The APS index theorem, domain-wall fermions, and global anomaly inflow

Shinichiroh Matsuo

2021-06-21 11:00-11:50 JST
SUSTech-Nagoya workshop on Quantum Science
Nagoya University, Japan

This talk is based on joint works

- arXiv:1910.01987 appeared in Comm. Math. Phys. 380 (2020)
- arXiv:2012.03543
of three mathematicians and three physicists:
- Mikio Furuta
- Mayuko Yamashita
- Shinichiroh Matsuo
- Hidenori Fukaya
- Tetsuya Onogi
- Satoshi Yamaguchi

Main theorem

Theorem (FFMOYY, CMP 2020)

For $m \gg 0$, we have a formula

$$
\operatorname{Ind}_{\mathrm{APS}}\left(\left.D\right|_{X_{+}}\right)=\frac{\eta\left(D+m_{\kappa} \gamma\right)-\eta(D-m \gamma)}{2}
$$

- The Atiyah-Patodi-Singer index is expressed in terms of the η-invariant of domain-wall fermion Dirac operators.
- The original motivation comes from the bulk-edge correspondence of topological insulators in condensed matter physics and global anomaly inflow.
- The proof is based on a Witten localisation argument.
- We also have a formula for the mod-two APS index of real skew-adjoint operators. See arXiv:2012.03543.

Index and Eta

Let X be a closed manifold and $S \rightarrow X$ a hermitian bundle. Assume $\operatorname{dim} X$ is even. Assume S is $\mathbb{Z} / 2$-graded: there exists $\gamma: \Gamma(S) \rightarrow \Gamma(S)$ such that $\gamma^{2}=$ id $_{s}$.

$$
\gamma=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Let $D: \Gamma(S) \rightarrow \Gamma(S)$ be a 1st order elliptic differential operator. Assume D is odd and self-adjoint:

$$
D=\left(\begin{array}{cc}
0 & D_{-} \\
D_{+} & 0
\end{array}\right) \text { and } D_{-}=\left(D_{+}\right)^{*}
$$

Definition

$$
\begin{aligned}
\text { Ind } D: & =\operatorname{dim} \operatorname{Ker} D_{+}-\operatorname{dim} \operatorname{Ker} D_{-} \\
& =\operatorname{dim} \operatorname{Ker} D_{+}-\operatorname{dim} \text { Coker } D_{+}
\end{aligned}
$$

Fix $m \in \mathbb{R} \backslash\{0\}$ and consider

$$
D+m \gamma=\left(\begin{array}{cc}
m & D_{-} \\
D_{+} & -m
\end{array}\right): \Gamma(S) \rightarrow \Gamma(S)
$$

This is self-adjoint but no longer odd; thus, its spectrum is real but not symmetric around 0 . For $\operatorname{Re}(z) \gg 0$, let

$$
\eta(D+m \gamma)(z):=\sum_{\lambda_{j}} \frac{\operatorname{sign} \lambda_{j}}{\left|\lambda_{j}\right|^{2}}
$$

where $\left\{\lambda_{j}\right\}=\operatorname{Spec}(D+m \gamma)$. Note that $\lambda_{j} \neq 0$ for any j.

Definition

$$
\eta(D+m \gamma):=\eta(D+m \gamma)(0)
$$

The eta invariant describes the overall asymmetry of the spectrum of a self-adjoint operator.

Proposition

For any $m>0$, we have a formula

$$
\operatorname{lnd}(D)=\frac{\eta(D+m \gamma)-\eta(D-m \gamma)}{2}
$$

This formula might be unfamiliar; however, we can prove it easily, for example, by diagonalising D^{2} and γ simultaneously. We will explain another proof later.

We will generalise this formula to handle compact manifolds with boundary and the Atiyah-Patodi-Singer index.

Proposition

For any $m>0$, we have a formula

$$
\operatorname{lnd}(D)=\frac{\eta(D+m \gamma)-\eta(D-m \gamma)}{2}
$$

We will generalise this formula to handle compact manifolds with boundary and the Atiyah-Patodi-Singer index by using domain-wall fermion Dirac operators.

Theorem (FFMOYY, CMP 2020)
For $m \gg 0$, we have a formula

$$
\operatorname{Ind}_{\mathrm{APS}}\left(\left.D\right|_{X_{+}}\right)=\frac{\eta(D+m \kappa \gamma)-\eta(D-m \gamma)}{2}
$$

Next, we review the Atiyah-Patodi-Singer index.

The Atiyah-Patodi-Singer index

Let $Y \subset X$ be a separating submanifold that decomposes X into two compact manifolds X_{+}and X_{-}with common boundary Y. Assume Y has a collar neighbourhood isometric to $(-4,4) \times Y$.

$$
(-4,4) \times Y \subset X=X_{-} \bigcup_{Y} X_{+}
$$

Assume $S \rightarrow X$ and $D: \Gamma(S) \rightarrow \Gamma(S)$ are standard on $(-4,4) \times Y$ in the sense that there exists a hermitian bundle $E \rightarrow Y$ and a self-adjoint elliptic operator $A: \Gamma(E) \rightarrow \Gamma(E)$ such that $S=\mathbb{C}^{2} \otimes E$ and

$$
D=\left(\begin{array}{cc}
0 & D_{+}^{*} \\
D_{+} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \partial_{u}+A \\
-\partial_{u}+A & 0
\end{array}\right)
$$

on $(-4,4) \times Y$.

Assume also A has no zero eigenvalues.

Let $\widehat{X_{+}}:=(-\infty, 0] \times Y \cup X_{+}$.

We assumed D is translation invariant on $(-4,4) \times Y$:

$$
D=\left(\begin{array}{cc}
0 & D_{+}^{*} \\
D_{+} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \partial_{u}+A \\
-\partial_{u}+A & 0
\end{array}\right) .
$$

Thus, $\left.D\right|_{X_{+}}$naturally extends to $\widehat{X_{+}}$, which is denoted by \widehat{D}.
This is Fredholm if A has no zero eigenvalues.

Definition (Atiyah-Patodi-Singer index)

$$
\operatorname{Ind}_{\mathrm{APS}}\left(\left.D\right|_{X_{+}}\right):=\operatorname{Ind}(\widehat{D})
$$

Domain-wall fermion Dirac operators

Let $\kappa: X \rightarrow \mathbb{R}$ be a step function such that $\kappa \equiv \pm 1$ on $X_{ \pm}$.

Definition

For $m>0$,

$$
D+m_{\kappa \gamma}: \Gamma(S) \rightarrow \Gamma(S)
$$

is called a domain-wall fermion Dirac operator.
$D+m \kappa \gamma$ is self-adjoint but not odd.

Proposition

If $\operatorname{Ker} A=\{0\}$, then $\operatorname{Ker}(D+m \kappa \gamma)=\{0\}$ for $m \gg 0$.

Next we will define $\eta(D+m \kappa \gamma)$.

The eta invariant of domain-wall fermion Dirac operators

Since $\operatorname{Ker}(D+m \kappa \gamma)=\{0\}$, there exists a constant $C_{m}>0$ such that $\operatorname{Ker}(D+m \kappa \gamma+f)=\{0\}$ if $\|f\|_{2}<C_{m}$.

Corollary of the variational formula of the eta invariant Assume both $m \kappa \gamma+f_{1}$ and $m \kappa \gamma+f_{2}$ are smooth with $\left\|f_{1}\right\|_{2}<C_{m}$ and $\left\|f_{2}\right\|_{2}<C_{m}$. Then, we have

$$
\eta\left(D+m \kappa \gamma+f_{1}\right)=\eta\left(D+m \kappa \gamma+f_{2}\right) .
$$

Definition

For any f with $\|f\|_{2}<C_{m}$ and $m \kappa \gamma+f$ smooth, we set

$$
\eta(D+m \kappa \gamma):=\eta(D+m \kappa \gamma+f) .
$$

Main theorem

Main theorem

Theorem (FFMOYY, CMP 2020)

For $m \gg 0$, we have a formula

$$
\operatorname{Ind}_{\mathrm{APS}}\left(\left.D\right|_{X_{+}}\right)=\frac{\eta\left(D+m_{\kappa} \gamma\right)-\eta(D-m \gamma)}{2}
$$

- The Atiyah-Patodi-Singer index is expressed in terms of the η-invariant of domain-wall fermion Dirac operators.
- The original motivation comes from physics.
- The proof is based on a Witten localisation argument.

The proof of a toy model

Toy model

Proposition

For any $m>0$, we have a formula

$$
\operatorname{Ind}(D)=\frac{\eta(D+m \gamma)-\eta(D-m \gamma)}{2} .
$$

As a warm-up, we will prove this formula in the spirit of our proof of the main theorem.

Let $\widehat{\kappa}_{\mathrm{AS}}: \mathbb{R} \times X \rightarrow \mathbb{R}$ be a step function such that $\widehat{\kappa}_{\mathrm{AS}} \equiv 1$ on $(0, \infty) \times X$ and $\widehat{\kappa}_{\mathrm{AS}} \equiv-1$ on $(-\infty, 0) \times X$.

We consider $\widehat{D}_{m}: L^{2}(\mathbb{R} \times X ; S \oplus S) \rightarrow L^{2}(\mathbb{R} \times X ; S \oplus S)$ defined by

$$
\widehat{D}_{m}:=\left(\begin{array}{cc}
0 & \left(D+m \widehat{\kappa}_{\mathrm{AS}} \gamma\right)+\partial_{t} \\
\left(D+m \widehat{\kappa}_{\mathrm{AS}} \gamma\right)-\partial_{t} & 0
\end{array}\right)
$$

This is a Fredholm operator.

Model case: the Jackiw-Rebbi solution on \mathbb{R}

For any $m>0$, we have

$$
\frac{d}{d t} e^{-m|t|}=-m \operatorname{sgn} e^{-m|t|}
$$

where $\operatorname{sgn}(\pm t)= \pm 1$. As $m \rightarrow \infty$, the solution concentrates at 0 .

$$
\left(\begin{array}{cc}
0 & \partial_{t}+m \operatorname{sgn} \\
-\partial_{t}+m \operatorname{sgn} & 0
\end{array}\right)\binom{0}{e^{-m|t|}}=\binom{0}{0} .
$$

$$
\widehat{D}_{m}:=\left(\begin{array}{cc}
0 & \left(D+m \widehat{\kappa}_{\mathrm{AS}} \gamma\right)+\partial_{t} \\
\left(D+m \widehat{\kappa}_{\mathrm{AS}} \gamma\right)-\partial_{t} & 0
\end{array}\right)
$$

Proposition (Product formula)

$$
\operatorname{Ind}(D)=\operatorname{Ind}\left(\widehat{D}_{m}\right)
$$

Assume $D \phi=0$. Set $\phi_{ \pm}:=(\phi \pm \gamma \phi) / 2$. Then, we have

$$
\left(\begin{array}{cc}
0 & \left(D+m \widehat{\kappa}_{\mathrm{AS}} \gamma\right)+\partial_{t} \\
\left(D+m \widehat{\kappa}_{\mathrm{AS}} \gamma\right)-\partial_{\mathrm{t}} & 0
\end{array}\right)\binom{e^{-m|t|} \phi_{-}}{e^{-m|t|} \phi_{+}}=0 .
$$

$$
\widehat{D}_{m}:=\left(\begin{array}{cc}
0 & \left(D+m \widehat{\kappa}_{\mathrm{AS}} \gamma\right)+\partial_{t} \\
\left(D+m \widehat{\kappa}_{\mathrm{AS}} \gamma\right)-\partial_{t} & 0
\end{array}\right)
$$

Proposition (APS formula)

$$
\operatorname{Ind}\left(\widehat{D}_{m}\right)=\frac{\eta(D+m \gamma)-\eta(D-m \gamma)}{2}
$$

- Note that $D+m \widehat{\kappa}_{\mathrm{AS}}(\pm 1, \cdot) \gamma=D \pm m \gamma$.
- Perturb $\widehat{\kappa}_{\text {AS }}$ slightly near $\{0\} \times X$ to get a smooth operator.
- Use the Atiyah-Patodi-Singer index theorem on $\mathbb{R} \times X$.
- Since $\operatorname{dim} \mathbb{R} \times X$ is odd, the constant term in the asymptotic expansion of the heat kernel vanishes.

Proposition

$$
\begin{gathered}
\operatorname{lnd}(D)=\frac{\eta(D+m \gamma)-\eta(D-m \gamma)}{2} \\
\widehat{D}_{m}:=\left(\begin{array}{cc}
0 & \left(D+m \widehat{\kappa}_{A S} \gamma\right)+\partial_{t} \\
\left(D+m \widehat{\kappa}_{A S} \gamma\right)-\partial_{t} & 0
\end{array}\right)
\end{gathered}
$$

By the product formula, we have

$$
\operatorname{Ind}(D)=\operatorname{Ind}\left(\widehat{D}_{m}\right)
$$

By the APS formula, we have

$$
\operatorname{Ind}\left(\widehat{D}_{m}\right)=\frac{\eta(D+m \gamma)-\eta(D-m \gamma)}{2}
$$

The proof of the main theorem

Outline of the proof

Theorem (FFMOYY, CMP 2020)
For $m \gg 0$, we have a formula

$$
\operatorname{Ind}_{\mathrm{APS}}\left(\left.D\right|_{X_{+}}\right)=\frac{\eta(D+m \kappa \gamma)-\eta(D-m \gamma)}{2} .
$$

The proof is modelled on the original embedding proof of the Atiyah-Singer index theorem.

1. Embed $\widehat{X_{+}}$into $\mathbb{R} \times X$.
2. Extend both \widehat{D} on $\widehat{X_{+}}$and $D+m \kappa \gamma$ on $\{10\} \times X$ to $\mathbb{R} \times X$.
3. Use the product formula, the APS formula, and a Witten localisation argument.

Embedding of $\widehat{X_{+}}$into $\mathbb{R} \times X$

$$
\widehat{X_{+}}:=(-\infty, 0] \times Y \cup X_{+} .
$$

We can embed $\widehat{X_{+}}$into $\mathbb{R} \times X$ as follows:

Extension of \widehat{D} and $D+m_{\kappa \gamma}$ to $\mathbb{R} \times X$

$(\mathbb{R} \times X) \backslash \widehat{X_{+}}$has two connected components. We denote by $(\mathbb{R} \times X)_{-}$the one containing $\{-10\} \times X_{+}$and by $(\mathbb{R} \times X)_{+}$the other half. Let $\widehat{\kappa}_{\text {APS }}: \mathbb{R} \times X \rightarrow[-1,1]$ be a step function such that $\widehat{\kappa}_{\text {APS }} \equiv \pm 1$ on $(\mathbb{R} \times X)_{ \pm}$.

We consider

$$
\widehat{\mathcal{D}}_{m}:=\left(\begin{array}{cc}
0 & \left(D+m \widehat{\kappa}_{\mathrm{APS}} \gamma\right)+\partial_{t} \\
\left(D+m \widehat{\kappa}_{\mathrm{APS}} \gamma\right)-\partial_{t} & 0
\end{array}\right) .
$$

$$
\widehat{\mathcal{D}}_{m}:=\left(\begin{array}{cc}
0 & \left(D+m \widehat{\kappa}_{\mathrm{APS}} \gamma\right)+\partial_{t} \\
\left(D+m \widehat{\kappa}_{\mathrm{APS}} \gamma\right)-\partial_{t} & 0
\end{array}\right)
$$

$$
\widehat{\kappa}_{\mathrm{APS}} \equiv \kappa \text { on }\{10\} \times X
$$

Proposition (APS formula)

$$
\operatorname{Ind}\left(\widehat{\mathcal{D}}_{m}\right)=\frac{\eta(D+m \kappa \gamma)-\eta(D-m \gamma)}{2}
$$

$$
\widehat{\mathcal{D}}_{m}:=\left(\begin{array}{cc}
0 & \left(D+m \widehat{\kappa}_{\mathrm{APS}} \gamma\right)+\partial_{t} \\
\left(D+m \widehat{\kappa}_{\mathrm{APS}} \gamma\right)-\partial_{t} & 0
\end{array}\right) .
$$

The restriction of $\widehat{\mathcal{D}}_{m}$ to a tubular neighbourhood of $\widehat{X_{+}}$is isomorphic to

$$
\left(\begin{array}{cc}
0 & (\widehat{D}+m \operatorname{sgn} \gamma)+\partial_{t} \\
(\widehat{D}+m \operatorname{sgn} \gamma)-\partial_{t} & 0
\end{array}\right)
$$

on $\mathbb{R} \times \widehat{X_{+}}$near $\{0\} \times \widehat{x_{+}}$, where \widehat{D} is the extension of $\left.D\right|_{x_{+}}$to $\widehat{X_{+}}$.

Witten localisation

Theorem (Witten localisation)

For $m \gg 0$, we have

$$
\operatorname{Ind}\left(\widehat{\mathcal{D}}_{m}\right)=\operatorname{Ind}\left(\begin{array}{cc}
0 & (\widehat{D}+m \operatorname{sgn} \gamma)+\partial_{t} \\
(\widehat{D}+m \operatorname{sgn} \gamma)-\partial_{t} & 0
\end{array}\right)
$$

The proof is too technical to state here, but the idea is simple.

$$
\left(\begin{array}{cc}
0 & \partial_{t}+m \operatorname{sgn} \\
-\partial_{t}+m \operatorname{sgn} & 0
\end{array}\right)\binom{0}{e^{-m|t|}}=\binom{0}{0} .
$$

Proposition (Product formula)

$$
\text { Ind }\left(\begin{array}{cc}
0 & (\widehat{D}+m \operatorname{sgn} \gamma)+\partial_{t} \\
(\widehat{D}+m \operatorname{sgn} \gamma)-\partial_{t} & 0
\end{array}\right)=\operatorname{lnd}(\widehat{D})
$$

Theorem (FFMOYY, CMP 2020)

For $m \gg 0$, we have a formula

$$
\operatorname{Ind}_{\mathrm{APS}}\left(\left.D\right|_{X_{+}}\right)=\frac{\eta(D+m \kappa \gamma)-\eta(D-m \gamma)}{2}
$$

By definition, we have $\operatorname{Ind}_{\text {APS }}\left(\left.D\right|_{X_{+}}\right)=\operatorname{Ind}(\widehat{D})$.
By the product formula, we have

$$
\operatorname{Ind}(\widehat{D})=\operatorname{Ind}\left(\begin{array}{cc}
0 & (\widehat{D}+m \operatorname{sgn} \gamma)+\partial_{t} \\
(\widehat{D}+m \operatorname{sgn} \gamma)-\partial_{t} & 0
\end{array}\right) .
$$

By the Witten localisation argument, for $m \gg 0$, we have

$$
\operatorname{Ind}\left(\begin{array}{cc}
0 & (\widehat{D}+m \operatorname{sgn} \gamma)+\partial_{t} \\
(\widehat{D}+m \operatorname{sgn} \gamma)-\partial_{t} & 0
\end{array}\right)=\operatorname{Ind}\left(\widehat{\mathcal{D}}_{m}\right) .
$$

By the APS formula, we have

$$
\operatorname{Ind}\left(\widehat{\mathcal{D}}_{m}\right)=\frac{\eta\left(D+m_{\kappa} \gamma\right)-\eta\left(D-m_{\gamma}\right)}{2}
$$

