Quantum Communication Complexity of Distribution Testing

François Le Gall
Graduate School of Mathematics Nagoya University

joint work with Aleksandrs Belovs, Arturo Castellanos, Guillaume Malod and Alexander Sherstov

SUSTech-Nagoya workshop

 22 June 2021
Classical Distribution Testing

\checkmark Consider two probability distributions p, q over $\{1, \ldots, n\}$
\checkmark We are given access only to a limited number of samples of each distribution
\checkmark Decide if the distributions satisfy some property or are far from satisfying the

1 sample from p : "i" with probability $\mathrm{p}(\mathrm{i})$
1 sample from q: "j" with probability $q(j)$

Closeness testing (11-norm version)
Decide if $\mathrm{p}=\mathrm{q}$ or $\|\mathrm{p}-\mathrm{q}\|_{1} \geq \varepsilon$

$$
\|\mathrm{p}-\mathrm{q}\|_{1}=\sum_{i=1}^{n}|\mathrm{p}(\mathrm{i})-\mathrm{q}(\mathrm{i})|
$$

(Assumption: the case $0<\|p-q\|_{1}<\varepsilon$ never happens)
Closeness testing (I2-norm version)
Decide if $\mathrm{p}=\mathrm{q}$ or $\|\mathrm{p}-\mathrm{q}\|_{2} \geq \varepsilon$

$$
\|\mathrm{p}-\mathrm{q}\|_{2}=\sqrt{\sum_{i=1}^{n}|\mathrm{p}(\mathrm{i})-\mathrm{q}(\mathrm{i})|^{2}}
$$

(Assumption: the case $0<\|\mathrm{p}-\mathrm{q}\|_{2}<\varepsilon$ never happens)
Today I will mainly consider the case where ε is a small constant (e.g., $\varepsilon=1 / 100$)

Classical Distribution Testing

\checkmark Consider two probability distributions p, q over $\{1, \ldots, n\}$
\checkmark We are given access only to a limited number of samples of each distribution
\checkmark Decide if the distributions satisfy some property or are far from satisfying the property

1 sample from p : "i" with probability $\mathrm{p}(\mathrm{i})$
1 sample from q: "j" with probability $q(j)$
$\Theta\left(n^{2 / 3}\right)$ samples from p and $\Theta\left(n^{2 / 3}\right)$ samples from q Sample complexity: $\Theta\left(n^{2 / 3}\right)$
(for ε constant)
Upper bound: [Batu, Fortnow, Rubinfeld, Smith, White 2000] Lower bound: [Valiant 2008]
Tight bounds for small ε : [Chan, Diakonikolas, Valiant, Valiant 2014] [Diakonikolas and Kane 2016]
Closeness testing (I2-norm version) Decide if $\mathrm{p}=\mathrm{q}$ or $\|\mathrm{p}-\mathrm{q}\|_{2} \geq \varepsilon$
(Assumption: the case $0<\|\mathrm{p}-\mathrm{q}\|_{2}<\varepsilon$ never happens)

Sample complexity: $\Theta(1)$
More precisely: $\Theta\left(1 / \varepsilon^{2}\right)$ samples
[Chan, Diakonikolas, Valiant, Valiant 2014]

Today I will mainly consider the case where ε is a small constant (e.g., $\varepsilon=1 / 100$)

Hardest Case I1-Norm Closeness Testing

Claim: distinguishing between the two cases requires $\Theta\left(n^{2 / 3}\right)$ samples

Classical Distribution Testing

\checkmark Consider two probability distributions p, q over $\{1, \ldots, n\}$
\checkmark We are given access only to a limited number of samples of each distribution
\checkmark Decide if the distributions satisfy some property or are far from satisfying the property

1 sample from p : "i" with probability $\mathrm{p}(\mathrm{i})$
1 sample from q: "j" with probability $q(j)$
$\Theta\left(n^{2 / 3}\right)$ samples from p and $\Theta\left(n^{2 / 3}\right)$ samples from q Sample complexity: $\Theta\left(n^{2 / 3}\right)$
(for ε constant)
Upper bound: [Batu, Fortnow, Rubinfeld, Smith, White 2000] Lower bound: [Valiant 2008]
Tight bounds for small ε : [Chan, Diakonikolas, Valiant, Valiant 2014] [Diakonikolas and Kane 2016]
Closeness testing (I2-norm version) Decide if $\mathrm{p}=\mathrm{q}$ or $\|\mathrm{p}-\mathrm{q}\|_{2} \geq \varepsilon$
(Assumption: the case $0<\|\mathrm{p}-\mathrm{q}\|_{2}<\varepsilon$ never happens)

Sample complexity: $\Theta(1)$
More precisely: $\Theta\left(1 / \varepsilon^{2}\right)$ samples
[Chan, Diakonikolas, Valiant, Valiant 2014]

Today I will mainly consider the case where ε is a small constant (e.g., $\varepsilon=1 / 100$)

Quantum Distribution Testing

quantum sample ("purified quantum query-access")
1 quantum sample from p : one copy of the quantum state $\sum_{i=1}^{n} \sqrt{\mathrm{p}(i)}|i\rangle$
1 quantum sample from q : one copy of the quantum state $\sum_{i=1}^{n} \sqrt{q(i)}|i\rangle$

Main criticism: it does not look "fair" to compare classical and quantum learning theories since this concept of quantum sample looks much stronger

Closeness testing (11-norm version) \longrightarrow Sample complexity: $\Theta\left(\mathrm{n}^{2 / 3}\right)$ (for ε constant) Decide if $\mathrm{p}=\mathrm{q}$ or $\|\mathrm{p}-\mathrm{q}\|_{1} \geq \varepsilon$
(Assumption: the case $0<\|\mathrm{p}-\mathrm{q}\|_{1}<\varepsilon$ never happens)
Closeness testing (I2-norm version)
Decide if $\mathrm{p}=\mathrm{q}$ or $\|\mathrm{p}-\mathrm{q}\|_{2} \geq \varepsilon$
(Assumption: the case $0<\|p-q\|_{2}<\varepsilon$ never happens) Quantum sample complexity:
$\Theta\left(n^{1 / 2}\right)$ quantum samples (for constant) [Montanaro 2015], [Gilyen and Li 2020]
\Longrightarrow Sample complexity: $\Theta(1)$
More precisely: $\Theta\left(1 / \varepsilon^{2}\right)$ samples
Quantum sample complexity:
$\Theta(1 / \varepsilon)$ quantum samples
[Montanaro 2015], [Gilyen and Li 2020]

Quantum Distribution Testing

This work: Quantum Distribution Testing with Classical Samples

Main criticism: it does not look "fair" to compare classical and quantum learning theories since this concept of quantum sample looks much stronger

Closeness testing (11-norm version)
Decide if $p=q$ or $\|p-q\|_{1} \geq \varepsilon$
(Assumption: the case $0<\|\mathrm{p}-\mathrm{q}\|_{1}<\varepsilon$ never happens)
Closeness testing (I2-norm version)
Decide if $p=q$ or $\|p-q\|_{2} \geq \varepsilon$
(Assumption: the case $0<\|p-q\|_{2}<\varepsilon$ never happens)

Classical Communication Complexity of Distribution Testing

Closeness testing (11-norm version)
Decide if $\mathrm{p}=\mathrm{q}$ or $\|\mathrm{p}-\mathrm{q}\|_{1} \geq \varepsilon$
[Andoni, Malkin and Nosatzki 2019] studied the communication complexity of this problem

How many bits of communication do Alice and Bob need
to exchange in order to solve the problem? \quad ift $\approx \mathrm{n}^{23 \mathrm{~s}}$, then we do the same as for the trivial protocol
\checkmark Nothing can be done if $t=o\left(n^{2 / 3}\right)$
\checkmark Trivial protocol: Alice sends all its samples to Bob
\checkmark if t is larger (e.g., $\mathrm{t} \approx \mathrm{n}$), then Alice and Bob can learn from themselves a good approximation of p and q, and then use a protocol specific to these p and q

- Solves the problem if $t=\Omega\left(n^{2 / 3}\right)$
- Uses $O(t \log n)$ bits of communication (each sample can/be encoded by $O(\log n)$ bits)

Theorem [Andoni, Malkin and Nosatzki 2019]

For any $t \in\left[\Omega\left(\mathrm{n}^{2 / 3}\right), \mathrm{n}\right]$, this/problem can be solved with high probability using $\tilde{O}\left((n / t)^{2}\right)$ bits of communication. This upper bound is tight.

Quantum Communication Complexity of Distribution Testing

Closeness testing (11-norm version)
Decide if $\mathrm{p}=\mathrm{q}$ or $\|\mathrm{p}-\mathrm{q}\|_{1} \geq \varepsilon$
[Andoni, Malkin and Nosatzki 2019] studied the communication complexity of this problem

Our result:
For any $\mathrm{t} \in\left[\Omega\left(\mathrm{n}^{2 / 3}\right), \mathrm{n}\right]$, when $\min \left(\|\mathrm{p}\|_{2},\|\mathrm{q}\|_{2}\right)=\mathrm{O}(\mathrm{t} / \mathrm{n})$ this problem can be solved with high probability using $\mathrm{O}(\mathrm{n} / \mathrm{t})$ qubits of communication. This upper bound is tight.
quadradic improvement for low-norm distributions

Theorem [Andoni, Malkin and Nosatzki 2019]

For any $t \in\left[\Omega\left(\mathrm{n}^{2 / 3}\right), \mathrm{n}\right]$, this problem can be solved with high probability using $O\left((n / t)^{2}\right)$ bits of communication. This upper bound is tight.

Occurrence Vectors

Consider t samples of the distribution $\mathrm{p}:\{1, \ldots, \mathrm{n}\} \rightarrow[0,1]$
For each $i \in\{1, \ldots n\}$, let X_{i} be the number of samples corresponding to element i.
The vector $X=\left(X_{1}, X_{2}, \ldots X_{n}\right) \in\{0,1, \ldots, t\}^{n}$ is called the occurrence vector of these samples.
example: $\mathrm{n}=5$, samples " 1 ", " 3 ", " 1 ", " 2 ", " 5 ", " 3 " $\longrightarrow X=(2,1,2,0,1)$

Theorem (informal) [Chan, Diakonikolas, Valiant, Valiant 2014]
Let X denote the occurrence vector of the t samples of p, and let Y denote the occurrence vector of the t samples of q. When $t=\Omega\left(n^{2 / 3}\right)$ and $\min \left(\|p\|_{2},\|q\|_{2}\right)=O(t / n)$, with high probability a good approximation of $\|\mathrm{X}-\mathrm{Y}\|_{2}$ gives a good approximation of $\|\mathrm{p}-\mathrm{q}\|_{2}$.

How to use this technique?
To decide if $\|p-q\|_{1}=0$ or $\|p-q\|_{1} \geq \varepsilon$, decide if $\|p-q\|_{2}=0$ or $\|p-q\|_{2} \geq \varepsilon / \sqrt{n}$

Classical Protocol (for the case $\left.\min \left(\|p\|_{2},\|q\|_{2}\right)=O(t / n)\right)$

input: t classical samples from p

Bob
input: t classical samples from q

Classical Protocol for Distribution Closeness Testing from [AMN19]
1: Fix $\alpha=\Theta\left(\frac{t \epsilon^{2}}{n}+1\right)$;
2: Alice and Bob each estimate $\|p\|_{2}$ and $\|q\|_{2}$ up to a factor 2 ; if the two estimates are not within a factor 4 , output " ϵ-FAR";
3: Alice and Bob approximate $\Delta=\|X-Y\|_{2}^{2}$ up to a $(1+\alpha)$ factor using standard techniques;
$\widetilde{O}\left(1 / \alpha^{2}\right)=\widetilde{O}\left(\left(n / t \varepsilon^{2}\right)^{2}\right)$
bits of communication

4: If Δ is less than $\tau=\frac{\epsilon^{2} t^{2}}{2 n}+2 t$ output "SAME", and otherwise output " ϵ-FAR";
Theorem (informal) [Chan, Diakonikolas, Vali Valiant 2014]
Let X denote the occurrence vector of the t samples of p, and let Y denote the occurrence vector of the t samples of q. When $t=\Omega\left(n^{2 / 3}\right)$
holds: for any ctly distinguish and $\min \left(\|p\|_{2},\|q\|_{2}\right)=O(t / n)$, with high probability a good
 that costs $O\left((n / t)^{2}\right)$ bits of communication
How tpheathis Afrorriquazal and Nosatzki 2019]
decide if $\|p-q\|_{2}=0$ or $\|p-q\|_{2} \geq \varepsilon / \sqrt{n}$

Quantum Protocol (for the case $\left.\min \left(\|p\|_{2},\|q\|_{2}\right)=O(t / n)\right)$

Alice

input: t classical
samples from p

Bob

input: t classical samples from q

Quantum Protocol for Distribution Closeness Testing
1: Fix $\alpha=\Theta\left(\frac{t \epsilon^{2}}{n}+1\right)$;
2: Alice and Bob each estimate $\|p\|_{2}$ and $\|q\|_{2}$ up to a factor 2; if the two estimates are not within a factor 4 , output " ϵ-FAR";
3: Alice and Bob approximate $\Delta=\|X-Y\|_{2}^{2}$ up to a $(1+\alpha)$ factor using a quantum protocol;
4: If Δ is less than $\tau=\frac{\epsilon^{2} t^{2}}{2 n}+2 t$ output "SAME", and otherwise output " ϵ-FAR";
$\widetilde{O}(1 / a)=\widetilde{O}\left(\left(n / \varepsilon^{2}\right)\right)$
qubits of communication $\theta\left(1 / a^{2}\right)=O\left(\left(n / t \varepsilon^{2}\right)^{2}\right)$ bits of communication

Theorem 3. [AMN19] There exists an absolute constant γ_{0} such that the following holds: for any input distributions p and q such that $\min \left(\|p\|_{2},\|q\|_{2}\right) \leq \gamma_{0} t \epsilon^{2} / n$, the above protocol correctly distinguish between the case $p=q$ and the case $\|p-q\|_{1} \geq \epsilon$ with probability at least 2/3.

Our result:

For any $\mathrm{t} \in\left[\Omega\left(\mathrm{n}^{2 / 3}\right), \mathrm{n}\right]$, when $\min \left(\|\mathrm{p}\|_{2},\|\mathrm{q}\|_{2}\right)=\mathrm{O}(\mathrm{t} / \mathrm{n})$ this problem can be solved with high probability using $\tilde{O}(\mathrm{n} / \mathrm{t})$ qubits of communication. This upper bound is tight.

Quantum Protocol for ($1+\alpha$)-Approximation of $\|\mathrm{X}-\mathrm{Y}\|_{2}^{2}$

Alice

input: vector $X \in\{0,1, \ldots, t\}^{n}$

Bob

```
input:
vector Y \in{0,1,\ldots,t}n
```

Goal: for a given precision parameter $\alpha \in[0,1]$, compute a real number d such that

$$
(1-\alpha)\|X-Y\|_{2}^{2} \leq d \leq(1+\alpha)\|X-Y\|_{2}^{2} .
$$

Idea: use the AMS technique [Alon, Matias, Szegedy 1999]
Consider a family of $O\left(n^{2}\right)$ functions $h_{i}:\{1, \ldots, n\} \rightarrow\{-1,1\}$ that are 4-wise independent.
for any $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right),\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right) \in\{1, \ldots, \mathrm{n}\} \times\{-1,1\}$

$$
\underset{i}{\operatorname{Pr}}\left[h_{i}\left(x_{1}\right)=y_{1} \wedge h_{i}\left(x_{2}\right)=y_{2} \wedge h_{i}\left(x_{3}\right)=y_{3} \wedge h_{i}\left(x_{4}\right)=y_{4}\right]=1 / 16
$$

Quantum Protocol for (1+ 1)-Approximation of $\|X-Y\|_{2}^{2}$

Write $\mathrm{f}(\mathrm{i})=\left(\sum_{j=1}^{n} \mathrm{~h}_{\mathrm{i}}(j) \cdot\left(\mathrm{X}_{j}-Y_{j}\right)\right)^{2} \quad \mathbb{E}[\mathrm{f}(\mathrm{i})]=\underset{E}{\mathbb{E}}[\underbrace{h_{i}(1)^{2}}_{1}\left(X_{1}-Y_{1}\right)^{2}+\underbrace{h_{i}(1) h_{i}(2)}_{0 \text { on average }}\left(X_{1}-Y_{1}\right)\left(X_{2}-Y_{2}\right)+\cdots]$
Theorem ([Alon, Matias, Szegedy 1999])
If i is taken uniformly at random: $\mathbb{E}[f(\mathrm{i})]=\|\mathrm{X}-\mathrm{Y}\|_{2}^{2}$ and $\operatorname{Var}[\mathrm{f}(\mathrm{i})] \leq 2\|\mathrm{X}-\mathrm{Y}\|_{2}^{4}$
Idea: use the AMS technique [Alon, Matias, Szegedy 1999]
Consider a family of $O\left(n^{2}\right)$ functions $h_{i}:\{1, \ldots, n\} \rightarrow\{-1,1\}$ that are 4-wise independent.
for any $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right),\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right) \in\{1, \ldots, \mathrm{n}\} \times\{-1,1\}$

$$
\underset{\mathrm{i}}{\operatorname{Pr}}\left[\mathrm{~h}_{\mathrm{i}}\left(\mathrm{x}_{1}\right)=\mathrm{y}_{1} \wedge \mathrm{~h}_{\mathrm{i}}\left(\mathrm{x}_{2}\right)=\mathrm{y}_{2} \wedge \mathrm{~h}_{\mathrm{i}}\left(\mathrm{x}_{3}\right)=\mathrm{y}_{3} \wedge \mathrm{~h}_{\mathrm{i}}\left(\mathrm{x}_{4}\right)=\mathrm{y}_{4}\right]=1 / 16
$$

Quantum Protocol for (1+ 1)-Approximation of $\|X-Y\|_{2}^{2}$

Alice

input:
vector $X \in\{0,1, \ldots,\}^{\text {n }}$

Bob

```
input:
vector Y \in{0,1,\ldots,t}n
```

Write $\mathrm{f}(\mathrm{i})=\left(\sum_{j=1}^{n} \mathrm{~h}_{\mathrm{i}}(j) \cdot\left(\mathrm{X}_{j}-\mathrm{Y}_{j}\right)\right)^{2}$

Theorem ([Alon, Matias, Szegedy 1999])

If i is taken uniformly at random: $\mathbb{E}[f(\mathrm{i})]=\|\mathrm{X}-\mathrm{Y}\|_{2}^{2}$ and $\operatorname{Var}[\mathrm{f}(\mathrm{i})] \leq 2\|\mathrm{X}-\mathrm{Y}\|_{2}^{4}$

Standard Classically, taking $\Theta\left(1 / \alpha^{2}\right)$ values of i and outputting the mean of $f(i)$ gives an techniques $(1+\alpha)$-approximation of $\|X-Y\|_{2}^{2}$ with high probability

Montanaro 2016 (based on quantum amplitude estimation)

There is a quantum algorithm that makes $\Theta(1 / \alpha)$ calls to the function $f(i)$ and outputs a $(1+\alpha)$-approximation of $\|X-Y\|_{2}^{2}$ with high probability

$$
1 \text { call to } f=O(\log n) \text { qubits of communication }
$$

Quantum Protocol (for the case $\left.\min \left(\|p\|_{2},\|q\|_{2}\right)=O(t / n)\right)$

Alice

input: t classical
samples from p

input: t classical samples from q

Quantum Protocol for Distribution Closeness Testing
1: Fix $\alpha=\Theta\left(\frac{t \epsilon^{2}}{n}+1\right)$;
2: Alice and Bob each estimate $\|p\|_{2}$ and $\|q\|_{2}$ up to a factor 2; if the two estimates are not within a factor 4 , output " ϵ-FAR";
3: Alice and Bob approximate $\Delta=\|X-Y\|_{2}^{2}$ up to a $(1+\alpha)$ factor using a quantum protocol;
4: If Δ is less than $\tau=\frac{\epsilon^{2} t^{2}}{2 n}+2 t$ output "SAME", and otherwise output " ϵ-FAR";
$\widetilde{O}(1 / a)=\widetilde{O}\left(\left(n / \varepsilon^{2}\right)\right)$
qubits of communication $\theta\left(1 / a^{2}\right)=O\left(\left(n / t \varepsilon^{2}\right)^{2}\right)$
bits of communication

Theorem 3. [AMN19] There exists an absolute constant γ_{0} such that the following holds: for any input distributions p and q such that $\min \left(\|p\|_{2},\|q\|_{2}\right) \leq \gamma_{0} \epsilon^{2} / n$, the above protocol correctly distinguish between the case $p=q$ and the case $\|p-q\|_{1} \geq \epsilon$ with probability at least 2/3.

Our result:
For any $\mathrm{t} \in\left[\Omega\left(\mathrm{n}^{2 / 3}\right), \mathrm{n}\right]$, when $\min \left(\|\mathrm{p}\|_{2},\|\mathrm{q}\|_{2}\right)=\mathrm{O}(\mathrm{t} / \mathrm{n})$ this problem can be solved with high probability using $\tilde{O}(\mathrm{n} / \mathrm{t})$ qubits of communication. This upper bound is tight.

Quantum Communication Complexity of Distribution Testing

Closeness testing (11-norm version)
Decide if $\mathrm{p}=\mathrm{q}$ or $\|\mathrm{p}-\mathrm{q}\|_{1} \geq \varepsilon$
[Andoni, Malkin and Nosatzki 2019] studied the communication complexity of this problem

Our result:
For any $\mathrm{t} \in\left[\Omega\left(\mathrm{n}^{2 / 3}\right), \mathrm{n}\right]$, when $\min \left(\|\mathrm{p}\|_{2},\|\mathrm{q}\|_{2}\right)=\mathrm{O}(\mathrm{t} / \mathrm{n})$ this problem can be solved with high probability using $\widetilde{O}(n / t)$ qubits of communication. This upper bound is tight.
quadradic improvement for low-norm distributions

Theorem [Andoni, Malkin and Nosatzki 2019]

For any $\mathrm{t} \in\left[\Omega\left(\mathrm{n}^{2 / 3}\right), \mathrm{n}\right]$, this problem can be solved with high probability using $\widetilde{O}\left((n / t)^{2}\right)$ bits of communication. This upper bound is tignt.

Conclusions and Open Problem

Closeness testing (11-norm version)
Decide if $\mathrm{p}=\mathrm{q}$ or $\|\mathrm{p}-\mathrm{q}\|_{1} \geq \varepsilon$
in the framework of communication complexity
\checkmark We showed that there exists a quadratic gap between the classical and quantum communication complexity for small norm distributions
\checkmark Our quantum protocol is optimal: we can prove a matching lower bound by a reduction from the gap Hamming distance using a version of the pattern matrix method tailored for partial functions
\checkmark Since all samples are classical samples (only the communication is quantum), this shows a quantum advantage for "quantum learning theory" with classical samples
\checkmark Main question: can we get a quantum advantage when the distributions have large norm?

Interesting Research Directions

Secure Protocols

[Andoni, Malkin and Nosatzki 2019] show how to convert their classical protocols into secure protocols. Can we do the same for our quantum protocols?

Other Properties

[Andoni, Malkin and Nosatzki 2019] also consider Independence Testing. Can we design quantum protocols for this problem as well?

Alice and Bob receive t samples of the distribution $p:\{1, \ldots, n\} \times\{1, \ldots, n\} \rightarrow[0,1]$

$$
\left(a_{1}, b_{1}\right), \ldots,\left(a_{t}, b_{t}\right)
$$

input:
$a_{1}, a_{2}, \ldots, a_{t}$

Alice and Bob should decide if p is a product distribution of far from any product distribution What about closeness testing with other norms (e.g., $p=q$ or $\|p-q\|_{p} \geq \varepsilon$ for $p \in(1,2)$)?

Quantum Properties?

What is the communication complexity of the following problem: given many copies of a bipartite quantum state ρ, Alice and Bob should decide if ρ is a product state or far from any product state.

