2016 年度後期 数理物理学 II/数理物理学概論 II 11 月 28 日分のレポート問題 *1

理学部 A-441 号室 柳田伸太郎

yanagida [at] math.nagoya-u.ac.jp

以下の問題、または過去のレポート問題のうち解いていないものから 1 題以上を選んで、解いて提出して下さい。 期限は次回 12 月 5 日 (月) の講義までです。

講義で分からなかった所、扱ってほしい話題などありましたらレポートに書いて下さい。

代数的な概念に慣れていない人のための問題

代数的な概念に不慣れな方の問題です。今日は 512 の表現論に関するものです。

レポート問題 $\mathbf{1}$ (** Lie 代数 \mathfrak{sl}_n). n を 2 以上の整数とする。複素数成分の n 次正方行列であって trace が 0 のもの全体のなす集合を \mathfrak{sl}_n と書く。

- (1) \mathfrak{sl}_n が交換子積 [X,Y]:=XY-YX に関して $\mathbb C$ 上の Lie 代数になることを示せ。
- (2) $E_{i,j}$ で (i,j) 成分が 1, 他の成分が 0 の n 次正方行列 (行列単位と呼ばれる) を表す。 \mathfrak{sl}_n は Lie 代数として

$$e_i := E_{i,i+1}, \quad f_i := E_{i+1,i}, \quad h_i := E_{i,i} - E_{i+1,i+1} \qquad (i = 1, \dots, n-1)$$

達で生成されることを示せ。

(3) 上の生成元達が以下の関係式を満たすことを確認せよ。

$$[h_i, h_j] = 0, \quad [h_i, e_j] = a_{i,j} e_j, \quad [h_i, f_j] = -a_{i,j} f_j, \quad [e_i, f_j] = \delta_{i,j} h_i \qquad (i, j = 1, \dots, n-1),$$

$$(\operatorname{ad} e_i)^{-a_{i,j}+1}(e_j) = 0, \quad (\operatorname{ad} f_i)^{-a_{i,j}+1}(f_j) = 0 \qquad (i, j = 1, \dots, n-1, i \neq j).$$
(1)

但し $\delta_{i,j}$ は Kronecker デルタ。また $a_{i,j}$ は次で与えられる。

$$a_{i,i} = 2, \quad a_{i,i\pm 1} = -1, \quad a_{i,j} = 0 \ (|j-i| > 1).$$
 (2)

そして ad は次で与えられる。

$$(\operatorname{ad} x)(y) := [x, y], \quad (\operatorname{ad} x)^{n+1}(y) := [x, (\operatorname{ad} x)^n(y)].$$

(4) A 型の Dynkin 図形とは何か (必要なら調べて) 説明せよ。上記の $a_{i,j}$ との関係にも言及すること。

レポート問題 $\mathbf{2}$ (** \mathfrak{sl}_2 の有限次元既約表現). この問題では $\mathbb C$ 上の Lie 代数 \mathfrak{sl}_2 を考える。問題 1(2) の生成元を添え字を省略して e,f,h と書くすることにする。

- (1) $\mathfrak{sl}_2=\mathbb{C}e\oplus\mathbb{C}h\oplus\mathbb{C}f$ が \mathfrak{sl}_2 の三角分解を与えることを確認せよ。また \mathfrak{sl}_2 の普遍包絡代数 $U(\mathfrak{sl}_2)$ の PBW 基底を $(1\ \mathfrak{o})$ 挙げよ。
- (2) $\lambda \in \mathbb{C}$ に対し $M(\lambda)$ で \mathfrak{sl}_2 の Verma 加群を表す。即ち

$$ev_{\lambda} = 0, \quad hv_{\lambda} = \lambda v_{\lambda}$$

を満たすベクトル (最高ウェイト元) $v_\lambda\in M(\lambda)$ があり、そして f を m 回作用させて得られるベクトルを f^mv_λ と書けば線形空間としては $M(\lambda)=\oplus_{m>0}\mathbb{C} f^mv_\lambda$ と書ける。h の f^mv_λ への作用を計算せよ。

- (3) $\lambda \in \mathbb{Z}_{\geq 0}$ の場合 $M(\lambda)$ の元 $s_{\lambda} := f^{\lambda+1}v_{\lambda}$ が特異ベクトルであること、即ち $es_{\lambda} = 0$ であることを示せ。
- (4) $M(\lambda)$ は $\lambda \notin \mathbb{Z}_{\geq 0}$ なら既約であることを示せ。
- (5) $\lambda \in \mathbb{Z}_{\geq 0}$ の場合に $L(\lambda) := M(\lambda)/U(\mathfrak{sl}_2)s_\lambda$ と定める。すると線形空間としては $L(\lambda) = \bigoplus_{n=0}^{\lambda} \mathbb{C} f^n v_\lambda$ と書けること、また \mathfrak{sl}_2 表現として既約であることを示せ。(即ち $L(\lambda)$ は $M(\lambda)$ の既約商である。)
- (6) $n=0,\ldots,\lambda$ に対し $w_n:=f^nv_\lambda\in L(\lambda)$ と略記する。(5) より $\{w_0,\ldots,w_\lambda\}$ は $L(\lambda)$ の基底である。この基底に関する e,h,f の作用が以下のようになることを確認せよ (n<0 または $n>\lambda$ なら $w_n:=0$ とする)。

$$ew_n = n(\lambda - n + 1)w_{n-1}, \quad hw_n = (\lambda - 2n)w_n, \quad fw_n = w_{n+1}.$$

^{*1 2016/11/26} 版, ver. 1.0

通常問題

レポート問題 ${f 3}$ (* Heisenberg 頂点代数). Heisenberg 頂点代数 π の任意の元 A について $Y(A,z) \, |0\rangle = A + O(z)$ が成立することを確かめよ。

レポート問題 4 (** Heisenberg 頂点代数の conformal vector). $\omega_{\lambda} := \left(a_{-1}^2/2 + \lambda a_{-2}\right)|0\rangle \in \pi_0$ が中心電荷 $c_{\lambda} := 1 - 12\lambda^2$ の conformal vector であること、即ち

$$Y(\omega_{\lambda}, z) = \sum_{n \in \mathbb{Z}} \widetilde{L}_n z^{-n-2}$$

と展開したときに $\{\widetilde{L}_n \mid n \in \mathbb{Z}\}$ がVirasoro代数の定義関係式

$$[L_m, L_n] = (m-n)L_{m+n} + c_{\lambda}(m^3 - m)\delta_{m,n}/12$$

を満たすことを確認せよ。

レポート問題 **5** (★★★ Clifford 頂点代数). ↑ が conformal vertex superalgebra の構造を持つこと (定理 4.3.2) を 証明せよ。

レポート問題 $\mathbf{6}$ (** lattice vertex algebra). $V_{\mathbb{Z}} = \bigoplus_{n \in \mathbb{Z}} V_n$ の parity $(\mathbb{Z}/2\mathbb{Z})$ 次数付け) は以下のように与えることができる。

$$p(v) := n^2 \mod 2 \quad (v \in \pi_n).$$

このことを以下の手順で確認せよ。

(1) 頂点作用素 $V_n(z)=Y(\ket{n},z)$ に現れるシフト作用素 $S_n:\pi_m o \pi_{n+m}$ に関して、局所性の条件から

$$S_m S_n = (-1)^{p(|m\rangle)p(|n\rangle) + mn} S_n S_m$$

となることを導け。

(2) それが上記の parity と整合的であることを確認せよ。

以上です。