ${ }^{s m p, *}(f)$: shared entanglement
- Exact case
- $Q C C_{0}^{s m p}(f), Q C C_{0}^{s m p, p u b}(f), Q C C_{0}^{s m p, *}(f)$

SMP complexity of EQ

- Classical Case
- $C C^{s m p}\left(E Q_{n}\right)=2 n$
- $R C C^{s m p, p u b}\left(E Q_{n}\right)=O(1)$
- $R C C^{\operatorname{smp}}\left(E Q_{n}\right)=\Theta(\sqrt{n}) \quad[A m b 96, N S 96, B K 97]$
- Quantum Case
- $Q C C_{0}^{s m p}\left(E Q_{n}\right)=Q C C_{0}^{s m p, p u b}\left(E Q_{n}\right)=2 n$
- $Q C C_{0}^{s m p, *}\left(E Q_{n}\right)=n \quad$ [HSWCLS05]
- $Q C C^{\text {smp }}\left(E Q_{n}\right)=O(\log n)$ [BCWW01]

Extension to Multi-Party Case

- k-party SMP complexity of function $f:\left(\{0,1\}^{n}\right)^{k} \rightarrow\{0,1\}:=$ the minimum number of bits sent to the referee R so that R can compute f
- CC of the trivial protocol=kn

Outline

- Setting
- SMP
- PSM
- Results
- Open problems

Multi-Party Computation (MPC)

- Jointly computes $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ with revealing nothing but $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$

Communication Complexity of MPC

- Communication complexity of k-party MPC for function $f:\left(\{0,1\}^{n}\right)^{k} \rightarrow\{0,1\}$
:= the minimum number of bits sent with one other to implement a MPC for f Q . How much is the communication complexity of MPC?

PSM model

- PSM (Private Simultaneous Message)
- Simplest MPC model [FKN94]; SMP + Security condition (security) Referee must not learn any information but $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$

PSM model

- PSM (Private Simultaneous Message)
- Simplest MPC model [FKN94]; SMP + Security condition (security) Referee must not learn any information but $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

$\operatorname{Input} x_{1} \in\{0,1\}^{n} \quad \operatorname{Input} x_{2} \in\{0,1\}^{n}$

$$
E Q_{n}=\left[\begin{array}{llllllll}
1 & 0 & & & & & & 0 \\
0 & 1 & 0 & & & & & \\
& 0 & 1 & & & & & \\
& & & 1 & 0 & & & \\
& & & 0 & 1 & & & \\
& & & & & 1 & 0 & \\
0 & 0 & 0 & & & 0 & 1 & 0 \\
0 & 0 & & & & & 0 & 1
\end{array}\right] m_{y}
$$

$$
R\left(m_{x}, m_{y}\right)=R\left(m_{x^{\prime}}, m_{y^{\prime}}\right)=1
$$

$$
\operatorname{but}\left(m_{x}, m_{y}\right) \neq\left(m_{x^{\prime}}, m_{y^{\prime}}\right)
$$

For the security condition, P_{1}, \ldots, P_{k} must mask their messages

PSM model

- PSM (Private Simultaneous Message)
- Simplest MPC model [FKN94]; SMP + Security condition
(security) Referee must not learn any information but $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Input $x_{1} \in\{0,1\}^{n} \quad$ Input $x_{2} \in\{0,1\}^{n}$
Input $x_{k} \in\{0,1\}^{n}$

For the security condition, P_{1}, \ldots, P_{k} must mask their messages

P_{1}, \ldots, P_{k}

(not known to the referee)

Simulator: Formal definition of Security

- PSM (Private Simultaneous Message)
(correctness) The output of the referee is $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$
(security) There is an algorithm (simulator) that given $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ as input, produces the messages to the referee

$$
C C^{p s m}(f):=C C \text { of PSM for } f
$$

PSQM model

- PSQM (Private Simultaneous Quantum Message)
(correctness) The output of the referee is $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ (with probability 1)
(security) There is a quantum algorithm (simulator) that given $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ as input, produces the quantum messages to the referee

PSQM model with shared entanglement

- PSQM (Private Simultaneous Quantum Message)
(correctness) The output of the referee is $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ (with probability 1)
(security) There is a quantum algorithm (simulator) that given $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ as input, produces the quantum messages to the referee

Outline

- Setting
- SMP
- PSM
- Results
- Example
- Known results
- Our results
- Open problems

Example: PSM for (2-party) Equality

- $E Q_{n}(x, y)= \begin{cases}1 & (x=y) \\ 0 & (x \neq y)\end{cases}$
- PSM for $E Q_{n}(x, y)$
- Identifies n-bit strings with elements in $F_{2^{n}}$
- $P_{1} \& P_{2}$ share random elements $r_{1} \in F_{2^{n}} \backslash\{0\} \& r_{2} \in F_{2^{n}}$

1. $\quad P_{1}$ and P_{2} send $m_{1}=r_{1} x+r_{2}$ and $m_{2}=r_{1} y+r_{2}$, respectively
2. R outputs 1 iff $m_{1}=m_{2}$

PSM for (2-party) Equality

- $E Q_{n}(x, y)= \begin{cases}1 & (x=y) \\ 0 & (x \neq y)\end{cases}$
- PSM for $E Q_{n}(x, y)$
- Identifies n-bit strings with elements in $F_{2^{n}}$
- $P_{1} \& P_{2}$ share random elements $r_{1} \in F_{2^{n}} \backslash\{0\} \& r_{2} \in F_{2^{n}}$

1. P_{1} and P_{2} send $m_{1}=r_{1} x+r_{2}$ and $m_{2}=r_{1} y+r_{2}$, respectively
2. R outputs 1 iff $m_{1}=m_{2}$

- $C^{p s m}\left(E Q_{n}\right)=2 n$

PSM for (2-party) Equality

- $E Q_{n}(x, y)= \begin{cases}1 & (x=y) \\ 0 & (x \neq y)\end{cases}$
(correctness) The output of the referee is $E Q(x, y)$
- PSM for $E Q_{n}(x, y)$
- Identifies n-bit strings with elements in $F_{2^{n}}$
- $P_{1} \& P_{2}$ share random elements $r_{1} \in F_{2^{n}} \backslash\{0\} \& r_{2} \in F_{2^{n}}$

1. P_{1} and P_{2} send $m_{1}=r_{1} x+r_{2}$ and $m_{2}=r_{1} y+r_{2}$, respectively
2. R outputs 1 iff $m_{1}=m_{2}$

PSM for (2-party) Equality

- $E Q_{n}(x, y)= \begin{cases}1 & (x=y) \\ 0 & (x \neq y)\end{cases}$
(security) There is an algorithm (simulator) that given $E Q(x, y)$ as input, produces the messages to the referee
- PSM for $E Q_{n}(x, y)$
- Identifies n-bit strings with elements in $F_{2^{n}}$
- $P_{1} \& P_{2}$ share random elements $r_{1} \in F_{2^{n}} \backslash\{0\} \& r_{2} \in F_{2^{n}}$

1. P_{1} and P_{2} send $m_{1}=r_{1} x+r_{2}$ and $m_{2}=r_{1} y+r_{2}$, respectively
2. R outputs 1 iff $m_{1}=m_{2}$

- Simulator
- On input 1: Take $r \in_{R} F_{2^{n}}$ and output (r, r)
- On input 0: Take different r, r^{\prime} from $F_{2^{n}}$ uniformly at random and output (r, r^{\prime})

Results on PSM: Upper bounds

- Feige, Kilian \& Naor (1994)
- Proposal of PSM model
- 2-party PSM for "any" Boolean function with exponential CC
- Ishai \& Kushilevitz (1997)
- Efficient k-party PSM for any \#L function
- Many other PSM protocols for specific functions

Results on PSM: Lower bounds

- Feige, Kilian \& Naor (1994)
- Proposal of PSM model
- 2-party PSM for "any" Boolean function with exponential CC
- Ishai \& Kushilevitz (1997)
- Efficient k-party PSM for any \#L function
- Many other PSM protocols for specific functions
- Applebaum, Holenstein, Mishra \& Shayevitz (2020)
- (3-o(1))n lower bounds of 2-party PSM for $2 n$-input random functions
- If no privacy requirement, trivial upper bound $=2 n$
\rightarrow Implies privacy essentially requires additional communication cost!

Our model: PSQM model

- PSQM (Private Simultaneous Quantum Message)
(correctness) The output of the referee is $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ (with probability 1)
(security) There is a quantum algorithm (simulator) that given $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ as input, produces the quantum messages to the referee

Q. Is there any non-trivial lower bounds?
shared randomness

Our Result (1): 2-party case

- Applebaum, Holenstein, Mishra \& Shayevitz (2020)
- (3-o(1))n lower bounds of 2-party PSM for $2 n$-input random functions
- If no privacy requirement, trivial upper bound $=2 n$
\rightarrow Implies privacy essentially requires additional communication cost!
Result 1: For $1-o(1)$ fraction of functions $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$, $Q C C_{0}^{p s m}(f) \geq(3-o(1)) n$
- (3-o(1))n lower bounds of 2-party PSQM for $2 n$-input random functions

Our Result (1): 2-party case

- Applebaum, Holenstein, Mishra \& Shayevitz (2020)
- (3-o(1))n lower bounds of 2-party PSM for $2 n$-input random functions
- If no privacy requirement, trivial upper bound $=2 n$
\rightarrow Implies privacy essentially requires additional communication cost!
Result 1: For $1-o(1)$ fraction of functions $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$, $Q C C_{0}^{p s m}(f) \geq(3-o(1)) n$
- (3-o(1))n lower bounds of 2-party PSQM for $2 n$-input random functions
- Quantum extension of the combinatorial argument by Applebaum et al
- Run the PSM protocol twice, and consider the collision probability $\operatorname{Pr}\left[m^{1}=m^{2}\right]$ of the two messages
- $\operatorname{Pr}\left[m^{1}=m^{2}\right] \geq 1 /$ |message domain|
- Analyze an upper bound of $P\left[m^{1}=m^{2}\right]$

PSQM model with shared entanglement

- PSQM (Private Simultaneous Quantum Message)
(correctness) The output of the referee is $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ (with probability 1)
(security) There is a quantum algorithm (simulator) that given $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as input, produces the quantum messages to the referee

Shared randomness vs shared entanglement

Q. Are $Q C C^{p s m}(f)$ and $Q C C^{p s m, *}(f)$ different?

For SMP model (=PSM with no security);

- There is a relation problem such that $C C^{s m p, *}$ is exponentially smaller than QCC ${ }^{\text {smp,pub }}$ [GKRW09]
© Bounded-error result \& exponential gap
\triangle Not a Boolean function
- There is a partial function such that $C C_{0}^{s m p, *}$ is exponentially smaller than $C C_{0}^{s m p}=C C_{0}^{\text {smp pub }}$ [BCT99]
\triangle Exact case
OPartial Boolean function
© Exponential gap

Our Result (2): 2-party case

- There is a partial function such that $C C_{0}^{S m p, *}$ is exponentially smaller than $C C_{0}^{\text {smp }}=C C_{0}^{\text {smp,pub }}$ [BCT99]
\triangle Exact case
OPartial Boolean function
OExponential gap
Result 2: There is a partial function such that $C C_{0}^{p s m, *}$ is exponentially smaller than $Q C C_{0}^{\text {smp }}$
- Uses the function in [BCT99] (distributed Deutsch-Jozsa function)

$$
\text { - } D J_{n}(x, y)=\left\{\begin{array}{lc}
1 & (x=y) \\
0 & (\operatorname{Ham}(x, y)=n / 2)
\end{array}\right.
$$

- Adds the security condition
- Shows the quantum SMP complexity lower bound

Shared randomness vs shared entanglement

Q. Are $Q C C^{p s m}(f)$ and $Q C C^{p s m, *}(f)$ different?

For SMP model (=PSM with no security);

- There is a relation problem such that $C C^{s m p, *}$ is exponentially smaller than $Q C C^{s m p, p u b}$ [GKRW09]
© Bounded-error result \& exponential gap
\triangle Not a Boolean function
- There is a partial function such that $C C_{0}^{S m p, *}$ is exponentially smaller than $C C_{0}^{s m p}$ [BCT99]
\triangle Exact case
OPartial Boolean function
OExponential gap
- Total function $E Q_{n}$ has $Q C C_{0}^{S m p}\left(E Q_{n}\right)=2 n$ and $Q C C_{0}^{S m p, *}\left(E Q_{n}\right)=n$ [HSWCLS05]
\triangle Exact case
©Total Boolean function
\triangle Not large gap (but the best known gap for total functions including in the bounded-error setting)

Our Result (3): \boldsymbol{k}-party case

- Total function $E Q_{n}$ has $Q C C_{0}^{S m p}\left(E Q_{n}\right)=2 n$ and $Q C C_{0}^{S m p, *}\left(E Q_{n}\right)=n$ [HSWCLS05]
\triangle Exact case
©Total Boolean function
\triangle Not large gap (but the best known gap for total functions including in the bounded-error setting) Result 3: A k-party total function $G E Q_{n}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ (where $\left.x_{i} \in\{0,1\}^{n}\right)$ has $Q C C_{0}^{p s m}\left(G E Q_{n}\right)=k n$ and $Q C C_{0}^{p s m, *}\left(G E Q_{n}\right)=\frac{k n}{2}$
- $G E Q_{n}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=1$ iff $\sum_{j=1}^{k}\left(x_{j}\right)_{i}=0$ for all $i \in\{1,2, \ldots, n\}$
- $G E Q_{n}\left(x_{1}, x_{2}\right)=E Q_{n}\left(x_{1}, x_{2}\right)$
- Multiparty extension of a protocol for $Q C C_{0}^{s m p, *}\left(E Q_{n}\right)+$ security
- Uses the cat state $\frac{1}{\sqrt{2}}\left(\left|0^{k}\right\rangle+\left|1^{k}\right\rangle\right)$ for two bits

Simplest case: $n=k=2$

PSQM protocol for $E Q\left(x_{1}, x_{2}\right)$

- Shared: $\left|\Psi^{00}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{1}|0\rangle_{2}+|1\rangle_{1}|1\rangle_{2}\right) \& r \in F_{4}$

1. P_{j} applies $X(Z$, resp. $)$ on register j iff the $1^{\text {st }}\left(2^{\text {nd }}\right.$,

$1 \backslash 2$	00	01	10	11
00	$\left\|\Psi^{00}\right\rangle$	$\left\|\Psi^{01}\right\rangle$	$\left\|\Psi^{10}\right\rangle$	$\left\|\Psi^{11}\right\rangle$
01	$\left\|\Psi^{01}\right\rangle$	$\left\|\Psi^{00}\right\rangle$	$\left\|\Psi^{11}\right\rangle$	$\left\|\Psi^{10}\right\rangle$
10	$\left\|\Psi^{10}\right\rangle$	$\left\|\Psi^{11}\right\rangle$	$\left\|\Psi^{00}\right\rangle$	$\left\|\Psi^{01}\right\rangle$
11	$\left\|\Psi^{11}\right\rangle$	$\left\|\Psi^{10}\right\rangle$	$\left\|\Psi^{01}\right\rangle$	$\left\|\Psi^{00}\right\rangle$

2. $\quad P_{j}$ sends register j to R
3. R measures registers $1 \& 2$ in the Bell basis $\left\{\left|\Psi^{a b}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle|a\rangle+(-1)^{b}|1\rangle|1-a\rangle\right): a, b \in\{0,1\}\right\}$, and the result corresponds to $\left|\Psi^{00}\right\rangle$ iff 1 is outputed

Outline

- Setting
- SMP
- PSM
- Results
- Open problems

Open Problems (1)

Result 1: For $1-o(1)$ fraction of functions $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$, $Q C C_{0}^{p s m}(f) \geq(3-o(1)) n$

OPEN:

- Extension to the shared entanglement case
- Extension to the bounded-error case
- Extension to a relaxed security condition
- Simulator \Rightarrow Approximate simulator
- Shown in the classical case by Applebaum et al. (2020)
- Not well-studied even in the classical case

Open Problems (2)

Result 2: There is a partial function such that $C C_{0}^{p s m, *}$ is exponentially smaller than $Q C C_{0}^{\text {smp }}$
Result 3: A k-party total function $G E Q_{n}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ (where $\left.x_{i} \in\{0,1\}^{n}\right)$ has $Q C C_{0}^{p s m}\left(G E Q_{n}\right)=k n$ and $Q C C_{0}^{p s m, *}\left(G E Q_{n}\right)=\frac{k n}{2}$

OPEN:

- Bounded-error \& relaxed security cases
- \exists relational problem $R\left[C C^{p s m, *}(R)=O(\log n)\right.$ but $Q C C^{p s m}(R)=\Omega\left(\frac{n^{1 / 3}}{\log n}\right)$ [GKRW09]
- Bigger gaps for total functions (even in the SMP case)

Open Problems (3)

- $Q C C^{p s m}$ vs $C C^{p s m}$

Cf. $Q C C^{\text {smp }}\left(E Q_{n}\right)=O(\log n)$ but $C C^{s m p}\left(E Q_{n}\right)=\Theta(\sqrt{n})$

- PSQM for "quantum" problems

THE END

