$\mathit{SL}_2(\mathbb{F}_q)$ の表現論

山口 航平 3月8日 木曜日

Outline

目標

 $SL_2(\mathbb{F}_q)$ の標数 0 の体 K 上の既約指標を分類し計算する.

[Reference] Representations of $SL_2(\mathbb{F}_a)$, Cédric Bonnafé, Springer, 2011

目標

 $SL_2(\mathbb{F}_q)$ の標数 0 の体 K 上の既約指標を分類し計算する.

① $G = SL_2(\mathbb{F}_q)$ の共役類.

[Reference] Representations of $SL_2(\mathbb{F}_a)$, Cédric Bonnafé, Springer, 2011

目標

 $SL_2(\mathbb{F}_q)$ の標数 0 の体 K 上の既約指標を分類し計算する.

- ① $G = SL_2(\mathbb{F}_a)$ の共役類.
- Harish-Chandra 誘導.

[Reference] Representations of $SL_2(\mathbb{F}_q)$, Cédric Bonnafé, Springer, 2011

目標

 $SL_2(\mathbb{F}_q)$ の標数 0 の体 K 上の既約指標を分類し計算する.

- $G = SL_2(\mathbb{F}_a)$ の共役類.
- Harish-Chandra 誘導.
- 3 既約指標を計算.

[Reference] Representations of $SL_2(\mathbb{F}_q)$, Cédric Bonnafé, Springer, 2011

• $q := p^n(p は奇素数)$, \mathbb{F}_q :位数 q の体.

- $q := p^n(p は奇素数)$, \mathbb{F}_q :位数 q の体.
- $G = SL_2(\mathbb{F}_q)$.

- $q := p^n(p は奇素数)$, \mathbb{F}_q :位数 q の体.
- $G = SL_2(\mathbb{F}_q)$.
- $B = \left\{ \left(\begin{smallmatrix} a & x \\ 0 & a^{-1} \end{smallmatrix} \right) \middle| a \in \mathbb{F}_q^{\times}, x \in \mathbb{F}_q \right\}$,(ボレル部分群)

- $q := p^n(p は奇素数)$, \mathbb{F}_q :位数 q の体.
- $G = SL_2(\mathbb{F}_q)$.
- $B = \{\begin{pmatrix} a & x \\ 0 & a^{-1} \end{pmatrix} | a \in \mathbb{F}_q^{\times}, x \in \mathbb{F}_q \}$,(ボレル部分群)
- $T = \left\{ d(a) = \left(\begin{smallmatrix} a & 0 \\ 0 & a^{-1} \end{smallmatrix} \right) \in G \middle| a \in \mathbb{F}_a^{\times} \right\}, (分裂トーラス)$

- $q := p^n(p は奇素数)$, \mathbb{F}_a :位数 q の体.
- $G = SL_2(\mathbb{F}_a)$.
- $B = \{\begin{pmatrix} a & x \\ 0 & a^{-1} \end{pmatrix} | a \in \mathbb{F}_q^{\times}, x \in \mathbb{F}_q \}, (ボレル部分群)$
- $T = \{d(a) = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \in G | a \in \mathbb{F}_a^{\times} \}$,(分裂トーラス)

- $q := p^n(p は奇素数)$, \mathbb{F}_a :位数 q の体.
- $G = SL_2(\mathbb{F}_a)$.
- $B = \{\begin{pmatrix} a & x \\ 0 & a^{-1} \end{pmatrix} | a \in \mathbb{F}_q^{\times}, x \in \mathbb{F}_q \}$,(ボレル部分群)
- $T = \{d(a) = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \in G | a \in \mathbb{F}_a^{\times} \}$,(分裂トーラス)
- $\bullet \ \mu_n := \{ x \in \overline{\mathbb{F}_p^{\times}} | x^n = 1 \}$

- $q := p^n(p は奇素数)$, \mathbb{F}_q :位数 q の体.
- $G = SL_2(\mathbb{F}_q)$.
- $B = \{\begin{pmatrix} a & x \\ 0 & a^{-1} \end{pmatrix} | a \in \mathbb{F}_q^{\times}, x \in \mathbb{F}_q \}$,(ボレル部分群)
- $T = \{d(a) = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \in G | a \in \mathbb{F}_a^{\times} \}, (分裂トーラス)$
- $\mu_n := \{ x \in \overline{\mathbb{F}_p^{\times}} | x^n = 1 \}$
- $d': \mu_{q+1} \hookrightarrow \mathbb{F}_{q^2}^{\times} \hookrightarrow \operatorname{Aut}_{\mathbb{F}_q}(\mathbb{F}_{q^2}) \xrightarrow{\sim} GL_2(\mathbb{F}_q)$ $T':=d'(\mu_{q+1}) \subset SL_2(\mathbb{F}_q)$ (非分裂トーラス)

Conjugacy Classes of G

$SL_2(\mathbb{F}_q)$ の共役類

Gの共役類

- ±I₂ (単位行列)
- ② $\pm u(1), \pm u(z_0)$ (冪単)
- **③** $d(a), a \in [\mu_{a-1} \setminus \{\pm 1\} / \equiv]$ (分裂トーラス)
- **③** $d'(\xi), \xi \in [\mu_{g+1} \setminus \{\pm 1\}/ \equiv]$ (非分裂トーラス)
- (注) z_0 は \mathbb{F}_q^{\times} における非平方数.
- ' \equiv 'は同値関係 $x \equiv y \stackrel{def}{\Longleftrightarrow} y \in \{x, x^{-1}\}$ とする.

Harish-Chandar induction

● *KG*, *KT* はそれぞれ *G*, *T* の *K* 上の群環.

- *KG*, *KT* はそれぞれ *G*, *T* の *K* 上の群環.
- KG mod, KT mod はそれぞれ KG, KT 加群の圏.

山口 航平 $SL_2(\mathbb{F}_q)$ の表現論 3月8日 木曜日 5/12

- *KG*, *KT* はそれぞれ *G*, *T* の *K* 上の群環.
- KG mod, KT mod はそれぞれ KG, KT 加群の圏.
- K[G/U] は左 G 右 T 加群.

山口 航平 $SL_2(\mathbb{F}_q)$ の表現論 3月8日 木曜日 5/12

- *KG*, *KT* はそれぞれ *G*, *T* の *K* 上の群環.
- KG mod, KT mod はそれぞれ KG, KT 加群の圏.
- K[G/U] は左 G 右 T 加群.
- K[G/U]* = K[U\G] は左 T 右 G 加群.

- *KG*, *KT* はそれぞれ *G*, *T* の *K* 上の群環.
- KG mod, KT mod はそれぞれ KG, KT 加群の圏.
- K[G/U] は左 G 右 T 加群.
- $K[G/U]^* = K[U \setminus G]$ は左 T 右 G 加群.

Harish-Chandra 誘導, 制限の定義

$$\mathscr{R}_K \colon KT - \operatorname{mod} \longrightarrow KG - \operatorname{mod}, \quad (V \longmapsto K[G/U] \otimes_{KT} V)$$

 $*\mathscr{R}_K \colon KG - \operatorname{mod} \longrightarrow KT - \operatorname{mod}, \quad (W \longmapsto K[U \setminus G] \otimes_{KG} W)$

Mackey Fomula

Mackey 公式

- $\mathscr{K}_0(KG)$, $\mathscr{K}_0(KT)$ は Grothendiek 群. (指標群と同一視できる)
- *Irr(T)*, *Irr(G)* はそれぞれ *T*, *G* の既約指標全体の集合.

指標群の Harish-Chandra 誘導. 制限

R:
$$\mathcal{K}_0(KT) \longrightarrow \mathcal{K}_0(KG)$$
 $([V]_T \longmapsto [K[G/U] \otimes_{KT} V]_G)$
*R: $\mathcal{K}_0(KG) \longrightarrow \mathcal{K}_0(KT)$ $([W]_G \longmapsto [K[U \setminus G] \otimes_{KG} W]_T)$

Mackey 公式

- $\mathscr{K}_0(KG)$, $\mathscr{K}_0(KT)$ は Grothendiek 群. (指標群と同一視できる)
- *Irr(T)*, *Irr(G)* はそれぞれ *T*, *G* の既約指標全体の集合.

指標群の Harish-Chandra 誘導. 制限

R:
$$\mathcal{K}_0(KT) \longrightarrow \mathcal{K}_0(KG)$$
 $([V]_T \longmapsto [K[G/U] \otimes_{KT} V]_G)$
*R: $\mathcal{K}_0(KG) \longrightarrow \mathcal{K}_0(KT)$ $([W]_G \longmapsto [K[U \setminus G] \otimes_{KG} W]_T)$

Mackey 公式

 $\alpha \in Irr(T) \subset \mathcal{K}_0(KT)$ とする。このとき *R(R(α)) = $\alpha + \alpha^{-1}$ が成り立つ。

Irreducible Representation

 $\alpha \in Irr(T)$ を固定する.

 $\alpha \in Irr(T)$ を固定する.

• $\alpha^2 \neq 1$ とする. $\langle R(\alpha), R(\alpha) \rangle_G = 1$ であるから $R(\alpha) \in Irr(G)$.

 $\alpha \in Irr(T)$ を固定する.

- $\alpha^2 \neq 1$ とする. $\langle R(\alpha), R(\alpha) \rangle_G = 1$ であるから $R(\alpha) \in Irr(G)$.
- $\alpha = \alpha_0$,(位数 2 の指標) とする. $\langle R(\alpha), R(\alpha) \rangle_G = 2$ となり, $R(\alpha_0) = R_+(\alpha_0) + R_-(\alpha_0)$ ($R_+(\alpha_0) \in Irr(G)$).

 $\alpha \in Irr(T)$ を固定する.

- $\alpha^2 \neq 1$ とする. $\langle R(\alpha), R(\alpha) \rangle_G = 1$ であるから $R(\alpha) \in Irr(G)$.
- $\alpha = \alpha_0$,(位数 2 の指標) とする. $\langle R(\alpha), R(\alpha) \rangle_G = 2$ となり, $R(\alpha_0) = R_+(\alpha_0) + R_-(\alpha_0)$ ($R_\pm(\alpha_0) \in Irr(G)$).
- $\alpha = 1_T$ とする. $\langle R(1_T), R(1_T) \rangle_G = 2$ となり $R(1_T)$ が 1_G を含んでいることから $R(1_T) = 1_G + St_G$, $(St_G \in Irr\ G)$. St_G を **Steinberg** 指標という.

Calculation of Character

指標公式

Harish-Chandra 誘導の指標公式

$$\alpha \in \mathcal{K}_0(KT)$$
 をとる。このとき $g \in G$ に対して $\mathrm{R}(\alpha)(g) = \frac{1}{|T|} \sum_{t \in T} \mathrm{Tr}\left((g,t), K[G/U]\right) \alpha(t^{-1})$ が成り立つ。

(注)Tr(
$$(g,t)$$
, $K[G/U]$) = # $\{xU \in G/U | gxtU = xU\}$

 $R(\alpha), \alpha^2 \neq 1$ の値は指標公式により簡単に計算できる.

Calculation of Character

$St_G(g)$ の計算

山口 航平

$St_G(g)$ の計算

• 指標公式より $\mathrm{R}(1_T)(g) = \frac{1}{|T|} \sum_{t \in T} \mathrm{Tr}_{K[G/U]}(g,t)$

 $SL_2(\mathbb{F}_q)$ の表現論

$St_G(g)$ の計算

- 指標公式より $\mathrm{R}(1_T)(g) = \frac{1}{|T|} \sum_{t \in T} \mathrm{Tr}_{K[G/U]}(g,t)$
- $\mathrm{R}(1_T)(g)$ は $K[\mathbb{P}^1(\mathbb{F}_q)]$ に g を作用させたときの固定点の数である.

山口 航平 $SL_2(\mathbb{F}_q)$

9 / 12

$St_G(g)$ の計算

- 指標公式より $\mathrm{R}(1_T)(g) = \frac{1}{|T|} \sum_{t \in T} \mathrm{Tr}_{K[G/U]}(g,t)$
- $\mathrm{R}(1_T)(g)$ は $K[\mathbb{P}^1(\mathbb{F}_q)]$ に g を作用させたときの固定点の数である.
- 共役類ごと $cg \cdot v = \lambda \cdot v$ であるような $[v] \in \mathbb{P}^1(\mathbb{F}_q)$ を数える.

山口 航平

 $SL_2(\mathbb{F}_q)$ の表現論

$St_G(g)$ の計算

- 指標公式より $\mathrm{R}(1_T)(g) = \frac{1}{|T|} \sum_{t \in T} \mathrm{Tr}_{K[G/U]}(g,t)$
- $\mathrm{R}(1_T)(g)$ は $K[\mathbb{P}^1(\mathbb{F}_q)]$ に g を作用させたときの固定点の数である.
- 共役類ごとに $g \cdot v = \lambda \cdot v$ であるような $[v] \in \mathbb{P}^1(\mathbb{F}_q)$ を数える.
- $St_G(g) = R(1_T)(g) 1$ である.

山口 航平

Calculation of Character

$R_{\pm}(\alpha_0)(g)$ の計算

$$R_{\pm}(\alpha_0)(g)$$
 の性質 g が対角化可能ならば $R_{\pm}(\alpha_0)(g) = \frac{1}{2}R(\alpha_0)(g)$

 $SL_2(\mathbb{F}_q)$ の表現論

10 / 12

$R_{\pm}(\alpha_0)(g)$ の計算

$$R_{\pm}(\alpha_0)(g)$$
 の性質

$$g$$
 が対角化可能ならば $R_{\pm}(lpha_0)(g)=rac{1}{2}R(lpha_0)(g)$

 $\mathbf{R}_{\pm}(\alpha_0)$ の Uへの制限

$$\mathbf{u}(x) \in U$$
 をとる. このとき

$$R_{\pm}(\alpha_{0})(\mathbf{u}(x)) = 1 + \Upsilon_{+}(\mathbf{u}(x)) + \Upsilon_{-}(\mathbf{u}(x))$$
 である. ただし

- $\Upsilon_+: U \longrightarrow K, \mathbf{u}(x) \longmapsto \sum_{c:square} \chi_+(cx)$
- $\Upsilon_-: U \longrightarrow K, \mathbf{u}(x) \longmapsto \sum_{c:nonsquare} \chi_+(cx)$
- χ_+ は \mathbb{F}_a の加法指標 $(\chi_+(a+b) = \chi_+(a)\chi_+(b))$

山口 航平

 $SL_2(\mathbb{F}_a)$ の表現論

Calculation of Character

$\Upsilon_{\pm}(u_{\pm})$ の計算

命題 (ガウス和の2乗)

$$\gamma := \sum_{z \in \mathbb{F}_q^\times} \alpha_0(z) \chi_+(z)$$
 とおくと $\gamma^2 = \alpha_0(-1)q$

(注) 以後
$$\gamma = \sqrt{\alpha_0(-1)q}$$
 とかく.

$\Upsilon_+(u_\pm)$ の計算

命題 (ガウス和の2乗)

$$\gamma := \sum_{z \in \mathbb{F}_q^{\times}} \alpha_0(z) \chi_+(z)$$
 とおくと $\gamma^2 = \alpha_0(-1)q$

(注) 以後
$$\gamma = \sqrt{\alpha_0(-1)q}$$
 とかく.

系
$$(\Upsilon_+(u_\pm), \Upsilon_-(u_\pm)$$
 の値)

$$\Upsilon_{+}(u_{\pm}) = \frac{-1 \pm \sqrt{\alpha_{0}(-1)q}}{2}, \Upsilon_{-}(u_{\pm}) = -\frac{1 \pm \sqrt{\alpha_{0}(-1)q}}{2}$$

Character Table

$SL_2(\mathbb{F}_q)$ の指標表

Table 1: $G = SL_2(\mathbb{F}_q)$ の指標表

g	$\pm I_2$	d(a)	$d'(\xi)$	$\pm u_{ au}$
		$a\in \mathbb{F}_q^ imesackslash\{\pm 1\}$	$\xi \in \mu_{q+1} \backslash \{\pm 1\}$	$\tau \in \{\pm\}$
1_G	1	1	1	1
$R(\alpha), \alpha^2 \neq 1$	$(q+1)\alpha(\pm 1)$	$\alpha(a) + \alpha(a^{-1})$	0	$\alpha(\pm 1)$
St_G	q	1	-1	0
$R_{\sigma}(\alpha_0), \sigma \in \{\pm\}$	$\frac{(q+1)\alpha_0(\pm 1)}{2}$	$\alpha_0(a)$	0	$\alpha_0(\pm 1)^{\frac{1+\sigma\tau\sqrt{q\alpha_0(-1)}}{2}}$
$R'(\theta), \theta^2 \neq 1$	$(q-1) heta(\pm 1)$	0	$-\theta(\xi) - \theta(\xi)^{-1}$	$- heta(\pm 1)$
$R'_{\sigma}(\theta_0), \sigma \in \{\pm\}$	$\frac{(q-1)\theta_0(\pm 1)}{2}$	0	$-\theta_0(\xi)$	$\theta_0(\pm 1) \frac{-1 + \sigma \tau \sqrt{q \alpha_0(-1)}}{2}$

 $R'(\theta), R'_{+}(\theta_0)$ は Deligne-Lusztig 誘導から得られる既約指標.