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Input 𝑦 ∈ 𝑌Input: 𝑥 ∈ 𝑋

Output 𝑓(𝑥, 𝑦)

communication

Communication complexity (CC) of 𝑓: 𝑋 × 𝑌 → 𝑍 := the length of bits 
communicated for computing 𝑓 in the best communication protocol

• Consider the worst-case on all input pairs (𝑥, 𝑦)

• Tool for the lower bound proofs in computational complexity

Communication Complexity

Output 𝑓 𝑥, 𝑦 ∈ 𝑍

Alice Bob

Andrew C.-C. Yao

https://www.kyotoprize.org/en/210618



SMP Model

• SMP (Simultaneous Message Passing)

• Most simplest setting in communication complexity

• 𝐶𝐶𝑠𝑚𝑝 𝑓 ≔CC of 𝑓 in the SMP model 

𝑚𝑥 𝑚𝑦

Input  𝑥
Input  𝑦

Output
𝑓(𝑥, 𝑦)



Example: PARITY

𝑚𝑥 𝑚𝑦

Input  𝑥 = 𝑥1𝑥2⋯𝑥𝑛 ∈ 0,1 𝑛 Input  𝑦 = 𝑦1𝑦2⋯𝑦𝑛 ∈ 0,1 𝑛

Output
𝑃𝐴𝑅𝐼𝑇𝑌𝑛 𝑥, 𝑦 =  𝑖=1

𝑛 𝑥𝑖 + 𝑦𝑖 mod 2

• 𝐶𝐶𝑠𝑚𝑝 𝑃𝐴𝑅𝐼𝑇𝑌𝑛 = 2



Example: Equality

𝑚𝑥 𝑚𝑦

Input  𝑥 = 𝑥1𝑥2⋯𝑥𝑛 ∈ 0,1 𝑛 Input  𝑦 = 𝑦1𝑦2⋯𝑦𝑛 ∈ 0,1 𝑛

Output

𝐸𝑄𝑛 𝑥, 𝑦 =  
1 (𝑥 = 𝑦)
0 (𝑥 ≠ 𝑦)

• 𝐶𝐶𝑠𝑚𝑝 𝐸𝑄𝑛 = 2𝑛

• LB: Reduction to distinguishability 

𝐸𝑄𝑛 =

1 0
0 1 0

0 1

0

1 0

0 1

0 0 0

1 0
0 1 0

0 1

𝑚𝑥 𝑚𝑥′



Bounded-Error Setting

• Alice & Bob may use “randomness” (randomized protocol)
• Referee do not always need to output the correct answer but needs to do it “with 

high probability” (say with probability 2/3) 

• 𝑅𝐶𝐶𝑠𝑚𝑝 𝑓 ≔bounded-error SMP complexity of 𝑓

• For comparison, the case that does not use randomness is called “exact”



Bounded-Error Setting

• Alice & Bob may use randomness (randomized protocol)
• Referee do not always need to output the correct answer but needs to do it with 

high probability (say with probability 2/3) 

• 𝑅𝐶𝐶𝑠𝑚𝑝 𝑓 ≔bounded-error SMP complexity of 𝑓 (with private randomness)

• Two types for randomness
• Private randomness: Alice & Bob (& Referee) must prepare randomness separately

• Public (shared) randomness: Alice & Bob may share randomness

• 𝑅𝐶𝐶𝑠𝑚𝑝,𝑝𝑢𝑏 𝑓 ≔bounded-error SMP complexity of 𝑓 (with shared randomness)



Example: Equality 

• 𝑅𝐶𝐶𝑠𝑚𝑝,𝑝𝑢𝑏 𝐸𝑄𝑛 = 𝑂(1)

𝑚𝑥 = 𝑥 ⋅ 𝑟 𝑚𝑦 = 𝑦 ⋅ 𝑟

Input  𝑥 = 𝑥1𝑥2⋯𝑥𝑛 ∈ 0,1 𝑛 Input  𝑦 = 𝑦1𝑦2⋯𝑦𝑛 ∈ 0,1 𝑛

Output 1 iff 𝑚𝑥 = 𝑚𝑦

Shared random bits: 𝑟 = 𝑟1𝑟2⋯𝑟𝑛 ∈𝑅 0,1 𝑛



SMP complexity of EQ

• 𝐶𝐶𝑠𝑚𝑝 𝐸𝑄𝑛 = 2𝑛

• 𝑅𝐶𝐶𝑠𝑚𝑝,𝑝𝑢𝑏 𝐸𝑄𝑛 = 𝑂(1)

• 𝑅𝐶𝐶𝑠𝑚𝑝 𝐸𝑄𝑛 = Θ( 𝑛) [Amb96,NS96,BK97]



Quantum SMP

• Alice & Bob may send qubits
• Every party can use quantum computers

• 3 types of bounded-error QSMP
• 𝑄𝐶𝐶𝑠𝑚𝑝(𝑓): no shared resource

• 𝑄𝐶𝐶𝑠𝑚𝑝,𝑝𝑢𝑏(𝑓): shared randomness

• 𝑄𝐶𝐶𝑠𝑚𝑝,∗(𝑓): shared entanglement

• Exact case

• 𝑄𝐶𝐶0
𝑠𝑚𝑝

𝑓 , 𝑄𝐶𝐶0
𝑠𝑚𝑝,𝑝𝑢𝑏

𝑓 , 𝑄𝐶𝐶0
𝑠𝑚𝑝,∗

𝑓
|𝜓𝑥⟩ |𝜓𝑦⟩

Input  𝑥 = 𝑥1𝑥2⋯𝑥𝑛 ∈ 0,1 𝑛 Input  𝑦 = 𝑦1𝑦2⋯𝑦𝑛 ∈ 0,1 𝑛

Output
𝑓 𝑥, 𝑦



SMP complexity of EQ

• Classical Case
• 𝐶𝐶𝑠𝑚𝑝 𝐸𝑄𝑛 = 2𝑛

• 𝑅𝐶𝐶𝑠𝑚𝑝,𝑝𝑢𝑏 𝐸𝑄𝑛 = 𝑂(1)

• 𝑅𝐶𝐶𝑠𝑚𝑝 𝐸𝑄𝑛 = Θ( 𝑛) [Amb96,NS96,BK97]

• Quantum Case

• 𝑄𝐶𝐶0
𝑠𝑚𝑝

𝐸𝑄𝑛 = 𝑄𝐶𝐶0
𝑠𝑚𝑝,𝑝𝑢𝑏

𝐸𝑄𝑛 = 2𝑛

• 𝑄𝐶𝐶0
𝑠𝑚𝑝,∗

𝐸𝑄𝑛 = 𝑛 [HSWCLS05]

• 𝑄𝐶𝐶𝑠𝑚𝑝 𝐸𝑄𝑛 = 𝑂(log 𝑛) [BCWW01]



Extension to Multi-Party Case

• 𝑘-party SMP complexity of function 𝑓: 0,1 𝑛 𝑘 → {0,1} := the minimum 
number of bits sent to the referee 𝑅 so that 𝑅 can compute 𝑓

• CC of the trivial protocol=𝑘𝑛

𝑅

𝑃1 𝑃2 𝑃𝑘

Input 𝑥1 ∈ 0,1 𝑛 Input 𝑥2 ∈ 0,1 𝑛 Input 𝑥𝑘 ∈ 0,1 𝑛

Output
𝑓(𝑥1, 𝑥2, … , 𝑥𝑘)
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Multi-Party Computation (MPC)

• Jointly computes 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘) with revealing nothing but 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘)

𝑃1 𝑃2

𝑃3 𝑃4

Input  𝑥1
Input  𝑥2

Input  𝑥3 Input  𝑥4



Communication Complexity of MPC
• Communication complexity of 𝑘-party MPC for function 𝑓: 0,1 𝑛 𝑘 → {0,1}

:= the minimum number of bits sent with one other to implement a MPC for 𝑓

Q. How much is the communication complexity of MPC?

𝑃1 𝑃2

𝑃3 𝑃4

Input  𝑥1
Input  𝑥2

Input  𝑥3 Input  𝑥4



PSM model

• PSM (Private Simultaneous Message)
• Simplest MPC model [FKN94]; SMP + Security condition

(security) Referee must not learn any information but 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘)

𝑅

𝑃1 𝑃2 𝑃𝑘

Input 𝑥1 ∈ 0,1 𝑛 Input 𝑥2 ∈ 0,1 𝑛 Input 𝑥𝑘 ∈ 0,1 𝑛

Output
𝑓(𝑥1, 𝑥2, … , 𝑥𝑘)



PSM model
• PSM (Private Simultaneous Message)

• Simplest MPC model [FKN94]; SMP + Security condition

(security) Referee must not learn any information but 
𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)

𝑅

𝑃1 𝑃2 𝑃𝑘

Input 𝑥1 ∈ 0,1 𝑛 Input 𝑥2 ∈ 0,1 𝑛 Input 𝑥𝑘 ∈ 0,1 𝑛

Output
𝑓(𝑥1, 𝑥2, … , 𝑥𝑘)

For the security condition, 𝑃1, … , 𝑃𝑘
must mask their messages

𝐸𝑄𝑛 =

1 0
0 1 0

0 1

0

1 0

0 1

0 0 0

1 0
0 1 0

0 1

𝑚𝑥 𝑚𝑥′

𝑚𝑦

𝑚𝑦′

𝑅 𝑚𝑥, 𝑚𝑦 = 𝑅 𝑚𝑥′ , 𝑚𝑦′ = 1

but 𝑚𝑥, 𝑚𝑦 ≠ (𝑚𝑥′ , 𝑚𝑦′)



PSM model
• PSM (Private Simultaneous Message)

• Simplest MPC model [FKN94]; SMP + Security condition

(security) Referee must not learn any information but 
𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)

𝑅

𝑃1 𝑃2 𝑃𝑘

Input 𝑥1 ∈ 0,1 𝑛 Input 𝑥2 ∈ 0,1 𝑛 Input 𝑥𝑘 ∈ 0,1 𝑛

Output
𝑓(𝑥1, 𝑥2, … , 𝑥𝑘)

For the security condition, 𝑃1, … , 𝑃𝑘
must mask their messages

𝑃1, … , 𝑃𝑘 share randomness 
(not known to the referee)

shared randomness 𝑟



Simulator: Formal definition of Security

• PSM (Private Simultaneous Message)
(correctness) The output of the referee is 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘)

(security) There is an algorithm (simulator) that given 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘) as input, 
produces the messages to the referee

𝑅

𝑃1 𝑃2 𝑃𝑘

Input 𝑥1 ∈ 0,1 𝑛 Input 𝑥2 ∈ 0,1 𝑛 Input 𝑥𝑘 ∈ 0,1 𝑛

Output
𝑓(𝑥1, 𝑥2, … , 𝑥𝑘)

shared randomness 𝑟

𝐶𝐶𝑝𝑠𝑚 𝑓 ≔CC of PSM for 𝑓



PSQM model
• PSQM (Private Simultaneous Quantum Message)

(correctness) The output of the referee is 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘) (with probability 1)

(security) There is a quantum algorithm (simulator) that given 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘) as input, 
produces the quantum messages to the referee

𝑅

𝑃1 𝑃2 𝑃𝑘

Input 𝑥1 ∈ 0,1 𝑛 Input 𝑥2 ∈ 0,1 𝑛 Input 𝑥𝑘 ∈ 0,1 𝑛

Output
𝑓(𝑥1, 𝑥2, … , 𝑥𝑘)

shared randomness 

quantum messages

𝑄𝐶𝐶0
𝑝𝑠𝑚

𝑓 ≔CC of PSQM for 𝑓



PSQM model with shared entanglement
• PSQM (Private Simultaneous Quantum Message)

(correctness) The output of the referee is 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘) (with probability 1)

(security) There is a quantum algorithm (simulator) that given 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘) as input, 
produces the quantum messages to the referee

𝑅

𝑃1 𝑃2 𝑃𝑘

Input 𝑥1 ∈ 0,1 𝑛 Input 𝑥2 ∈ 0,1 𝑛 Input 𝑥𝑘 ∈ 0,1 𝑛

Output
𝑓(𝑥1, 𝑥2, … , 𝑥𝑘)

shared entanglement

quantum messages

𝑄𝐶𝐶0
𝑝𝑠𝑚,∗

𝑓 ≔CC of PSQM with 
shared entanglement for 𝑓
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Example: PSM for (2-party) Equality

• 𝐸𝑄𝑛 𝑥, 𝑦 =  
1 (𝑥 = 𝑦)
0 (𝑥 ≠ 𝑦)

• PSM for 𝐸𝑄𝑛(𝑥, 𝑦)
• Identifies 𝑛-bit strings with elements in 𝐹2𝑛

• 𝑃1 & 𝑃2 share random elements 𝑟1 ∈ 𝐹2𝑛 ∖ {0} & 𝑟2 ∈ 𝐹2𝑛

1. 𝑃1 and 𝑃2 send 𝑚1 = 𝑟1𝑥 + 𝑟2 and 𝑚2 = 𝑟1𝑦 + 𝑟2, respectively

2. 𝑅 outputs 1 iff 𝑚1 = 𝑚2



PSM for (2-party) Equality

• 𝐸𝑄𝑛 𝑥, 𝑦 =  
1 (𝑥 = 𝑦)
0 (𝑥 ≠ 𝑦)

• PSM for 𝐸𝑄𝑛(𝑥, 𝑦)
• Identifies 𝑛-bit strings with elements in 𝐹2𝑛

• 𝑃1 & 𝑃2 share random elements 𝑟1 ∈ 𝐹2𝑛 ∖ {0} & 𝑟2 ∈ 𝐹2𝑛

1. 𝑃1 and 𝑃2 send 𝑚1 = 𝑟1𝑥 + 𝑟2 and 𝑚2 = 𝑟1𝑦 + 𝑟2, respectively

2. 𝑅 outputs 1 iff 𝑚1 = 𝑚2

• 𝐶𝐶𝑝𝑠𝑚 𝐸𝑄𝑛 = 2𝑛



PSM for (2-party) Equality

• 𝐸𝑄𝑛 𝑥, 𝑦 =  
1 (𝑥 = 𝑦)
0 (𝑥 ≠ 𝑦)

• PSM for 𝐸𝑄𝑛(𝑥, 𝑦)
• Identifies 𝑛-bit strings with elements in 𝐹2𝑛

• 𝑃1 & 𝑃2 share random elements 𝑟1 ∈ 𝐹2𝑛 ∖ {0} & 𝑟2 ∈ 𝐹2𝑛

1. 𝑃1 and 𝑃2 send 𝑚1 = 𝑟1𝑥 + 𝑟2 and 𝑚2 = 𝑟1𝑦 + 𝑟2, respectively

2. 𝑅 outputs 1 iff 𝑚1 = 𝑚2

(correctness) The output of the referee is 𝐸𝑄(𝑥, 𝑦)
(security) There is an algorithm (simulator) that given 
𝐸𝑄(𝑥, 𝑦) as input, produces the messages to the referee



PSM for (2-party) Equality

• 𝐸𝑄𝑛 𝑥, 𝑦 =  
1 (𝑥 = 𝑦)
0 (𝑥 ≠ 𝑦)

• PSM for 𝐸𝑄𝑛(𝑥, 𝑦)
• Identifies 𝑛-bit strings with elements in 𝐹2𝑛

• 𝑃1 & 𝑃2 share random elements 𝑟1 ∈ 𝐹2𝑛 ∖ {0} & 𝑟2 ∈ 𝐹2𝑛

1. 𝑃1 and 𝑃2 send 𝑚1 = 𝑟1𝑥 + 𝑟2 and 𝑚2 = 𝑟1𝑦 + 𝑟2, respectively

2. 𝑅 outputs 1 iff 𝑚1 = 𝑚2

• Simulator
• On input 1: Take 𝑟 ∈𝑅 𝐹2𝑛 and output (𝑟, 𝑟)

• On input 0: Take different 𝑟, 𝑟′ from 𝐹2𝑛 uniformly at random and output (𝑟, 𝑟′)

(correctness) The output of the referee is 𝐸𝑄(𝑥, 𝑦)
(security) There is an algorithm (simulator) that given 
𝐸𝑄(𝑥, 𝑦) as input, produces the messages to the referee



Results on PSM: Upper bounds

• Feige, Kilian & Naor (1994)
• Proposal of PSM model

• 2-party PSM for “any” Boolean function with exponential CC 

• Ishai & Kushilevitz (1997)
• Efficient 𝑘-party PSM for any #𝐿 function

• Many other PSM protocols for specific functions



Results on PSM: Lower bounds

• Feige, Kilian & Naor (1994)
• Proposal of PSM model

• 2-party PSM for “any” Boolean function with exponential CC 

• Ishai & Kushilevitz (1997)
• Efficient 𝑘-party PSM for any #𝐿 function

• Many other PSM protocols for specific functions

• Applebaum, Holenstein, Mishra & Shayevitz (2020)

• 3 − 𝑜 1 𝑛 lower bounds of 2-party PSM for 2𝑛-input random functions

• If no privacy requirement, trivial upper bound = 2𝑛

Implies privacy essentially requires additional communication cost!



Our model: PSQM model
• PSQM (Private Simultaneous Quantum Message)

(correctness) The output of the referee is 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘) (with probability 1)

(security) There is a quantum algorithm (simulator) that given 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘) as input, 
produces the quantum messages to the referee

𝑅

𝑃1 𝑃2 𝑃𝑘

Input 𝑥1 ∈ 0,1 𝑛 Input 𝑥2 ∈ 0,1 𝑛 Input 𝑥𝑘 ∈ 0,1 𝑛

Output
𝑓(𝑥1, 𝑥2, … , 𝑥𝑘)

shared randomness 

quantum messages

𝑄𝐶𝐶0
𝑝𝑠𝑚

𝑓 ≔CC of PSQM for 𝑓

Q. Is there any non-trivial 
lower bounds?



Our Result (1): 2-party case

• Applebaum, Holenstein, Mishra & Shayevitz (2020)

• 3 − 𝑜 1 𝑛 lower bounds of 2-party PSM for 2𝑛-input random functions

• If no privacy requirement, trivial upper bound = 2𝑛

Implies privacy essentially requires additional communication cost!

Result 1: For 1 − 𝑜(1) fraction of functions 𝑓: 0,1 𝑛 × 0,1 𝑛 → 0,1 , 
𝑄𝐶𝐶0

𝑝𝑠𝑚
𝑓 ≥ 3 − 𝑜 1 𝑛

• 3 − 𝑜 1 𝑛 lower bounds of 2-party PSQM for 2𝑛-input random functions



Our Result (1): 2-party case

• Applebaum, Holenstein, Mishra & Shayevitz (2020)

• 3 − 𝑜 1 𝑛 lower bounds of 2-party PSM for 2𝑛-input random functions

• If no privacy requirement, trivial upper bound = 2𝑛

Implies privacy essentially requires additional communication cost!

Result 1: For 1 − 𝑜(1) fraction of functions 𝑓: 0,1 𝑛 × 0,1 𝑛 → 0,1 , 
𝑄𝐶𝐶0

𝑝𝑠𝑚
𝑓 ≥ 3 − 𝑜 1 𝑛

• 3 − 𝑜 1 𝑛 lower bounds of 2-party PSQM for 2𝑛-input random functions

• Quantum extension of the combinatorial argument by Applebaum et al

• Run the PSM protocol twice, and consider the collision probability Pr[𝑚1 = 𝑚2]
of the two messages

• Pr 𝑚1 = 𝑚2 ≥ 1/|message domain|

• Analyze an upper bound of 𝑃 𝑚1 = 𝑚2



PSQM model with shared entanglement
• PSQM (Private Simultaneous Quantum Message)

(correctness) The output of the referee is 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) (with probability 1)

(security) There is a quantum algorithm (simulator) that given 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) as input, 
produces the quantum messages to the referee

𝑅

𝑃1 𝑃2 𝑃𝑘

Input 𝑥1 ∈ 0,1 𝑛 Input 𝑥2 ∈ 0,1 𝑛 Input 𝑥𝑘 ∈ 0,1 𝑛

Output
𝑓(𝑥1, 𝑥2, … , 𝑥𝑘)

shared entanglement

quantum messages

𝑄𝐶𝐶0
𝑝𝑠𝑚,∗

𝑓 ≔CC of PSQM with 
shared entanglement for 𝑓

Q. Are 𝑄𝐶𝐶0
𝑝𝑠𝑚

(𝑓) and 

𝑄𝐶𝐶0
𝑝𝑠𝑚,∗

(𝑓) different?



Shared randomness vs shared entanglement

Q. Are 𝑄𝐶𝐶
𝑝𝑠𝑚

(𝑓) and 𝑄𝐶𝐶
𝑝𝑠𝑚,∗

(𝑓) different?

For SMP model (=PSM with no security);

• There is a relation problem such that 𝐶𝐶𝑠𝑚𝑝,∗ is exponentially smaller than 
𝑄𝐶𝐶𝑠𝑚𝑝,𝑝𝑢𝑏 [GKRW09]

◎Bounded-error result & exponential gap

△Not a Boolean function

• There is a partial function such that 𝐶𝐶0
𝑠𝑚𝑝,∗

is exponentially smaller than 

𝐶𝐶0
𝑠𝑚𝑝

= 𝐶𝐶0
𝑠𝑚𝑝,𝑝𝑢𝑏

[BCT99]
△Exact case

○Partial Boolean function

◎Exponential gap



Our Result (2): 2-party case

• There is a partial function such that 𝐶𝐶0
𝑠𝑚𝑝,∗

is exponentially smaller 

than 𝐶𝐶0
𝑠𝑚𝑝

= 𝐶𝐶0
𝑠𝑚𝑝,𝑝𝑢𝑏

[BCT99]
△Exact case

○Partial Boolean function

◎Exponential gap

Result 2: There is a partial function such that 𝐶𝐶0
𝑝𝑠𝑚,∗

is exponentially 
smaller than 𝑄𝐶𝐶0

𝑠𝑚𝑝

• Uses the function in [BCT99] (distributed Deutsch-Jozsa function)

• 𝐷𝐽𝑛 𝑥, 𝑦 =  
1 (𝑥 = 𝑦)

0 (𝐻𝑎𝑚 𝑥, 𝑦 = 𝑛/2)

• Adds the security condition

• Shows the quantum SMP complexity lower bound 



Shared randomness vs shared entanglement

Q. Are 𝑄𝐶𝐶
𝑝𝑠𝑚

(𝑓) and 𝑄𝐶𝐶
𝑝𝑠𝑚,∗

(𝑓) different?

For SMP model (=PSM with no security);

• There is a relation problem such that 𝐶𝐶𝑠𝑚𝑝,∗ is exponentially smaller than 𝑄𝐶𝐶𝑠𝑚𝑝,𝑝𝑢𝑏 [GKRW09]

◎Bounded-error result & exponential gap

△Not a Boolean function

• There is a partial function such that 𝐶𝐶0
𝑠𝑚𝑝,∗

is exponentially smaller than 𝐶𝐶0
𝑠𝑚𝑝

[BCT99]

△Exact case

○Partial Boolean function

◎Exponential gap

• Total function 𝐸𝑄𝑛 has 𝑄𝐶𝐶0
𝑠𝑚𝑝

𝐸𝑄𝑛 = 2𝑛 and 𝑄𝐶𝐶0
𝑠𝑚𝑝,∗

𝐸𝑄𝑛 = 𝑛 [HSWCLS05]

△Exact case

◎Total Boolean function

△Not large gap (but the best known gap for total functions including in the bounded-error setting)



Our Result (3): 𝑘-party case

• Total function 𝐸𝑄𝑛 has 𝑄𝐶𝐶0
𝑠𝑚𝑝

𝐸𝑄𝑛 = 2𝑛 and 𝑄𝐶𝐶0
𝑠𝑚𝑝,∗

𝐸𝑄𝑛 = 𝑛
[HSWCLS05]

△Exact case

◎Total Boolean function

△Not large gap (but the best known gap for total functions including in the bounded-error setting)

Result 3: A 𝑘-party total function 𝐺𝐸𝑄𝑛(𝑥1, 𝑥2, … , 𝑥𝑘) (where 𝑥𝑖 ∈ 0,1 𝑛) has 

𝑄𝐶𝐶0
𝑝𝑠𝑚

𝐺𝐸𝑄𝑛 = 𝑘𝑛 and 𝑄𝐶𝐶0
𝑝𝑠𝑚,∗

𝐺𝐸𝑄𝑛 =
𝑘𝑛

2

• 𝐺𝐸𝑄𝑛 𝑥1, 𝑥2, … , 𝑥𝑘 = 1 iff  𝑗=1
𝑘 𝑥𝑗 𝑖

= 0 for all 𝑖 ∈ {1,2, … , 𝑛}

• 𝐺𝐸𝑄𝑛 𝑥1, 𝑥2 = 𝐸𝑄𝑛(𝑥1, 𝑥2)

• Multiparty extension of a protocol for 𝑄𝐶𝐶0
𝑠𝑚𝑝,∗

𝐸𝑄𝑛 + security

• Uses the cat state 
1

2
0𝑘 + 1𝑘 for two bits 



Simplest case: 𝑛 = 𝑘 = 2

PSQM protocol for 𝐸𝑄(𝑥1, 𝑥2)

• Shared: Ψ00 =
1

2
0 1 0 2 + 1 1 1 2) & 𝑟 ∈ 𝐹4

1. 𝑃𝑗 applies 𝑋 (𝑍, resp.) on register 𝑗 iff the 1st (2nd, 
resp) bit of 𝑟𝑥𝑗 is 1

2. 𝑃𝑗 sends register 𝑗 to 𝑅

3. 𝑅 measures registers 1 & 2 in the Bell basis 

Ψ𝑎𝑏 =
1

2
0 𝑎 + −1 𝑏 1 |1 − 𝑎⟩): 𝑎, 𝑏 ∈ {0,1} , 

and the result corresponds to Ψ00 iff 1 is 
outputed

1∖2 00 01 10 11

00 |Ψ00⟩ |Ψ01⟩ |Ψ10⟩ |Ψ11⟩

01 |Ψ01⟩ |Ψ00⟩ |Ψ11⟩ |Ψ10⟩

10 |Ψ10⟩ |Ψ11⟩ |Ψ00⟩ |Ψ01⟩

11 |Ψ11⟩ |Ψ10⟩ |Ψ01⟩ |Ψ00⟩
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• Setting
• SMP

• PSM

• Results

• Open problems



Open Problems (1)

Result 1: For 1 − 𝑜(1) fraction of functions 𝑓: 0,1 𝑛 × 0,1 𝑛 → 0,1 , 
𝑄𝐶𝐶0

𝑝𝑠𝑚
𝑓 ≥ 3 − 𝑜 1 𝑛

OPEN:

• Extension to the shared entanglement case

• Extension to the bounded-error case

• Extension to a relaxed security condition
• Simulator ⇒ Approximate simulator

• Shown in the classical case by Applebaum et al. (2020)

• Not well-studied even in the classical case



Open Problems (2)

Result 2: There is a partial function such that 𝐶𝐶0
𝑝𝑠𝑚,∗

is exponentially 
smaller than 𝑄𝐶𝐶0

𝑠𝑚𝑝

Result 3: A 𝑘-party total function 𝐺𝐸𝑄𝑛(𝑥1, 𝑥2, … , 𝑥𝑘) (where 𝑥𝑖 ∈ 0,1 𝑛) has 

𝑄𝐶𝐶0
𝑝𝑠𝑚

𝐺𝐸𝑄𝑛 = 𝑘𝑛 and 𝑄𝐶𝐶0
𝑝𝑠𝑚,∗

𝐺𝐸𝑄𝑛 =
𝑘𝑛

2

OPEN:

• Bounded-error & relaxed security cases

• ∃ relational problem 𝑅 [𝐶𝐶𝑝𝑠𝑚,∗ 𝑅 = 𝑂(log 𝑛) but 𝑄𝐶𝐶𝑝𝑠𝑚 𝑅 = Ω(
𝑛1/3

log 𝑛
)] [GKRW09]

• Bigger gaps for total functions (even in the SMP case)



Open Problems (3)

• 𝑄𝐶𝐶
𝑝𝑠𝑚

vs 𝐶𝐶𝑝𝑠𝑚

Cf. 𝑄𝐶𝐶𝑠𝑚𝑝 𝐸𝑄𝑛 = 𝑂(log 𝑛) but 𝐶𝐶𝑠𝑚𝑝 𝐸𝑄𝑛 = Θ( 𝑛)

• PSQM for “quantum” problems



THE END


