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Introduction

By recent research developments, the notion of tensor category has been rec-
ognized as a fundamental language in describing quantum symmetry, which can
replace the traditional method of groups for investigating symmetry.

The terminology of tensor category is used here as a synonym of linear monoidal
category and hence it has a good affinity with semigroup. One way to incorporate
the invertibility axiom of groups is to impose rigidity (or duality) on tensor cate-
gories, which will be our main standpoint in what follows.

When a tensor category bears a finite group symmetry inside, it is an interesting
problem to produce a new tensor category by taking quotients with respect to this
inner symmetry. For quantum symmetries of rational conformal field theory, this
kind of constructions are worked out in a direct and individual way with respect to
finite cyclic groups.

In our previous works, these specific constructions are organized by interpret-
ing them as bimodule tensor categories for the symmetry of finite groups with a
satisfactory duality on bimodule extensions [12]. The construction is afterward gen-
eralized to the symmetry of tensor categories governed by finite-dimensional Hopf
algebras [13].

We shall present in this paper a further generalization to symmetries described
by categorical Frobenius algebras, which are formulated and utilized by J. Fuchs and
C. Schweigert for a mathematical description of boundary conditions in conformal
field theory [3] (see [5] for earlier studies on categorical Frobenius structures). A
similar notion has been introduced under the name of Q-systems by R. Longo in
connection with subfactory theory ([6], cf. also [9]). More precisely, a Q-system, if
it is algebraically formulated, is equivalent to giving a Frobenius algebra satisfying
a certain splitting condition, which is referred to as a special Frobenius algebra
according to the terminology in [3].
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Since our viewpoint here is that Q-systems (or special Frobenius algebras)
should play the role of group algebras in classical symmetries, we first give an
autonomic status to categorical Frobenius algebras as algebraic systems, which
enables us to introduce the dual Frobenius algebras without assuming background
tensor categories, together with a satisfactory duality on Frobenius algebras.

On the other hand, if Frobenius algebras are realized inside a tensor category
T, it is fundamental to consider bimodule extensions of T and we shall generalize
the duality result on bimodule extensions to symmetries specified by categorical
Frobenius algebras.

More precisely, given a special Frobenius algebra A realized inside a tensor
category T, we show the existence of a natural imbedding of the dual Frobenius
algebra B of A into the tensor category ATA of A-A bimodules in T. The duality
for bimodule extensions is then formulated so that the second bimodule extension
B(ATA)B of B-B bimodules in ATA is naturally isomorphic (monoidally equivalent)
to the starting tensor category T.

The author is greatful to A. Masuoka and M. Müger for helpful communications
on the subject during the preparation of this article.

Convention: By a tensor category over a field K, we shall mean a K-linear cat-
egory together with a compatible monoidal structure. If semisimplicty is involved,
we assume that K is an algebraically closed field of zero characteristic.

Since we are primarily interested in the use for quantum symmetry, we shall not
discriminate tensor categories as long as they provide the equivalent information;
we shall implicitly assume the strictness of associativity as well as the saturation
under taking direct sums and subobjects for example.

For basic categorical definitions, we refer to the standard text [8].

1 Monoidal Algebras

Let T be a strict tensor category over a field K and assume that End(I) = K1I

for the unit object I. Given an object X in T, set

Am,n = Hom(X⊗n, X⊗m)

for non-negative integers m, n. The family {Am,n}m,n≥0 is then a block system
of algebra in the sense that A = ⊕m,n≥0Am,n is an algebra satisfying Ak,lAm,n ⊂
δl,mAk,n and A0,0 = K. Denote the unit of An by 1n.

The tensor product in the category T defines a bilinear map

Ak,l ×Am,n � f × g �→ f ⊗ g ∈ Ak+m,l+n

such that
1. the unit 10 of A0 satisfies 10 ⊗ f = f ⊗ 10 = f ,
2. the tensor product is associative; (f ⊗ g) ⊗ h = f ⊗ (g ⊗ h) and
3. compatible with the composition; (f ⊗ g)(f ′ ⊗ g′) = (ff ′) ⊗ (gg′).
A block system of algebra is called a monoidal algebra according to Kazhdan

and Wenzl [4] (though they use this terminology in a more restricted meaning) if it
is furnished with the operation of taking tensor products which satisfies the above
conditions.

Conversely, given a monoidal algebra A, we define a tensor category A in the
following way; objects in A are parametrized by non-negative integers and the hom-
set Hom(m,n) is the vector space An,m with the composition of morphisms given
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by the multiplication in the algebra A. The tensor product operation in A is the
one naturally induced from that of monoidal algebra. If the monoidal algebra A is
associated to an object X in a tensor category T, the tensor category A associated
to A is monoidally equivalent to the tensor category generated by X .

If the starting tensor category is semisimple, the monoidal algebra is locally
semisimple in the sense that for any finite subset F of non-negative integers, the
subalgebra ⊕i,j∈FAi,j is semisimple. Conversely, a locally semisimple monoidal
algebra A gives rise to a semisimple tensor category A as the Karoubian envelope
of A: an object in A is a pair (n, e) of an integer n ≥ 0 and an idempotent e in An

with hom-sets defined by

Hom((m, e), (n, f)) = fAn,me.

The operation of tensor product is given by

(m, e)⊗ (n, f) = (m+ n, e⊗ f)

on objects.
A similar construction works for bicategories as well; consider a (strict) bicate-

gory of two objects {1, 2} for example and choose objectsX , Y in the hom-categories
Hom(2, 1), Hom(1, 2) respectively. By using the tensor product notation for the
composition in the bicategory, we have the four systems of block algebras

Am,n = Hom((X ⊗ Y )⊗n, (X ⊗ Y )⊗m),

Bm+1,n+1 = Hom((X ⊗ Y )⊗n ⊗X, (X ⊗ Y )⊗m ⊗X),

Cm+1,n+1 = Hom(Y ⊗ (X ⊗ Y )⊗n, Y ⊗ (X ⊗ Y )⊗m),

Dm,n = Hom((Y ⊗X)⊗n, (Y ⊗X)⊗m)

(note that (X ⊗Y )⊗n ⊗X = X ⊗ (Y ⊗X)⊗n are alternating tensor products of X
and Y ) with the operation of tensor product among them applied in a 2× 2-matrix
way,

Am,m′ ⊗Bn,n′ ⊂ Bm+n,m′′+n′′ ,

Bm,m′ ⊗Dn,n′ ⊂ Bm+n,m′+n′ ,

Cm,m′ ⊗An,n′ ⊂ Cm+n,m′+n′ ,

Dm,m′ ⊗ Cn,n′ ⊂ Cm+n,m′+n′ ,

Bm,m′ ⊗ Cn,n′ ⊂ Am+n−1,m′+n′−1,

Cm,m′ ⊗Bn,n′ ⊂ Dm+n−1,m′+n′−1,

which satisfies the associativity and multiplicativity (and the unit condition for
tensor products involving A0 orD0) exactly as in the definition of monoidal algebra.

Conversely, given such an algebraic system, we can recover a (two-object) bi-
category together with off-diagonal objects X and Y in an obvious way.

We can also talk about isomorphisms of monoidal algebras or their bicategorical
counterparts, which exactly correspond to isomorphisms between associated tensor
categories or bicategories.

2 Frobenius Algebras

It would be just a formal business to formulate axioms of algebraic systems
in terms of categorical languages such as monoids or algebras, see [8] for example.
Here is a bit more elaborate formulation of Frobenius algebra structure in tensor
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categories, which we shall describe here, following [3] and [9], mainly to fix the
notation with some rewritings of axioms.

Let T be a tensor category. An algebra in T is a triplet (A, T, δ) with A
an object in T, T ∈ Hom(A ⊗ A,A) and δ ∈ Hom(I, A) satisfying T (T ⊗ 1A) =
T (1A ⊗ T ), T (δ ⊗ 1A) = 1A = T (1A ⊗ δ), which are graphically denoted in the
following way:

AAAAAA

A A A A

AA

=

= =

A A A A A

AAA

,
:

By reversing the direction of arrows, a coalgebra in T is a triplet (C, S, ε) with
S : C → C ⊗C and ε : C → I satisfying (S⊗ 1C)S = (1C ⊗S)S, (ε⊗ 1C)S = 1C =
(1C ⊗ ε)S:

==,=

C C

C C C

CC

C

CC

CCCC

C C C C C C

:

Note that δ and ε are uniquely determined by T and S respectively.
A Frobenius algebra in T is, by definition, a quintuplet (A,S, T, δ, ε) with

(A, T, δ) an algebra and (A,S, ε) a coalgebra, which satisfies the compatibility con-
dition (st-duality), Fig. 1. The terminology is justified because the axioms turn out
to be equivalent to those for ordinary Frobenius algebras if we work with the tensor
category of finite-dimensional vector spaces. For an early appearance of categorical
Frobenius structures, see [5].

= =

AAAAAA

A A A A A A A

AAAAAA

Figure 1

For a Frobenius algebra (A,S, T, δ, ε), the object A is self-dual with the rigidity
pair given by

A

A A
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=

which satisfies the conditions
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Conversely, given an algebra (A, T, δ) in T with A a self-dual object and a
rigidity copairing δA : I → A⊗A fulfilling the compatibility condition

A A A

AA

AAA

A A

=
,

we can recover the Frobenius algebra by straightforward arguments so that the
above common morphism A→ A⊗A serves as comultiplication. Since algebra and
coalgebra structures are interchangeable with each other in the present context, we
have the following characterizations of Frobenius algebra.

Proposition 2.1 Let A be an object in a tensor category T. Then the following
data give the equivalent information on A.

1. A Frobenius algebra structure on A.
2. An algebra structure (T, δ) on A together with a rigidity copairing δA : I →
A⊗A satisfying the compatibility condition (A being self-dual particularly).

3. A coalgebra structure (S, ε) on A together with a rigidity pairing εA : A⊗A→
I satisfying the compatibility condition.

4. A pair of morphisms (S, T ) satisfying the st-duality and the existence of units
and counits.

It would be worth pointing out here that, in a C*-tensor category T, any coalge-
bra (A,S, ε) is canonically supplemented to a Frobenius algebra (with the coalgebra
structure given by taking adjoints of S and ε) provided that S is a scalar multiple
of an isometry [7].

In what follows, we shall assume that

TS = (non-zero scalar)1A and εδ = (non-zero scalar)1I .

Note that the st-duality relation for the pair (S, T ) uniquely determines ε and δ. For
example, if we change (S, T ) into (λS, µT ), then (ε, δ) is modified into (µ−1ε, λ−1δ).
Thus, by adjusting scalar multiplications, we may assume that the scalars appearing
in TS and εδ coincide. If this is the case, we call the pair (S, T ) an algebraic Q-
system (see [6] for the original meaning of Q-systems) and denote the common
scalar by d. The associated Frobenius algebra is then referred to as a special
Frobenius algebra according to [3]. (In [9], the adjective ‘strongly separable’ is
used instead of ‘special’.)

A standard model for special Frobenius algebras is the following: Assume that
we are given a (strict) bicategory of two objects {1, 2} and arrange the associated

four hom-categories in the matrix form
(
H11 H12

H21 H22

)
with Hij = Hom(j, i).
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Choose off-diagonal objects H ∈ H12 and H∗ ∈ H21 such that H∗ is a left and
right dual of H at the same time with a (right) rigidity pairing ε : H∗⊗H → I2 and
a (left) copairing δ : I2 → H∗ ⊗H . Then A = H ⊗H∗ is a Frobenius algebra with
multiplication and comultiplication given by T = 1H⊗ε⊗1H∗ and S = 1H⊗δ⊗1H∗

respectively.
If we further assume the irreducibility of H as well as the existence of unit

objects I1 ∈ H11 and I2 ∈ H22, then A is a special Frobenius algebra.
Remark 2.2

1. If we consider the case of the tensor category of normal *-endomorphisms of
an infinite factor, we are reduced to the situation of Q-systems in [6], [7].

2. See [9] for more information on the relationship with the notion of Q-system.

3 Dual Systems

Given an algebraic Q-system and objectsX , Y in T, we introduce an idempotent
operator E = EY,X : Hom(A⊗X,A⊗ Y ) → Hom(A⊗X,A⊗ Y ) by

E(f) =
1
d
(T ⊗ 1Y )(1A ⊗ f)(S ⊗ 1X),

where d is the non-zero scalar associated to the algebraic Q-system.
The following is an easy consequence of graphical computations.

Lemma 3.1 For f ∈ Hom(A⊗X,A⊗ Y ), the following conditions are equiv-
alent.

1. E(f) = f .
2. f(T ⊗ 1X) = (T ⊗ 1Y )(1A ⊗ f).
3. (S ⊗ 1Y )f = (1A ⊗ f)(S ⊗ 1X).

Corollary 3.2 The image of End(A⊗X) under the map E, i.e., {f ∈ End(A⊗
X);E(f) = f}, is a subalgebra of End(A⊗X).

Similarly we can introduce the idempotent operator F associated to the right
tensoring of A. We consider the monoidal algebra {Am,n = Hom(A⊗n, A⊗m)}m,n≥0

associated with the object A. Set

Dm,n = {f ∈ Am+1,n+1;E(f) = f and F (f) = f}

for m, n ≥ 0 and

Bm,n = {f ∈ Am,n;F (f) = f},
Cm,n = {f ∈ Am,n;E(f) = f}

for m, n ≥ 1. Note here that EF = FE on Am+1,n+1 by the associativity of S and
T .

The above corollary then shows that {Dm,n}m,n≥0 is a block system of algebra,
i.e., Dk,lDm,n ⊂ δl,mDk,n, where the product is performed inside the block system
of algebra

⊕
i,j≥0

Ai,j . Similarly for {Bm,n}m,n≥1 and {Cm,n}m,n≥1.

We shall now make {Dk,l} into a monoidal algebra. Let f ∈ Dk,l and g ∈ Dm,n.
We define f⊗̂g ∈ Ak+m+1,l+n+1 by
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The following is easily checked by graphical computations.
Lemma 3.3
1. We have f⊗̂g ∈ Dk+m,l+n.
2. The unit 1A of A0,0 satisfies 1A⊗̂f = f⊗̂1A = f for f ∈ Dm,n.
3. For f : V ⊗A→W ⊗A, h : A⊗X → A⊗ Y and g ∈ Dm,n with m, n ≥ 0,

we have (f⊗̂g)⊗̂h = f⊗̂(g⊗̂h).
4. For f ∈ Dm,m′, f ′ ∈ Dm′,m′′ , g ∈ Dn,n′ and g′ ∈ Dn′,n′′ , we have

(f⊗̂g)(f ′⊗̂g′) = (ff ′)⊗̂(gg′).

The block system {Dm,n} is now a monoidal algebra by the previous lemma.
The construction can be obviously extended to the systems {Bm,n} and {Cm,n} so
that they give rise to a 2× 2-bicategory B:

Am,m′ ⊗Bn,n′ ⊂ Bm+n,m′+n′ ,

Bm,m′⊗̂Dn,n′ ⊂ Bm+n,m′+n′ ,

Cm,m′ ⊗An,n′ ⊂ Cm+n,m′+n′ ,

Dm,m′⊗̂Cn,n′ ⊂ Cm+n,m′+n′ ,

Bm,m′⊗̂Cn,n′ ⊂ Am+n−1,m′+n′−1,

Cm,m′ ⊗Bn,n′ ⊂ Dm+n−1,m′+n′−1

with analogous properties of tensor products for {Dm,n}.
If we denote by H and H∗ objects associated to B1,1 and C1,1 respectively,

then A is identified with H ⊗H∗ and Dm,n = Hom((H∗ ⊗H)⊗n, (H∗ ⊗H)⊗m).

Proposition 3.4 The bicategory B is rigid. More precisely, the generators H
and H∗ are rigid with rigidity pairs given by

δ : I → H ⊗H∗ = A, T ∈ D0,1 = Hom(H∗ ⊗H, J),

S ∈ D1,0 = Hom(J,H∗ ⊗H), ε : H ⊗H∗ = A→ I.

(J denotes the unit object for D.)

Proof The hook identities for these pairs are nothing but the unit and counit
identities for T and S respectively.

The rigidity pairs then induce the Frobenius algebra structure on H∗ ⊗H by
switching the roles of (δ, ε) and (S, T ), which is referred to as the dual Q-system:
the multiplication and comultiplication in H∗ ⊗H are given respectively by

1⊗ε⊗1 : H∗⊗H⊗H∗⊗H → H∗⊗H, 1⊗δ⊗1 : H∗⊗H → H∗⊗H⊗H∗⊗H.
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Now the following duality for algebraic Q-systems, although obvious, general-
izes an operator algebraic result in [6].

Proposition 3.5 Given an algebraic Q-system (S, T ), its bidual Q-system is
canonically isomorphic to (S, T ).

4 Bicategory of Bimodules

Recall that a morphism f : X → Y in a category is called a monomorphism
(epimorphism respectively) if gj : Z → X (gj : Y → Z) for j = 1, 2 satisfies
fg1 = fg2 (g1f = g2f), then g1 = g2. A subobject of an object Y is a pair (X, j)
of an object X and a monomorphism j : X → Y . A subobject j : X → Y is called
a direct summand if we can find a morphism p : Y → X such that pj = 1X .

In what follows, categories are assumed to be linear, have splitting idempotents
and be closed under taking direct sums. Given an idempotent e ∈ End(X), we
denote the associated subobject of X by eX (with e regarded as a monomorphism
in Hom(eX,X) = End(X)e), which is a direct summand of X and we have the
obvious identification eX ⊕ (1 − e)X = X .

Let A be a Frobenius algebra in a tensor category T. By a left A-module,
we shall mean an object M in T together with a morphism (called the action)
λ : A⊗M →M satisfying λ(ε⊗ 1M ) = 1M and the commutative diagram

A⊗ A⊗M
1⊗λ−−−−→ A⊗M

T⊗1

� �λ

A⊗M −−−−→
λ

M

.

The notion of right A-module is defined analogously. Let B be another
Frobenius algebra. By an A-B bimodule, we shall mean a left A-module M (with
the left action λ : A ⊗M → M) which is a right B-module (with the right action
µ : M ⊗B →M) at the same time and makes the diagram

A⊗M ⊗B
λ⊗1−−−−→ M ⊗B

1⊗µ

� �µ

A⊗M −−−−→
λ

M

commutative.
An A-B bimodule based on an objectM in T is simply denoted by AMB. Given

another A-B bimodule ANB, a morphism f : M → N in the category T is said to
be A-B linear if the diagram

A⊗M ⊗B
1⊗f⊗1−−−−→ A⊗N ⊗B� �

M −−−−→
f

N

commutes.
The totality of A-B bimodules {AMB} forms a linear category ATB by

Hom(AMB,ANB) = {f ∈ Hom(M,N); f is A-B linear}.
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Recall here that we have assumed splitting idempotents in the category T and
the same holds for ATB : if e ∈ End(AMB) is an idempotent, then the A-B action
on M induces an A-B action on the subobject eM , i.e., A(eM)B.

From here on we exclusively deal with Frobenius algebras of algebraic Q-
systems, i.e., special Frobenius algebras, and shall introduce the notion of tensor
product for bimodules. A more general and categorical construction is available in
[3] but we prefer the following less formal description, which enables us to easily
check the associativity (the so-called pentagonal relation) of tensor products.

Let XB and BY be right and left B-modules with action morphisms ρ and λ
respectively. Let e ∈ End(X ⊗ Y ) be an idempotent defined by

e = d−1(ρ⊗ λ)(1X ⊗ δA ⊗ 1Y ),

where d is the common scalar for TS and εδ.
The module tensor product X⊗BY is, by definition, the subobject e(X⊗Y )

of X ⊗ Y associated to the idempotent e. For bimodules AXB and BYC , e belongs
to End(AX ⊗ YC) and hence it induces an A-C bimodule AX ⊗B YC .

Let CZ be another left C-module and f ∈ End(Y ⊗ Z) be the idempotent
associated to the inner action of C. Then it is immediate to show the commutativity
(e⊗ 1Z)(1X ⊗ f) = (1X ⊗ f)(e⊗ 1Z) by the compatibility of left and right actions
on Y , which enables us to identify

(X ⊗B Y ) ⊗C Z = (e⊗ 1Z)(1X ⊗ f)(X ⊗ Y ⊗ Z) = X ⊗B (Y ⊗C Z).

Moreover, given morphisms ϕ : AXB → AX
′
B and ψ : BYC → BY

′
C , ϕ ⊗B ψ :

AX ⊗B YC → AX
′ ⊗B Y

′
C is defined by

ϕ⊗B ψ = (ϕ⊗ ψ)e = e′(ϕ⊗ ψ),

where e′ ∈ End(X ′ ⊗ Y ′) denotes the idempotent associated to the inner action of
B on X ′ ⊗ Y ′. It is also immediate to see the associativity for the tensor product
of morphisms:

(φ⊗A ϕ) ⊗B ψ = φ⊗A (ϕ⊗B ψ).

(More precisely, the identification is through the natural isomorphisms among mod-
ule tensor products of objects.)

The Frobenius algebra A itself bears the structure of A-A bimodule by the
multiplication morphism, which is denoted by AAA. Given a left A-module λ :
A⊗X → X , let λ∗ : X → A⊗X be the associated coaction: λ∗ = (1A⊗λ)(δA⊗1X).

Lemma 4.1 Both of λ and λ∗ are A-linear.

Proof The A-linearity of λ is just the associativity of the action. To see the
A-linearity of λ∗, we use the identity

(T ⊗ 1A)(1A ⊗ δA) = S = (1A ⊗ T )(δA ⊗ 1A).

Lemma 4.2 Let e ∈ End(A ⊗ X) be the idempotent associated to the inner
action of A on A⊗X. Then we have

λλ∗ = d1X , λ∗λ = de.

Proof These follow from simple graphical computations of λλ∗ and λ∗λ.
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Lemma 4.3 The action morphism λ : A ⊗ X → X induces the A-linear
isomorphism l : A ⊗A X → X with the inverse given by d−1λ∗. Likewise a right
A-module ρ : X ⊗ A → X induces the isomorphism r : X ⊗A A → X with the
inverse given by d−1ρ∗.

Here is another useful observation, which is an immediate consequence of defi-
nitions.

Lemma 4.4 Let A be a Frobenius algebra. Then, by the correspondance (λ :
A⊗X → X) ⇐⇒ (λ∗ : X → A⊗X), there is an equivalence between the category
of left A-modules and the category of left A-comodules.

A⊗X
1⊗f−−−−→ A⊗ Y� �

X −−−−→
f

Y

⇐⇒

X
f−−−−→ Y� �

A⊗X −−−−→
1⊗f

A⊗ Y

.

Lemma 4.5 Let XA be a right A-module and AY be a left A module with the
associated isomorphisms r : X ⊗A A → X and l : A ⊗A Y → Y . Then r and l
satisfy the triangle identity: r ⊗A 1Y = 1X ⊗A l on X ⊗A A⊗A Y .

Proof Let eX ∈ End(X ⊗ A), eY ∈ End(A ⊗ Y ) and e ∈ End(X ⊗ Y ) be
idempotents associated to the inner actions of A. We need to show the equality

e(ρ⊗ 1Y )(eX ⊗ 1Y )(1X ⊗ eY ) = e(1X ⊗ λ)(eX ⊗ 1Y )(1X ⊗ eY ).

By a graphical computation, we see that

d2(ρ⊗1Y )(eX⊗1Y )(1X⊗eY ) = d(ρ⊗λ)(1X⊗S⊗1Y ) = d2(1X⊗λ)(eX⊗1Y )(1X⊗eY ).

Summarizing the discussions so far, we have

Proposition 4.6 The family of categories {ATB} indexed by pairs of special
Frobenius algebras forms a bicategory with unit constraints given by l and r in the
previous lemma.

The following is not needed in what follows but enables us to compare our
definition with the one in [3].

Lemma 4.7 The projection e : X ⊗ Y → X ⊗B Y gives the cokernel of

(ρ⊗ 1Y − 1X ⊗ λ) : X ⊗B ⊗ Y → X ⊗ Y.

Proof By a graphical computation, we have

e(ρ⊗ 1Y ) = (ρ⊗ λ)(1X ⊗ S ⊗ 1Y ) = e(1X ⊗ λ).

Conversely, given a morphism f : X ⊗ Y → Z satisfying f(ρ ⊗ 1Y ) = f(1X ⊗ λ),
we can show ef = f .
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5 Rigidity in Bimodules

The rigidity of categorical modules is considered in [3] under the assumption
of a certain ‘commutativity’ of Frobenius algebras. Although its general validity
would be well-known for experts, we shall describe here the relevant points for
completeness.

Let A and B be Frobenius algebras in a tensor category T and AXB be an
A-B bimodule in T. Assume that the object X admits a (left) dual X∗ in T with
a rigidity pair given by ε : X ⊗X∗ → I and δ : I → X∗ ⊗X . We can then define
the B-A action on X∗ as the transposed morphism: consider B ⊗X∗ → X∗ and
X∗ ⊗A→ X∗ defined by Fig. 2.

A

XAA

X

X

B

XX
�

X
�

X
�

X
�

X
�

X
�

X
�

X
�

Figure 2

The following is immediate by easy graphical works.

Lemma 5.1 These in fact define the left and right actions on X∗, which are
compatible in the following sense.

A

A

BAB

XAA

X

AB

B X
�

X
�

X
�

X
�

X
�

X
�

X
�

X
�

X
�

X
�

==

We shall show that the bimodule BX
∗
A is a dual object of AXB. To this end,

we first introduce morphisms ε : X ⊗X∗ → A and δ : B → X∗ ⊗X by Fig. 3

B

BXB

XA

AXA

X X
�

X
�

X
�

X
�

Figure 3

Lemma 5.2 We have

ε = dA(1A ⊗ εX)((X → A⊗X)⊗ 1X∗),

δ = dB(1X∗ ⊗ (X ⊗B → X))(δX ⊗ 1B).
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Proof Insert the definition of (co)actions on X∗ and compute graphically.

Lemma 5.3 The morphism ε : X ⊗X∗ → A is A-A linear whereas the mor-
phism δ : B → X∗ ⊗X is B-B linear.

Proof We use the formulas in the above lemma together with the definition of
(co)actions on X∗.

Lemma 5.4 Let eB ∈ End(X ⊗X∗) and eA ∈ End(X∗ ⊗X) be idempotents
associated with inner actions. Then ε and δ are supported by these idempotents:
εeB = ε and eAδ = δ.

Proof For example, the equality eAδ = δ is proved by

dA==

B

B

X

X

B

BX

XAA

A X

X

BX

XAA

XX
�

X
�

X
�

X
�

X
�

X
�

X
�

By the above lemmas, we can regard ε and δ as defining morphisms AX ⊗B

X∗
A → AAA and BBB → BX

∗ ⊗A XB respectively.

Lemma 5.5 The compositions

X
1⊗Bδ−−−−→ X ⊗B X

∗ ⊗A X
ε⊗A1−−−−→ X,

X∗ δ⊗B1−−−−→ X∗ ⊗A X ⊗B X
∗ 1⊗Aε−−−−→ X∗

are scalar multiplication of identities by the common scalar dA2dB .

Proof By the previous lemma together with Corollary 4.3, we need to compare
compositions

X
d−1

B ρ∗
−−−−→ X ⊗B

1X⊗δ−−−−→ X ⊗X∗ ⊗X
ε⊗1X−−−−→ A⊗X

λ−−−−→ X,

X∗ d−1
B λ∗

−−−−→ B ⊗X∗ δ⊗1X∗−−−−→ X∗ ⊗X ⊗X∗ 1X∗⊗ε−−−−→ X∗ ⊗A
ρ−−−−→ X∗,

where λ denotes one of the left actions A ⊗X → X , B ⊗X∗ → X∗ and similarly
for ρ, λ∗ and ρ∗.

By multiplying d−1
A on both of these compositions, the former is reduced to

X

X

BX

BXA

A X

BXX

XXA

X

X X

X

X
�

X
�

= = dAdB
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whereas the latter is given by

BXAA

X B

X

BX

XAA

X

XA

X

BX

X
�

X
�

X
�

X
�

X
�

X
�

X
�

X
�

X
�

X
�

X
�

X
�

X
�

X
�

X
�

X
�

X
�

= =

and turns out to be dAdB1X from the relations in Fig. 4.

BX

X

X

XXAA

XX
�

X
�

X
�

X
�

X
�

X
�

X
�

dB

dA

,

=

=

Figure 4

Proposition 5.6 Let AXB be a bimodule and assume that X is rigid in T.
Then the bimodule AXB is rigid in the bicategory with the dual bimodule given by
BX

∗
A.

Proof This is just a paraphrase of the previous lemma.

Definition 5.7 Given a Frobenius algebra A in a tensor category T, we denote
by ATA the tensor category of A-A bimodules.

Proposition 5.8 Given a special Frobenius algebra A in a tensor category T,
let B be the dual Frobenius algebra of A. Then the bicategory connecting A and B
is generated by the bimodule H = IAA in T: H ⊗A H

∗ ∼= A while the Frobenius
algebra AH

∗ ⊗HA is isomorphic to B.

Theorem 5.9 (Duality for Tensor Categories) Given a special Frobenius
algebra A in a tensor category T, the dual Frobenius algebra B is canonically realized
in the tensor category ATA and the tensor category B(ATA)B of B-B bimodules in
ATA is naturally monoidally equivalent to the starting tensor category T.

Proof By the identification B = H∗ ⊗H , the object H has the structure of a
right B-module in an obvious way and, if we regard this as defining an objectM at
an off-diagonal corner of a bicategory connecting T and B(ATA)B , then it satisfies
the imprimitivity condition; M ⊗B M

∗ = I (the unit object in T) and M∗ ⊗M =
BBB (the unit object in B(ATA)B). Thus taking adjoint tensor multiplications by
M gives rise to a monoidal equivalence of tensor categories in question.
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6 Semisimplicity

An object X is said to be semisimple if any subobject is a direct summand
and said to be simple if there is no non-trivial subobject.

Note that, if End(X) is finite-dimensional for a semisimple object X , then X
is isomorphic to a direct sum of simple objects.

A tensor category is semisimple if every object is semisimple.
The following is a direct and simplified version of the proof in [3, §5.4] (cf. also

[10]).

Proposition 6.1 Let A and B be special Frobenius algebras in a tensor category
T. An A-B bimodule AXB is semisimple in ATB if the base object X is semisimple
in T.

Proof Let f : AYB → AXB be a monomorphism in ATB. We first show that
f is monomorphic as a morphism in T.

In fact, given a morphism h : Z → Y in T such that fh = 0, the induced
morphism h̃ : A⊗ Z ⊗B → Y defined by

h̃ = (A⊗ Y ⊗B → Y )(1A ⊗ h⊗ 1B)

is A-B linear and satisfies

fh̃ = (A⊗ Y ⊗B → Y )(1A ⊗ fh⊗ 1B) = 0

by the A-B linearity of f . Since f is assumed to be monomorphic in ATB, this
implies h̃ = 0 and hence

h = h̃(δ ⊗ 1Z ⊗ δ) = 0,
where δ denotes one of unit morphisms I → A and I → B in the Frobenius algebras.

So far, we have proved that f : Y → X gives a subobject of X . Since X
is semisimple by our assumption, we can find a morphism g : X → Y satisfying
gf = 1Y . Let g̃ : Y → X be defined by

g̃ = (A⊗X ⊗B → X)(1A ⊗ g ⊗ 1B)(Y → A⊗ Y ⊗B),

which is A-B linear as a composition of A-B linear morphisms.
Now the computation

g̃f = (A⊗ Y ⊗B → Y )(1A ⊗ g ⊗ 1B)(Y → A⊗ Y ⊗B)f

= (A⊗ Y ⊗B → Y )(1A ⊗ gf ⊗ 1B)(Y → A⊗ Y ⊗B)

= (A⊗ Y ⊗B → Y )(Y → A⊗ Y ⊗B)
= dAdB1Y

shows that AYB is a direct summand of AXB.

Corollary 6.2 Let A and B be special Frobenius algebras in a semisimpte
tensor category T. Then the category ATB of A-B bimodules in T is semisimple as
well.

7 Tannaka Duals

By the Tannaka dual of a Hopf algebra H , we shall mean the tensor category
of finite-dimensional (left) H-modules.

We shall here work with the Tannaka dual A of a semisimple Hopf algebra
H which is realized in a tensor category T, i.e., we are given a faithful monoidal
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functor F : A → T. The notion of A-modules is introduced in [13] in terms of the
notion of trivializing isomorphisms.

Let A be the unit object in the tensor category of A-A modules in T. Recall
that the object A is isomorphic to⊕

V

F (V )⊗ V ∗

as an object in T. By interchanging left and right actions, the dual object A
∗ of A

is an A-A module in a canonical way, which is isomorphic to the unit object AAA.
We shall give an explicit formula for the isomorphism AA

∗
A ∼= AAA.

Lemma 7.1 The isomorphism A
∗ → A given by

A
∗ =

⊕
V F (V ∗)⊗ V

⊕V d(V )1−−−−−−→
⊕

V F (V ∗)⊗ V = A

is A-A linear.

Proof Let us prove the left A-linearity for example. To this end, we first recall
that the left action F (U) ⊗ A

∗ → A
∗ ⊗ U on A

∗ is given by the composition

F (U)⊗A
∗ → A

∗⊗U⊗U∗⊗A⊗F (U)⊗A
∗ → A

∗⊗U⊗A⊗F (U∗)⊗F (U)⊗A
∗ → A

∗⊗U.
We can check this formula by working on vector spaces: Let

{X ξ−−−−→ W ⊗ U
ξ∗−−−−→ X}

be an irreducible decomposition of W ⊗ U and {xl}, {wk}, {ui} be bases of vector
spaces X , W , U with the dual bases indicated by asterisk. Then

F (u)⊗ F (v∗) ⊗ v

�→
⊕
W

∑
i,j,k

F (w∗
j ) ⊗ wk ⊗ ui ⊗ u∗i ⊗ F (wj) ⊗ w∗

k ⊗ F (u)⊗ F (v∗)⊗ v

�→
⊕
W

∑
i,j,k

∑
X,ξ,l

F (w∗
j ) ⊗ wk ⊗ ui ⊗ u∗i ⊗ F (xl) ⊗ ξ ⊗ w∗

k ⊗ F (v∗)⊗ v〈x∗l , ξ∗(wj ⊗ u)〉

�→
⊕
W

∑
F (w∗

j ) ⊗ wk ⊗ ui ⊗ u∗i ⊗ F (xl)⊗ ξ̃(w∗
k) ⊗ F (v∗)⊗ v〈x∗l , ξ∗(wj ⊗ u)〉

(F (xl) and ξ̃(w∗
k) being coupled with F (v∗) and u∗i ⊗ v respectively)

�→
⊕
W

∑
F (w∗

j ) ⊗ wk ⊗ ui〈u∗i ⊗ v, ξ̃(w∗
k)〉〈v∗, ξ∗(wj ⊗ u)〉

(letting X = V )

=
⊕
W

∑
F (w∗

j ) ⊗ ξv〈v∗, ξ∗(wj ⊗ u)〉

=
⊕
W

∑
ξ

F (ξ̃∗(u ⊗ v∗)) ⊗ ξv

=
⊕
W

∑
η:UV ∗→W∗

d(V )
d(W )

F (η(u⊗ v∗)) ⊗ η̃∗v,

where the family {W ∗ η∗
−−−−→ U ⊗ V ∗ η−−−−→ W ∗} denotes an irreducible decom-

position of U ⊗ V ∗.
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Comparing the last expression with the definition of trivialization isomorphism
F (U) ⊗ A → A ⊗ U , we see that

A
∗ =

⊕
V F (V ∗) ⊗ V

⊕V d(V )1−−−−−−→
⊕

V F (V ∗) ⊗ V = A

is A-linear.

The object A = A
∗⊗AA in T is a Frobenius algebra by the rigidity of AA: the

multiplication morphism is given by

A⊗A = A
∗ ⊗A A ⊗ A

∗ ⊗A A
1⊗ε⊗1−−−−→ A

∗ ⊗A A ⊗A A = A
∗ ⊗A A = A.

By the natural identification A
∗ ⊗A A = A, this can be rewritten as

A ⊗ A → A ⊗ A
∗ ε−−−−→ A,

where ε denotes a rigidity pair for AA (ε being A-A linear) and is defined by the
formula after Corollary 6.2:

A ⊗ A
∗ ⊕Xd(X)1⊗εX⊗1−−−−−−−−−−−→

⊕
X A ⊗X ⊗X∗ ⊗ A

∗

−−−−→
⊕

X F (X) ⊗ A ⊗ A
∗ ⊗X∗ ⊕X1⊗ε

A
⊗1

−−−−−−−−→
⊕

X F (X) ⊗X∗ = A

with εX the ordinary vector space pairing and εA the rigidity pairing for the object
A in T (with the trivial action).

Since AAA is identified with AA
∗
A by multiplying the weight {d(V )−1}V , the

multiplication morphism A ⊗ A → A is given by the following process on vectors:

F (v) ⊗ v∗ ⊗ F (w) ⊗ w∗

�→ d(W )−1F (v) ⊗ v∗ ⊗ F (w) ⊗ w∗

�→
⊕
X

d(X)
d(W )

∑
i

F (v) ⊗ v∗ ⊗ xi ⊗ x∗i ⊗ F (w) ⊗ w∗

�→
⊕
X,U

d(X)
d(W )

∑
ξ,i,j

F (v) ⊗ ξ ⊗ 〈uj , ξ
∗(v∗ ⊗ xi)〉u∗j ⊗ x∗i ⊗ F (w) ⊗ w∗

�→
⊕
X,U

d(X)
d(W )

∑
ξ,i,j

F (ξ̃v) ⊗ 〈uj , ξ
∗(v∗ ⊗ xi)〉u∗j ⊗ x∗i ⊗ F (w) ⊗ w∗

(letting U = W ∗ and uj = w∗
j for the pairing)

�→
⊕
X

d(X)
d(W )

∑
F (〈ξ̃v〉w) ⊗ 〈w∗

j , ξ
∗(v∗ ⊗ xi)〉〈wj , w

∗〉x∗i

=
⊕
X

d(X)
d(W )

∑
ξ,i

F (ξ′(v ⊗ w)) ⊗ 〈w∗, ξ∗(v∗ ⊗ xi)〉x∗i

=
⊕
X

d(X)
d(W )

∑
ξ

F (ξ′(v ⊗ w)) ⊗ t(ξ∗)′(w∗ ⊗ v∗),

where the family {
U∗ ξ−−−−→ V ∗ ⊗X

ξ∗−−−−→ U∗
}

denotes an irreducible decomposition of V ∗⊗X with ξ̃ and ξ′ Frobenius transforms
of ξ.
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Since
d(X)
d(W )

(
X

(ξ∗)′−−−−→ V ⊗W
ξ′−−−−→ X

)
gives an irreducible decomposition of V ⊗W , we have the following.

Proposition 7.2 The object A in T is an Frobenius algebra by the multiplica-
tion morphism

F (v) ⊗ v∗ ⊗ F (w) ⊗ w∗ �→
⊕
U

∑
η:U→V W

F (η∗(v ⊗ w)) ⊗ tη(w∗ ⊗ v∗)

(the family
{
U

η−−−−→ V ⊗W
η∗

−−−−→ U
}

being an irreducible decomposition of
V ⊗W ) with the compatible rigidity copairing δA : A ⊗ A → I given by the compo-
sition⊕

V,W

F (V )⊗V ∗⊗F (W )⊗W ∗ →
⊕
V

F (V )⊗V ∗⊗F (V ∗)⊗V (letting W = V ∗)

⊕
V d(V )1−−−−−−−→

⊕
V F (V ) ⊗ V ∗ ⊗ F (V ∗) ⊗ V → I,

where the last morphism is the summation of the canonical pairing

F (V )⊗ F (V ∗)⊗ V ∗ ⊗ V → I ⊗ C = I.

The associated unit (morphism) is given by the obvious imbedding

I → F (C) ⊗ C ⊂
⊕
V

F (V ) ⊗ V ∗.

Corollary 7.3 The multiplication morphism A ⊗ A → A is associative.

We have seen so far that Tannaka duals give rise to a special class of Frobenius
algebras in a canonical way (a depth two characterization of the class is possible
in terms of factorization of Frobenius algebras, see [13]). It is worth pointing out
here that a similar computation is carried out in [9, §6] based on the analysis of
Hopf algebra strucutres. As can be recognized in the above arguments, our proof
is purely categorical with the explicit use of fibre functors.

In what follows, we shall use calligraphic letters, say A, to express Tannaka du-
als (realized in a tensor category T) with the associated Frobenius algebras denoted
by the corresponding boldface letters, say A.

Recall here that Tannaka duals give rise to the bicategory of bimodules, whereas
there is a natural notion of bimodule of Frobenius algebras which produces another
bicategory.

We shall now construct a monoidal functor Φ, which associate an A-B bimodule
to each A-B bimodule. For simplicity, consider a left A-bimodule X with the
trivialization isomorphisms {φV : F (V )⊗X → X⊗V }. We choose a representative
family {Vj} of simple objects in the relevant Tannaka dual and set φj = φVj .

The action morphism φ : A ⊗X → X is then introduced by⊕
j

φ̃j :
⊕
j

F (Vj)⊗ V ∗
j ⊗X → X,

where φ̃j : F (Vj) ⊗ V ∗
j ⊗X → X corresponds to φj under the isomorphism

Hom(F (Vj)⊗ V ∗
j ⊗X,X) ∼= Hom(F (Vj)⊗X,X)⊗ Vj = Hom(F (Vj)⊗X,X ⊗ Vj).
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Now the square diagram

A ⊗ A ⊗X
1⊗φ−−−−→ A ⊗X

µ⊗1

� �φ

A ⊗X −−−−→
φ

X

is commutative if and only if so is the diagram⊕
i,j Hom(Y, F (Vi)⊗ F (Vj) ⊗X)⊗ V ∗

i ⊗ V ∗
j −−−−→

⊕
i Hom(Y, F (Vi) ⊗X)⊗ V ∗

i� �⊕
k Hom(Y, F (Vk) ⊗X)⊗ V ∗

k −−−−→ Hom(Y,X)

for any object Y . If we trace the morphisms starting from f ⊗ v∗i ⊗ v∗j for f : Y →
F (Vi)⊗F (Vj)⊗X and v∗i ∈ V ∗

i , then the commutativity is reduced to the identity∑
k

∑
ξ

〈φk(ξ∗ ⊗ 1X)f〉tξ(v∗
i ⊗v∗

j ) = 〈(φi ⊗ 1)(1 ⊗ φj)f〉v∗
i ⊗v∗

j
,

where the family {Vk
ξ−−−−→ Vi ⊗ Vj

ξ∗−−−−→ Vk
} denotes an irreducible decom-

position.
Since the choice of v∗i ∈ V ∗

i is arbitrary, the above relation is equivalent to∑
k,ξ

(1 ⊗ ξ)φk(ξ∗ ⊗ 1X)f = (φi ⊗ 1)(1 ⊗ φj)f

for any f or simply ∑
k,ξ

(1 ⊗ ξ)φk(ξ∗ ⊗ 1X) = (φi ⊗ 1)(1 ⊗ φj),

which is exactly the A-module property ofX , i.e., the commutativity of the diagram

F (Vi) ⊗ F (Vj) ⊗X −−−−→ F (Vi) ⊗X ⊗ Vj� �
⊕

k F (Vk) ⊗X ⊗
[
Vk

Vi Vj

]
−−−−→

⊕
kX ⊗ Vk ⊗

[
Vk

Vi Vj

]
= X ⊗ Vi ⊗ Vj

.

The unitality for the A-action, which says that

X = I ⊗X → A⊗X → X

is the identity, is reduced to that of the A-action on X .
By summarizing the arguments so far, we have associated a left A-module AX

to each A-module AX with the common base object X in T. Moreover, given
another AY with the associated AY , we have the equality

Hom(AX,AY ) = Hom(AX,AY )

as subsets of Hom(X,Y ) from our construction.
Thus the correspondance AX �→ AX defines a fully faithful functor Φ : AT →

AT.
We shall now identify the tensor products. Given a right A-module AX and a

left A-module AY in T with the trivialization isomorphisms φV : X⊗F (V ) → V ⊗X
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and ψV : F (V ) ⊗ Y → Y ⊗ V , denote the associated action morphisms of A by
φ : X ⊗ A → X and ψ : Y ⊗ A → Y respectively.

Given a basis {vi} of V , we introduce morphisms φV,i : X ⊗F (V ) → X by the
relation

φV =
∑
i

vi ⊗ φV,i

in the vector space Hom(X ⊗ F (V ), V ⊗X) = V ⊗Hom(F (V ) ⊗X,X). Likewise,
we define morphisms ψV,i : F (V ) ⊗ Y → Y so that

ψV =
∑
i

ψV,i ⊗ vi.

From the definition of φ, φ⊗ 1Y is identified with⊕
V

∑
i

vi ⊗ φV,i ∈
⊕
V

V ⊗Hom(X ⊗ F (V ) ⊗ Y,X ⊗ Y )

in the vector space

Hom(X ⊗ A ⊗ Y,X ⊗ Y ) =
⊕
V

Hom(X ⊗ F (V ) ⊗ V ∗ ⊗ Y,X ⊗ Y )

=
⊕
V

V ⊗Hom(X ⊗ F (V ) ⊗ Y,X ⊗ Y ).

Similarly we have the expression

1X ⊗ ψ =
⊕
V

∑
i

vi ⊗ ψV,i in
⊕
V

V ⊗Hom(X ⊗ F (V ) ⊗ Y,X ⊗ Y ).

Now the idempotent p ∈ End(X ⊗ Y ) producing the relative tensor product
X ⊗A Y is given by ∑

V

dF (V )

dA

∑
i

(φV,i ⊗ 1Y )(1X ⊗ ψ∗
V,i)

from the definition of p and the formula for δA. Here we denote by {ψ∗
V,i : Y →

F (V ) ⊗ Y } the cosystem of {ψV,i}i:

ψV,iψ
∗
V,j = δij1Y ,

∑
i

ψ∗
V,iψV,i = 1F (V )⊗Y

and dF (V ), dA are quantum dimensions of the objects F (V ), A respectively.
We next derive an explicit formula for the idempotent π(e) which is used to

define X ⊗A Y . Recall here that π is an algebra homomorphism of the dual Hopf
algebra H∗ into End(X ⊗ Y ) and e ∈ H∗ denotes the counit functional of H .

By using the explicit definition of π in [13], we see that

π(e) =
∑
V

dim(V )
dim(H)

∑
i

(φV,i ⊗ 1Y )(1X ⊗ ψ∗
V,i),

which is exactly the idempotent p because of dF (V ) = dim(V ) and dA = dim(H).

Proposition 7.4 The fully faithful functor Φ : ATB → ATA is monoidal by
the equality X ⊗B Y = X ⊗B Y in T.

Proposition 7.5 The monoidal functor Φ : ATB → ATB is an equivalence
of categories, i.e., any A-B bimodule in T is isomorphic to Φ(AXB) with AXB an
A-B bimodule in T.
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Proof Let AXB be an A-B bimodule in T. Since the A-B bimodule AA⊗X⊗BB
is isomorphic to Φ(AA⊗X⊗BB) and since the functor is fully faithful, we can find
an idempotent p ∈ End(AA ⊗X ⊗ BB) such that Φ(p) induces the relative tensor
product A ⊗A X ⊗B ⊗B. Thus AXB is isomorphic to Φ(Ap(A ⊗X ⊗ B)B).
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[2] S. Doplicher and J.E. Roberts, A new duality theory for compact groups, Invent. Math.,
98(1989), 157–218.

[3] J. Fuchs and C. Schweigert, Category theory for conformal boundary conditions, Fields In-
stitute Commun., to appear.

[4] D. Kazhdan and H. Wenzl, Reconstructing monoidal categories, Adv. Soviet Math., 16(1993),
111–136.

[5] F.W. Lawvere, Ordinal sums and equational doctrines. Sem. on Triples and Categorical Ho-
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