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Abstract. We determine a substantial part of the unitary represen-
tation theory of the Drinfeld double of a q-deformation of a compact
Lie group in terms of the complexification of the compact Lie group.
Using this, we show that the dual of every q-deformation of a higher
rank compact Lie group has central property (T). We also determine
the unitary dual of SLq(n,C).

1. Introduction

As has been observed by many authors (see, e.g., [14], [16]), the Drinfeld
double of the q-deformation of a compact Lie group can be regarded as a
quantization of the complexification of the original Lie group. Using this
point of view, in this paper we study irreducible unitary representations of
these Drinfeld doubles.

In [12], Joseph and Letzter defined a notion of quantum Harish-Chandra
module, which also can be seen as a certain representation of a q-deformation
of a complex semisimple Lie groups. In this paper, we compare these two
notions and show that the quantum Harish-Chandra modules are nothing
but the admissible representations of quantum doubles, which already has
been implicitly prospected in [22]. Then we use deep analysis on quantum
Harish-Chandra modules to compare the representation theory of the quan-
tum doubles and that of the classical case. Our main theorem is as follows.

Main Theorem. Let K be a connected simply connected compact Lie group
and fix 0 < q < 1. Consider the q-deformation Kq. Let Q∨ (resp. P ) be the
coroot lattice (resp. the weight lattice) and W the Weyl group.

(1) The K-finite part of a unitary irreducible representation of the quan-
tum double Gq of Kq is admissible.

(2) The irreducible admissible representations of Gq are parametrized by
(P × X)/W where X = h∗/2πi log(q)−1Q∨ and W acts on P × X
by the diagonal action.

(3) For (λ, ν) ∈ P ×h∗ such that Im(ν) is small enough, the correspond-
ing irreducible admissible representation of Gq is unitary if and only
if the corresponding irreducible representation of the complexification
G of K is unitary.

This result allows us to:

• classify a substantial amount of unitary representations of such dou-
bles in terms of those of complex semisimple Lie groups,
• prove central property (T) for the duals of general q-deformations of

compact simple Lie groups with rank equal or larger than 2 and
• classify all unitary representations of the quantum doubles of SUq(n).
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This work is motivated by the theory of operator algebras as follows. The
study of central multipliers on compact quantum groups has been started by
De Commer, Freslon and Yamashita [5]. It was already implicitly appeared
in the study of approximation properties by Brannan [4] and Freslon [8]. In
[5], it is also shown that the central multipliers are the same as the multipli-
ers of quantum doubles, hence have a strong relationship with the unitary
representation theory of quantum doubles, which was already studied by
Pusz [19] and Voigt [21] in the case of SUq(2).

There is also a strong relationship with the theory of subfactors. Popa
and Vaes [18] introduced a notion of multipliers for tensor categories, which
appeared to be the same as the corresponding central multipliers in the
quantum group case and also the multipliers for standard invariants in the
case of subfactors in [17]. Neshveyev-Yamashita [15] and Ghosh-Jones [9]
also introduced equivalent notions in different approaches. Together with
central property (T) of quantum groups, this notion eventually lead us to
the first example of non group-like subfactors with property (T) standard
invariant.

This is an expository of [1] and [2] presented as a Ph.D. thesis of the
author. Some results are overlapped with the independent work [22], but
we included proofs.
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Schools, MEXT, Japan. He also wishes to thank KU Leuven, where a part
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2. Preliminaries

2.1. Quantized enveloping algebra. Let K be a connected simply con-
nected compact Lie group. Take its complexification G = KC with its Iwa-
sawa decomposition G = KAN . Take the Lie algebra g of G and a Cartan
algebra h. Let (·, ·) be the natural bilinear form on h, which is normalized
as (α, α) = 2 for a short root α. Take the set of roots ∆ ⊂ h∗, the (co)root
lattice Q (Q∨) and the (co)weight lattice P (P∨). For each α ∈ ∆, let
α∨ := 2α/(α, α) be the coroot. Fix a set of simple roots Π ⊂ ∆ and let
Q+, Q∨+, P+ and P∨+ be the positive parts of corresponding lattices. Put

qα := q(α,α)/2,

nq :=
qn − q−n

q − q−1
,

nq! := nq(n− 1)q . . . 1q,(
n
m

)
q

:=
nq!

mq!(n−m)q!
.
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Definition 2.1. The quantized enveloping algebra Uq(g) is the Hopf ∗-
algebra generated by {Kλ, Eα, Fα | λ ∈ P, α ∈ Π} with the relations

K0 = 1, KλKµ = Kλ+µ,

KλEαK−λ = q(α,λ)Eα, KλFαK−λ = q−(α,λ)Fα,

[Eα, Fβ] = δα,β
Kα −K−α
qα − q−1

α
,

1−(α,β∨)∑
r=0

(−1)r
(

1− (α, β∨)
r

)
qβ

ErβEαE
1−(α,β∨)−r
β = 0,

1−(α,β∨)∑
r=0

(−1)r
(

1− (α, β∨)
r

)
qβ

F rβFαF
1−(α,β∨)−r
β = 0,

K∗λ = Kλ, E∗α = FαKα, F ∗α = K−αEα,

∆̂(Kλ) = Kλ ⊗Kλ, ε̂(Kλ) = 1, Ŝ(Kλ) = K−λ,

∆̂(Eα) = Eα ⊗ 1 +Kα ⊗ Eα, ε̂(Eα) = 0, Ŝ(Eα) = −K−αEα,
∆̂(Fα) = Fα ⊗K−α + 1⊗ Fα, ε̂(Fα) = 0, Ŝ(Fα) = −FαKα.

Let Uq(h) (resp. Uq(n
+), Uq(n

−)) be the subalgebra generated byKλ (resp.
Eα, Fα).

For each λ ∈ h∗, let Mq(λ) be the Verma module of highest weight λ
and Vq(λ) its unique irreducible quotient. If λ ∈ P+, then Vq(λ) is finite
dimensional. We say that a Uq(g)-module is of type 1 if it decomposes into a
direct sum of Vq(λ)’s for λ ∈ P+. Notice that any subquotient of a module
of type 1 is also of type 1.

Consider the adjoint action of Uq(g) on itself

ad(x)(y) := x(1)yŜ(x(2)).

Here we used the sumless Sweedler notation:

∆̂(x) = x(1) ⊗ x(2).

We denote the type 1 part of Uq(g) with respect to the adjoint action. In
[11, Theorem 7.1.6], it is shown that this is a left coideal algebra.

Since we need to deal with all (possibly) non-real weights in h∗, we use
some terminologies, which are used only in this article.

Definition 2.2. We say that ν ∈ h∗ is dominant (with respect to q) if
(ν, α∨) 6∈ Z<0 + 2πi log(qα)−1Z.

We say that ν ∈ h∗R is small if (ν, α) < 1 for any α ∈ ∆.

We say that ν ∈ h∗ is almost real (with respect to q) if log(q)
2π Im(ν) is

small.
For each λ ∈ h∗R, let |λ| be the unique dominant element in the Weyl

group orbit of λ.

Note that the set of small (resp. almost real) weights is open and invariant
under the Weyl group action. For the later use, we state several lemmas.
The following argument was suggested by Hironori Oya.

Lemma 2.3. Let µ, ν ∈ h∗R be small. Then µ− ν ∈ Q∨ implies µ = ν.
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Proof. Since (µ− ν, α) < 2 for any α ∈ ∆, it suffices to show the following:
For any x ∈ Q∨, (x, α) < 2 for all α ∈ ∆ implies x = 0.
To show this, after conjugating by the Weyl group action if necessary, we

may assume x ∈ Q∨+ and has a minimal height among Wx ∩ Q∨+. Then,
since x ∈ Q∨+, there exists α ∈ ∆+ such that (x, α) > 0. Since (x, α) < 2,
we get (x, α) = 1. This asserts sα(x) = x− α∨.

Now, since we have assumed that x has a minimal height, we get x−α∨ 6∈
Q∨+, which means

x =
∑

β∈Π,β 6=α
nββ

∨.

In particular, (x, α) < 0, which is a contradiction. �

All the extraordinariness of type A case in this paper comes from the
following easy lemma.

Lemma 2.4. Let K = SU(n). Then for any ν ∈ h∗R, there exists λ ∈ P∨
such that ν − λ is small.

Proof. We identify h∗R ' Rn/R(1, 1, . . . , 1) with the weight lattice Zn/Z(1, 1, . . . , 1).
Write ν = (ν1, ν2, . . . , νn) ∈ h∗R. Let λi be the integer such that 0 ≤ νi−λi <
1. Then λ = (λi) is the desired element in P = P∨. �

For the later use, we consider the subalgebra J of Uq(g) generated by
K2λ, Eα, FαKα. Remark that J is the localization of the adjoint finite part
F (Uq(g)) with respect to the Ore set {K−2λ | λ ∈ P+}. Consider the
category O over J . This is essentially the same as the usual category O [11,
4.1.4], but the weight only makes sense as an element in h∗/πi log(q)−1Q∨ =
1
2X. For each Λ ∈ h∗, we put

OΛ := {M ∈ O | wt(M) ⊂ Λ + P}.
The following lemma may be well-known to experts, but we could not

find any references.

Lemma 2.5. For 0 < q < 1 and any λ ∈ h∗ such that 2λ is almost real, we
have chVq(λ) = chV1(λ).

Proof. Thanks to [7, Corollary 4.8], we have this equality for generic q.

In general, consider A = Q[q±1, q(λ,α) | α ∈ Q], which is isomorphic to the
Laurent polynomial algebra of several variables over Q. Let us recall that
we have an invariant form Sq called the Shapovalev form on Mq(λ), which
is defined over A and

Vq(λ) = Mq(λ)/Ann(Sq).

Then, [11, Theorem 4.1.16] shows that the order of zeros of the determinant
of Sµq = Sq|Mq(λ)µ is constant along [q, 1], hence we get

dimVq(λ)µ = dimV1(λ)µ.

�

For λ ∈ P+, we regard Vq(λ) as a family of representation of Uq(g) on
a single vector space V (λ) such that weight spaces are the same and each
Uqα(sl2,α)-isotypical components varies continuously with respect to q. (This
is possible, for example, via the global base.)
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2.2. Quantum coordinate algebra. Let A,B be Hopf algebras. A skew
pairing between A and B is a map

A×B → C
such that

(ab, c) = (a⊗ b,∆B(c)),

(a, cd) = (∆A(a), d⊗ c),
(1, c) = εA(c),

(a, 1) = εB(a),

for a, b ∈ A, c, d ∈ B.
If A,B are Hopf ∗-algebras, we also assume

(a∗, b) = (a, S(b)∗).

For a pair of Hopf algebras with a skew pairing, one defines the following
actions: for a ∈ A and b ∈ B

a . b := (a, b(2))b(1), b / a := (a, b(1))b(2),

b . a := (a(1), b)a(2), a / b := (a(2), b)a(1).

Definition 2.6. The quantum coordinate algebra O(Kq) ⊂ Uq(g)∗ is the
subspace of matrix coefficients of type 1 representations. ThenO(Kq) carries
a unique Hopf ∗-algebra structure which makes the pairing

Uq(g)×O(Kq)→ C
skew.

Let O(T ) := O(Kq)/Ann(Uq(h)). Then O(T ) can be identified with the
algebra of regular functions on the maximal torus T of K. Denote the
canonical surjection O(Kq)→ O(T ) by πT .

Definition 2.7. Let U(Kq) :=
∏
λ∈P+

End(Vq(λ)) be the full dual of O(Kq)

and cc(K̂q) :=
⊕
λ∈P+

End(Vq(λ)) ⊂ U(Kq). Then one can embed Uq(g) into

U(Kq) and cc(K̂q) is an ideal of U(Kq).
One can easily show that there is a one-to-one correspondence among

(1) type 1 representations of Uq(g),

(2) nondegenerate representations of cc(K̂q) and

(3) continuous representations of U(K̂q).

Remark 2.8. For any ν ∈ h∗, the symbol Kν makes sense as an element in
U(Kq) by the formula

Kνv = q(ν,wt(v))v

for each weight vector v ∈ Vq(λ). Then we again have

KνKµ = Kν+µ

for any ν, µ ∈ h∗. Moreover K2πi log(q)−1µ = 1 for any µ ∈ Q∨ shows Kν

actually makes sense for any ν ∈ X := h∗/2πi log(q)−1Q∨. Then elements
in X are in a one-to-one correspondence with 1-dimensional representations
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on O(T ). The character Kν is a ∗-character if and only if ν ∈ ih∗R. Notice
that the Weyl group W acts on X in a natural way.

Let us define the following central projections on O(Kq)

pλ := 1λ ∈ End(Vq(λ)) ⊂ cc(Kq)

and let ϕ := p0 be the Haar state. For a type 1 Uq(g)-module V , the element

pλ is nothing but the projection onto V λ.
We have

ϕω = ωϕ = ω(1)ϕ

for any ω ∈ U(K̂q).
(The universal C*-completion of) O(Kq) is a compact quantum group in

the sense of [23]. In our notation, the modular automorphism of O(Kq) is
given by

σt(x) = K−2itρ . x / K−2itρ,

where ρ is the half sum of positive roots: ρ =
1

2

∑
α∈∆+

α. We also have

S2(x) = K−2ρ . x / K2ρ.

In particular,
σi(x) = K2ρ . x / K2ρ = S2(K4ρ . x)

and hence
ϕ(yx) = ϕ(S2(K4ρ . x)y),

which can be rewritten as

x . ϕ = ϕ / (S2(K4ρ . x)).

3. Drinfeld doubles

Definition 3.1. For Hopf algebras A and B with a skew pairing, the Drin-
feld double A ./ B is the algebra generated by A and B with the commuta-
tion relation

ab = (a(1) . b / S(a(3)))a(2)

for a ∈ A and b ∈ B. As a vector space, the multiplication map gives an
isomorphism A⊗B → A ./ B.

If both A and B are Hopf ∗-algebras, A ./ B is again a Hopf ∗-algebra.

Remark 3.2. It is not necessary for B to be a “genuine” Hopf algebra to
define the Drinfeld double A ./ B as an algebra, as long as the bimodule

action of A on B makes sense. For example, one can define Dc := cc(K̂q) ./

O(Kq) and D̃ := U(Kq) ./ O(Kq) in the same manner.

Let D = O(Ĝq) := Uq(g) ./ O(Kq). We are interested in the repre-
sentation theory of D. We start with describing the algebra structure of
D.

Let Uq(b
+) (resp. Uq(b

−)) be the subalgebra of Uq(g) generated by Kλ

and Eα (resp. Kλ and Fα). Take a universal R-matrix

R := q
∑
α,β∈Π(B−1)α,βHα⊗Hβ

∏
α∈∆+

expqα((1− q−2
α )Fα ⊗ Eα),
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where B is the matrix ((α∨, β∨))α,β, Hα is the self-adjoint element which

satisfies qHαα = Kα, Eα, Fα are the PBW basis corresponding to α and

expq(x) :=

∞∑
n=0

qn(n+1)/2 x
n

nq!
.

Although R is an element in U(Kq × Kq), the elements (x ⊗ id)(R) and
(id⊗ x)(R−1) make sense as elements in Uq(g) for every x ∈ O(Kq).

Define Hopf algebras

O(B±q ) := O(Kq)/Ann(Uq(b
∓)).

Then the maps

l+ : O(B+
q )→ Uq(b

+) : x 7→ (x⊗ id)(R),

l− : O(B−q )→ Uq(b
−) : x 7→ (id⊗ x)(R−1)

are isomorphisms of Hopf algebras. The map

I(x) := l−(x(1))Ŝ
−1(l+(x(2))) = (id⊗ x)(R−1

12 R
−1
21 )

is a Uq(g)-module isomorphism from O(Kq) onto F (Uq(g)) [3, Theorem 3].
We put

Ψ(x) = (l− ⊗ l+)∆(x) = (id⊗ x⊗ id)(R23R
−1
12 ).

The following result is first observed by Krähmer [14].

Theorem 3.3. The map

∆̂×Ψ : Uq(g) ./ O(Kq)→ Uq(g)⊗ Uq(g)

is an injective algebra homomorphism.

We further describe the image of this map. Put

D′ := (F (Uq(g))⊗ Ŝ(F (Uq(g))))∆̂(Uq(g)).

Proposition 3.4. We have

(∆̂×Ψ)(D) = D′.

Proof. First, notice that

D′ = (F (Uq(g))⊗ 1)∆̂(Uq(g))

since F (Uq(g)) is a left coideal. We also remark that

β : Uq(g)⊗ Uq(g)→ Uq(g)⊗ Uq(g) : x⊗ y 7→ (x⊗ 1)∆̂(y)

is an isomorphism of vector spaces with inverse map

β−1(x⊗ y) = xŜ(y(1))⊗ y(2).

Combining these, it suffices to show that

β−1(∆̂×Ψ)(D) = F (Uq(g))⊗ Uq(g).

Now using

m(id⊗ Ŝ)Ψ(x) = I(x),
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we get

β−1(∆̂×Ψ)(ax) = β−1(l+(a(1))⊗ l−(a(2)))(1⊗ x)

= l+(a(1))Ŝ(l−(a(2)))⊗ l−(a(3))x

= I(a(1))⊗ l−(a(2))x.

for a ∈ O(Kq) and x ∈ Uq(g). Hence we get the conclusion. �

4. Admissible representations

Definition 4.1. A unitary representation ofGq is a nondegenerate ∗-representation
of Dc on a Hilbert space. The K-finite part of a unitary representation π :
Dc → B(H) is the representation of Dc (or D) restricted to

⊕
λ∈P+

π(pλ)H.

An admissible representation of Gq is a nondegenerate representation of

Dc such that the multiplicity of each irreducible representation of cc(K̂q) is
finite. This is the same as a representation of D which is of type 1 as a
representation of Uq(g) and whose multiplicity of each irreducible represen-
tation of Uq(g) is finite. The multiplicity as a Uq(g)-representation is called
the K-type multiplicity.

We start this section with showing the K-finite part of an irreducible
unitary representation is admissible.

The following lemma has already appeared in the proof of [13, Theorem
8.1].

Lemma 4.2. Let A be a ∗-algebra and N ∈ Z≥0. Suppose A is a subalge-

bra (with the ∗-structure ignored) of
∏
i∈I

End(Vi), where (Vi)i∈I is a family

of vector spaces with dimensions at most N . Then the dimension of any
irreducible ∗-representation of A is at most N .

Theorem 4.3. Let π be an irreducible ∗-representation of Dc on a Hilbert
space H. Then the multiplicity of Vq(λ) in π|

cc(K̂q)
is at most dimVq(λ). In

particular, the K-finite part is an irreducible admissible D-module.

Proof. For each µ = (µ1, µ2) ∈ P+×P+, one can define a finite dimensional
representation πµ of D by

πµ = (πµ1 ⊗ πµ2)(∆̂×Ψ).

Then since ∆̂×Ψ is injective, we get an embedding⊕
µ∈P+×P+

πµ : D ↪→
∏

µ∈P+×P+

End(Vq(µ1)⊗ Vq(µ2)).

Fix λ ∈ P+. By cutting the embedding above by pλ, we get an embedding

pλDcp
λ ↪→

∏
µ∈P+×P+

End(πµ(pλ)(Vq(µ1)⊗ Vq(µ2))).

Let vw0µ2 be the lowest weight vector in Vq(µ2). Since vµ1 ⊗ vw0µ2 is cyclic
for the diagonal action of Uq(g) on Vq(µ1)⊗ Vq(µ2), the map

HomUq(g)(Vq(µ1)⊗ Vq(µ2), Vq(λ))→ Vq(λ) : f 7→ f(vµ1 ⊗ vw0µ2)
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is injective. Hence we get

[Vq(µ1)⊗ Vq(µ2) : Vq(λ)] ≤ dimVq(λ).

Therefore dimπµ(pλ)(Vq(µ1) ⊗ Vq(µ2)) ≤ (dimVq(λ))2. Now we can apply
Lemma 4.2 to get the desired conclusion. �

Let Adm(Gq) be the category of admissible representations. By Proposi-
tion 3.4, we see that the quantum Harish-Chandra module by Joseph and
Letzter [12] is nothing but the admissible representation of D. Namely for
an admissible representation of D′,

xv := (x⊗ 1)v, vy := (1⊗ Ŝ(y))v, ad(a)v := ∆̂(a)v

is a quantum Harish-Chandra module. Hence we can apply the categorical
equivalence between the quantum Harish-Chandra modules and the category
O.

Let κ be the involutive antiautomorphism on Uq(g) defined by

κ(Eα) = K−αFα, κ(Fα) = EαKα, κ(Kλ) = Kλ.

For Λ ∈ h∗ and V ∈ OΛ, we define a Uq(g) ⊗ Uq(g)-module structure on
(Mq(Λ)⊗ V )∗ by

(v, xf) := ((κ⊗ Ŝ−1)(x)v, f)

for x ∈ Uq(g) ⊗ Uq(g), v ∈ Mq(Λ) ⊗ V and f ∈ (Mq(Λ) ⊗ V )∗. Let ΨΛ(V )
be the finite part with respect to the action of ∆(Uq(g)). Then ΨΛ(V ) is a

D′-module in a natural fashion. Via the isomorphism (∆̂×Ψ)−1, we regard
ΨΛ(V ) as a D-module.

Notice that the center ofD is isomorphic to Z(Uq(g))⊗Z(Uq(g)) via ∆̂×Ψ.
Via the Harish-Chandra isomorphism ψ : Z(Uq(g))→ span{K2λ | λ ∈ P}W ,
we know that 1-dimensional representations of the center are parametrized
by Y × Y , where Y is quotient of 1

2X by the dot-action of Weyl group

w.Λ = w(Λ + ρ)− ρ
as follows:

For Λ ∈ h∗, define the linear functional χΛ on Uq(g) by

χΛ(aKλb) = ε̂(a)q(λ,Λ)ε̂(b)

for a ∈ Uq(n−), b ∈ Uq(n+) and λ ∈ P . For Λ,Λ′ ∈ h∗,

Z(D)→ C : x 7→ χ(Λ,Λ′)(x) = (χΛ ⊗ χ′Λ)((∆̂⊗Ψ)(x))

is a 1-dimensional representation, which depends only on the equivalence
class in (Λ,Λ′) ∈ Y × Y .

This gives a decomposition

Adm(Gq) =
⊕

(Λ,Λ′)∈Y×Y

Adm(Gq)(Λ,Λ′),

where Adm(Gq)(Λ,Λ′) is the subcategory of admissible modules such that
the center acts as a scalar χ(Λ,Λ′). For V ∈ Adm(Gq)(Λ,Λ′), we say that V
has the central character (Λ,Λ′) (resp. left central character Λ, right central
character Λ′). Let Adm(Gq)Λ be the subcategory of Adm(Gq) with the left
central character Λ. The following theorem is a direct translation of [11,
Section 8.4] in our setting.
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Theorem 4.4. For every dominant weight Λ ∈ h∗, we have the following.

(i) We have a contravariant exact functor

ΨΛ : OΛ → Adm(Gq)Λ : V 7→ F (Mq(Λ)⊗ V )∗.

(ii) There exists a contravariant functor TΛ : Adm(Gq)Λ → OΛ such that
ΨΛ ◦ TΛ = id and

Hom(V, TΛ(X)) ' Hom(X,ΨΛ(V )).

(iii) If Λ is regular, the functor ΨΛ is a categorical equivalence.
(iv) For every irreducible V ∈ OΛ, the admissible module ΨΛ(V ) is either

0 or irreducible. Moreover this exhausts all irreducibles.

5. Parabolic inductions

Fix a subset Σ ⊂ Π and let (hΣ)∗ be the linear span of Σ. Then Σ can
be regarded as the set of simple roots of a Lie subalgebra gΣ ⊂ g. Take a
short root α in Σ and set qΣ := q(α,α)/2. Let Uq(l

Σ) be the subalgebra of
Uq(g) generated by Eα, Fα,Kλ’s where α ∈ Σ and λ ∈ P . Then we have a
quotient map πΣ : O(Kq) → O(LΣ

q ) = O(Kq)/Ann(Uq(l
Σ)). Let ρΣ be the

half-sum of positive roots in ∆Σ and ρ⊥Σ = ρ− ρΣ.

Lemma 5.1. Set BΣ := Uq(l
Σ) ./ O(Kq) ⊂ D. Take ν ∈ h∗ such that ν ⊥ α

for any α ∈ Σ. Then for each admissible DΣ := Uq(l
Σ) ./ O(LΣ

q )-module V ,
one can define a BΣ-module structure on V by

• For x ∈ O(Kq),

xv := πΣ(x / Kν)v,

• For a ∈ Uq(lΣ),
av := av.

Proof. We check each commutation relations. It is easy to show the above
formula gives a Uq(l

Σ)-module structure and an O(Kq)-module structure.
Therefore, we only need to examine the commutation relation for x ∈ O(Kq)
and a ∈ Uq(lΣ).

For a ∈ Uq(lΣ), notice that a commutes with Kν . Hence

xav = πΣ(x/Kν)av = a(2)π
Σ(Ŝ−1(a(1)).x/Kνa(3))v = a(2)(Ŝ

−1(a(1)).x/a(3))v.

�

We denote the BΣ-module given in the lemma above by V(ν).

For an admissible DΣ-module V , define a D-module IndΠ
ΣV by

IndΠ
ΣV := Dc ⊗BΣ

V(−2ρ⊥Σ).

Recall that X = h∗/2πi log(q)−1Q∨, which is canonically identified with
the space of 1-dimensional representations of O(Kq). In the case of Σ = ∅,
since D∅ = Uq(h)⊗O(T ), the D∅-module structures on C are parametrized
by the element (λ, ν) ∈ P ×X, which we denote by C(λ,ν) Put

Lq(λ, ν) := IndΠ
∅ C(λ,ν).

Let Λ be the map

cc(K̂q)→ Lq(λ, ν) : ω 7→ ω ⊗ 1.
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Then Λ gives a Uq(g)-module isomorphism

Lλ := {ω ∈ cc(K̂q) | ωKµ = q(λ,µ)Kµ for any λ ∈ P} → Lq(λ, ν).

In particular,

• The module Lq(λ, ν) only depends on λ as a Uq(g)-module .
• The K-type |λ| is minimal among all K-types, that is, all other
K-type µ satisfies µ ∈ |λ|+Q+.
• We have [Lq(λ, ν) : Vq(µ)] = dimVq(µ)λ.

Since the multiplicity of the minimal K-type is 1, there exists a unique
irreducible subquotient of Lq(λ, ν) whose minimal K-type is |λ|, which we
denote by Vq(λ, ν).

Similarly, one can define a DΣ-module

LΣ
q (λ, ν) := DΣ

c ⊗BΣ C(λ,ν−2ρΣ),

where BΣ = Uq(h) ./ O(LΣ
q ) ⊂ DΣ.

Lemma 5.2. We have an isomorphism

Lq(λ, ν) ' IndΠ
Σ(LΣ

q (λ, ν)).

Proof. By definition, we have

IndΠ
Σ(LΣ

q (λ, ν)) = Dc ⊗BΣ
DΣ
c ⊗BΣ C(λ,ν−2ρ).

We claim

Dc ⊗BΣ
DΣ
c ⊗BΣ C(λ,ν−2ρ) → Dc ⊗B C(λ,ν−2ρ) : ω ⊗ µ⊗ 1 7→ ωµ⊗ 1

is an isomorphism.

To construct the inverse, for each ω ∈ cc(K̂q), we can find an idempotent

µ ∈ cc(L̂Σ
q ) such that ωµ = ω. Now one can define a map

Dc ⊗B C(λ,ν−2ρ) → Dc ⊗BΣ
DΣ
c ⊗BΣ C(λ,ν−2ρ) : ω ⊗ 1 7→ ω ⊗ µ⊗ 1.

Here we notice it does not depend on the choice of µ. In fact, for µ1, µ2 ∈
cc(L̂

Σ
q ) with ωµi = ω, one can find an idempotent µ0 such that µiµ0 = µi

for i = 1, 2. Then

ω ⊗ µ1 = ω ⊗ µ1µ0 = ωµ1 ⊗ µ0 = ω ⊗ µ0 = ω ⊗ µ2.

Therefore this map is well-defined.
These maps are inverses to each other. �

Next, we construct an invariant sesquilinear pairing on principal series

modules. Define a functional ϕ̂ ∈ cc(K̂q) by

ϕ̂(x) =
∑
λ∈P+

Trλ(K2ρ)Trλ(K−2ρx),

where Trλ is the non-normalized trace on Vq(λ). In [20], it is shown that

this is the left invariant weight on cc(K̂q), that is, a positive functional on

cc(K̂q) such that

ϕ̂(x / a) = ϕ̂(x)ε(a).

We also have

ϕ̂(a . x) = ϕ̂(x)K4ρ(a).
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Therefore we get

ϕ̂((a . x)y) = ϕ̂(a(2) . (x(S−1(a(1)) . y))) = K4ρ(a(2))ϕ̂(x(S−1(a(1)) . y)),

ϕ̂((x / a)y) = ϕ̂(x(y / S(a(1))) / a(2)) = ϕ̂(x(y / S(a))).

Now, ϕ̂ defines a natural inner product on Lλ by

(x, y)0
q := ϕ̂(y∗x).

This inner product satisfies

(x, a∗ . y)0
q = ϕ̂((a∗ . y)∗x) = ϕ̂((S(a) . y∗)x)

= K−4ρ(a(1))ϕ̂(y∗(a(2) . x)) = K−4ρ(a(1))(a(2) . x, y)0
q ,

(x, y/a∗)0
q = ϕ̂((y/a∗)∗x) = ϕ̂((y∗/S(a))x) = ϕ̂(y∗(x/S2(a)) = (x/S2(a), y)0

q .

We regard this inner product as a sesquilinear pairing

Lq(λ, ν)× Lq(λ,−ν)→ C.

Proposition 5.3. This sesquilinear pairing is invariant, i.e.

(ax, y)0
q = (x, a∗y)0

q

for any a ∈ D, x ∈ Lq(λ, ν) and y ∈ Lq(λ,−ν).

Proof. Trivial for a ∈ Uq(g).
The assertion follows for a ∈ O(Kq) also by a calculation:

(x, a∗y)0
q = Kν−2ρ(a∗(2))(x, a

∗
(3) . y / S(a∗(1))))

0
q

= K−ν+2ρ(a(2))K−4ρ(a(3))(a(4) . x / S(a(1)), y)0
q

= K−ν−2ρ(a(2))(a(3) . x / S(a(1)), y)0
q

= (ax, y)0
q .

�

We also need to consider the case q = 1. For q = 1, let L1(λ, ν) be the
Harish-Chandra module of the (nonunitary) principal series of G, that is,
the K-finite part of

{f ∈ C∞(G) | f(gtan) = tλa
1
2
ν−ρf(g)}

for t ∈ T , a ∈ A and n ∈ N . Again L1(λ, ν) ' Lλ as K-module. The
invariant inner product is given by

(f, g)0
1 :=

∫
K
f(k)g(k)dk.

Notice that by the Schur orthogonality theorem, the inner products (·, ·)0
q

forms a continuous family for 0 < q ≤ 1 on Lλ.
From now on, let 0 < q ≤ 1. We describe the irreducible subquotient using

this sesquilinear form. Let L0
q(λ, ν) be the submodule of Lq(λ, ν) generated

by its minimal K-type.

Lemma 5.4. We have

Vq(λ, ν) = L0
q(λ, ν)/AnnL0

q(λ,−ν).
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Proof. Set L00
q (λ, ν) := L0

q(λ, ν)/AnnL0
q(λ,−ν). Then this is an admissible

D-module with a D-invariant nondegenerate pairing

L00
q (λ, ν)× L00

q (λ,−ν)→ C.

Notice that their minimalK-types are cyclic both in L00
q (λ, ν) and L00

q (λ,−ν).

Take a D-submodule K of L00
q (λ, ν). If L00

q (λ, ν)|λ| ⊂ K, then K =

L00
q (λ, ν) since the minimal K-type is cyclic. If L00

q (λ, ν)|λ| 6⊂ K, since the

pairing is Uq(g)-invariant, L00
q (λ, ν)|λ| ⊂ AnnK. Hence AnnK = L00

q (λ,−ν).

Since the pairing is nondegenerate, K = 0. Therefore L00
q (λ, ν) is irre-

ducible. �

As a variation of sesquilinear pairing above, we also get the following,
which has been shown in [22].

Lemma 5.5. For (λ, ν) ∈ P × h∗ and Λ,Λ′ ∈ h∗ such that (λ, ν) = (Λ −
Λ′,−Λ− Λ′ − 2ρ), we have an isomorphism

ΨΛ(Mq(Λ
′)) ' Lq(λ, ν).

Proof. For q = 1, see [6, Lemma II.3.5].
Let 0 < q < 1. Consider the Verma module Mq(Λ) ⊗Mq(Λ

′) of Uq(g) ⊗
Uq(g). Notice that the map

Uq(g)→Mq(Λ)⊗Mq(Λ
′) : x 7→ (κ⊗ Ŝ−1)∆̂(x)(vΛ ⊗ vΛ′)

is surjective and its kernel is the right ideal generated by {Kλ − q(λ,Λ−Λ′) |
λ ∈ P}. Hence the bilinear pairing

Mq(Λ)⊗Mq(Λ
′)×Lq(λ, ν)→ C : ((κ⊗ Ŝ−1)∆̂(x)(vΛ ⊗ vΛ′),Λ(y)) = ϕ̂(yx).

is well-defined and nondegenerate.
We claim that the bilinear pairing satisfies

(v, xw) = ((κ⊗ Ŝ−1)(∆̂×Ψ)(x)v, w)

for any x ∈ D, v ∈ Mq(Λ) ⊗Mq(Λ
′) and w ∈ Lq(λ, ν). For x ∈ Uq(g), this

follows from the definition. For a ∈ O(Kq), notice that

(κ⊗ Ŝ−1)Ψ(a) ∈ Uq(b+)⊗ Uq(b+).

Therefore, by definition of Ψ, we get

(κ⊗ Ŝ−1)Ψ(a)(vΛ ⊗ vΛ′) = K−Λ−Λ′(a).

Using this, we compute

((κ⊗ Ŝ−1)Ψ(a)(κ⊗ Ŝ−1)∆̂(x)(vΛ ⊗ vΛ′),Λ(y))

= ((κ⊗ Ŝ−1)(∆̂×Ψ)(xa)(vΛ ⊗ vΛ′),Λ(y))

= ((κ⊗ Ŝ−1)(∆̂×Ψ)(a(2)(S(a(1)) . x / a(3)))(vΛ ⊗ vΛ′),Λ(y))

= K−Λ−Λ′(a(2))ϕ̂((S(a(1)) . x / a(3))y)

= K−Λ−Λ′−4ρ(a(2))ϕ̂(x(a(1) . y / S(a(3))))

= ((κ⊗ Ŝ−1)(∆̂×Ψ)(x)(vΛ ⊗ vΛ′), aΛ(y)),

hence we have proven the claim.
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Now, by definition of ΨΛ(Mq(Λ
′)) and the fact that Lq(λ, ν) is admissible,

we get an injective D-module map

Lq(λ, ν)→ ΨΛ(Mq(Λ
′)).

By [11, Proposition 3.8.7], we get the comparison of the K-type multiplici-
ties:

[ΨΛ(Mq(Λ
′)) : Vq(µ)] = Vq(µ)λ = [Lq(λ, ν) : Vq(µ)]

for any µ ∈ P+. Hence this is an isomorphism. �

Proposition 5.6. We have the following.

• For 0 < q ≤ 1 and each w ∈ W , there exists a meromorphic family
of intertwining operators

Twq : Lq(λ, ν)→ Lq(wλ,wν).

Moreover Twq is continuous with respect to q as long as ν is almost

real and −1
2(λ− ν)− ρ is dominant.

• For a simple reflection w = sα, the operator Tαq := T sαq is given by
the following.

For each v ∈ Lq(λ, ν) such that v ∈ V (λ) ⊗ V (s)∗m as an sl2,α-
module,

Tαq v =
s∏

k=|m|+1

(k − z)qα
(k + z)qα

v,

where z = 1
2(ν, α∨), m = 1

2(λ, α∨).

Proof. First, observe that thanks to Theorem 4.4, for generic (Λ,Λ′), the
module ΨΛ(Mq(Λ

′)) ' Lq(λ, ν) is the unique module such that the central
character is (Λ,Λ′) and the minimal K-type is |Λ− Λ′|. Hence

Lq(λ, ν) ' ΨΛ(Mq(Λ
′)) ' Ψw.Λ(Mq(w.Λ

′)) ' Lq(wλ,wν).

Hence there exists an intertwining operator for generic (λ, ν).
For the computation, the rank 1 case and 0 < q < 1. Let g = sl2. We

identify h = C with Π = {1}, so that Q = Z and P = 1
2Z. For generic

(λ, ν) ∈ P × h∗, take the intertwining operator

T : Lq(λ, ν)→ Lq(−λ,−ν).

Since

[Lq(λ, ν) : Vq(µ)] = Vq(µ)λ =

{
1 for λ− µ ∈ Z
0 otherwise

,

the operator T is a scalar on each K-type. Let Tµ = T |Lq(λ,ν)µ . We may
assume T|λ| = 1.

We fix generators of O(SUq(2)) as follows. Fix an orthonormal basis
(ξ±1/2) of Vq(1/2). Define a, b, c, d ∈ O(SUq(2)) by

(a, x) := (π1/2(x)ξ1/2, ξ1/2), (b, x) := q(π1/2(x)ξ1/2, ξ−1/2),

(c, x) := q−1(π1/2(x)ξ−1/2, ξ1/2), (d, x) := (π1/2(x)ξ−1/2, ξ−1/2).

Then a, b, c, d generate O(SUq(2)) with defining relations

ab = qba, ac = qca, bc = cb, ad− qbc = da− q−1bc = 1,
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∆(a) = a⊗a+b⊗c,∆(b) = a⊗b+b⊗d,∆(c) = c⊗a+d⊗c,∆(d) = d⊗d+c⊗b.
For any r, l ∈ Z≥0, the Clebsch-Gordan rule asserts that the element cral

is in
⊕

0≤k≤ r+l
2
O(SUq(2))k, hence ϕ / (cral) ∈

⊕
0≤k≤ r+l

2
Lkl−r

2

. Moreover

since ϕ/ (cral) ∈ L l−r
2

is of weight r+l
2 , the element ϕ/ (cral) is in (L l−r

2
)
r+l
2 .

Since ϕ is faithful on O(SUq(2)), the element ϕ/(cral) is nonzero. Moreover
we have

cΛ(ϕ / (cral)) = q−1+νΛ(a . ϕ / (cralS(c))) + q1−νΛ(c . ϕ / (cralS(d)))

= −qνΛ(a . ϕ / (cralc)) + q1−νΛ(c . ϕ / (cral+1))

= (−qr+l+2+ν + q−ν)Λ(ϕ / (cr+1al+1)).

Hence for µ ≥ λ ≥ 0, putting l = λ+ µ and r = µ− λ,

Tµ+1(−q2µ+2+ν + q−ν)Λ(ϕ / (cµ−λ+1aλ+µ+1))

= TcΛ(ϕ / (cral))

= cTΛ(ϕ / (cral))

= Tµ(−q2µ+2−ν + qν)Λ(ϕ / (crar)).

Therefore
Tµ+1

Tµ
=

q2µ+2−ν − qν

q2µ+2+ν − q−ν
=

(µ+ 1− ν)q
(µ+ 1 + ν)q

.

Iterating use of this formula shows the desired formula for generic (λ, ν).
Since the representations Lq(λ, ν) vary continuously with respect to ν, the
operator defined by the same formula intertwines the representations, as
long as the denominator is nonzero. In particular, this forms a meromorphic
family.

In general, the above calculation shows that the operator T defined as
above an intertwining operator

LΠ
q (λ, ν)→ LΠ

q (sαλ, sαν)

for Π = {α}. We may induce the intertwining operator using Lemma 5.2 to
get the desired formula.

Also this formula tends to the one in the classical case ([6, Proposition
III.3.7])

Tα1 v =

s∏
k=|m|+1

k − z
k + z

v,

so that we may form Twq as a continuous family with respect to q, as long as

the denominator is nonzero (in particular, if ν is almost real and−1
2(λ−ν)−ρ

is dominant). �

Lemma 5.7. For a dominant weight Λ ∈ h∗, α ∈ ∆+ and Λ′ ∈ h∗ such that
(Λ′ + ρ, α∨) ≥ 0,

‖Λ− Λ′‖ ≤ ‖Λ− sα.Λ′‖,
where ‖λ‖ is the square root of (λ, λ). Moreover the equality holds if and
only if sα stabilizes either Λ or Λ′.

Proof. Immediate from ‖Λ−sα.Λ′‖2−‖Λ−Λ′‖2 = 4(Λ′+ρ, α∨)(Λ+ρ, α). �
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Proposition 5.8. We have the following.

(1) The module ΨΛ(Vq(Λ
′)) is isomorphic to Vq(λ, ν) if and only if there

is no α ∈ ∆+ such that

(Λ + ρ, α∨) = 0, (Λ′ + ρ, α∨) ∈ Z≥0.

Otherwise ΨΛ(Vq(Λ
′)) = 0.

(2) The set of modules {Vq(λ, ν) | λ ∈ P, ν ∈ X} exhausts all irre-
ducibles.

(3) We have Vq(λ, ν) ' Vq(λ′, ν ′) if and only if there exists w ∈W such
that (λ, ν) = (wλ′, wν ′).

(4) If 1
2(λ − ν) − ρ is dominant, then Lq(λ, ν) contains Vq(λ, ν) as a

submodule.
(5) If −1

2(λ−ν)−ρ is dominant, then Vq(λ, ν) is a quotient of Lq(λ, ν).

Proof. For (1), assume there is no α ∈ ∆+ as above. Take a resolution
of Vq(Λ

′) by Verma modules. Then the Verma modules appearing in the
resolution are of the form Mq(w.Λ

′) such that

w = sα1sα2 . . . sαk ,

Λ′ ≥ sαk .Λ
′ ≥ sαk−1

sαk .Λ
′ ≥ . . . ≥ sα1sα2 . . . sαk .Λ

′ = w.Λ′

for αi ∈ ∆+.
Now, by assumption, the iterated use of Lemma 5.7 shows that

‖Λ− w.Λ′‖ > ‖Λ− Λ′‖.

We apply ΨΛ to this resolution to get a resolution of ΨΛ(V (Λ′)) by principal
series representations. Then, the above estimate shows that the minimal K-
type of principal series representations appearing in the resolution is always
strictly larger than |λ|. Hence the minimal K-type of ΨΛ(Vq(Λ

′)) is |λ|. In
particular, it is nonzero and hence irreducible, by (iv) of Theorem 4.4.

Conversely, assume that there exists such α. Then Vq(Λ
′) is a quotient

of the cokernel of Mq(sα.Λ
′) → Mq(Λ

′), which is injective. Applying ΨΛ,
we get that ΨΛ(Vq(Λ

′)) is a submodule of the kernel of the surjective map
Lq(λ, ν) → Lq(sαλ, sαν) ' Lq(λ, sαν). Now, the comparison of the K-type
multiplicity gives that this map has to be injective.

(2) follows from (iv) of Theorem 4.4 and (1).
For (3), we use the functor TΛ in (ii) of Theorem 4.4. We only need to

show that H := ΨΛ(Vq(Λ
′)) ' ΨΛ(Vq(Λ

′′)) implies Λ = Λ′′. For this, assume
Λ 6= Λ′ and put M := TΛ(H). Then the adjoint property gives injections
Vq(Λ)→M and Vq(Λ

′)→M . This gives rise to a map Vq(Λ)⊕Vq(Λ′)→M
which is injective since Vq(Λ) and Vq(Λ

′) are distinct irreducibles. Applying
ΨΛ, this gives a surjection H → H ⊕H, which is a contradiction.

(5) is a direct consequence of (1). (4) follows from (5) and Lemma 5.4. �

Corollary 5.9. There exists an invariant sesquilinear form on Vq(λ, ν) if
and only if there exists w ∈ W such that wλ = λ and wν = −ν modulo
2πi log(q)−1Q∨. Moreover if it exists an invariant sesquilinear form, it is
unique and hermitian up to scalar multiple.

In particular, if ν is almost real, wν = −ν in h∗.
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Proof. Notice that for any admissible D-modules V,W , there exists a one-to-
one correspondence between invariant sesquilinear pairings and D-module
homomorphisms V → W ,̃ where W˜ is the K-finite part of the D-module
of antilinear functionals on W . Now, Lemma 5.4 and Proposition 5.8.(3)
shows Vq(λ,−ν )̃ ' Vq(λ, ν), Together with Schur’s lemma, this shows the
first statement and the unicity of invariant sesqulinear forms. Moreover
the unicity shows the invariant sesquilinear form is hermitian up to scalar
multiple.

The second part is a consequence of Lemma 2.3. �

Thanks to the corollary above, our task boils down to determine whether
this unique invariant hermitian form is positive definite or not for each irre-
ducible admissible D-module.

Corollary 5.10. If 2Λ′ is almost real, the representation ΨΛ(Vq(Λ
′)) has

the same K-type multiplicity as ΨΛ(V1(Λ′)). In particular, Vq(λ, ν) has the
same K-type multiplicity with V1(λ, ν) if ν is almost real.

Proof. Thanks to Lemma 2.5, the character of Vq(Λ
′) is the same as V1(Λ′).

Hence we get the same factor in the resolution by the Verma modules.
Now applying ΨΛ to the resolution, we get the desired conclusion since

the K-type multiplicities of Lq(λ, µ) are the same as in the classical case. �

The following lemma is a well-known result in linear algebra, so we omit
the proof.

Lemma 5.11. Let (·, ·)q be a continuous path of hermitian forms on a finite
dimensional vector space V for an interval q ∈ [q0, 1]. Assume that the
dimensions of annihilators are constant. Then (·, ·)q is positive definite for
all q if and only if it is for some q.

Theorem 5.12. For almost real ν, the representation Vq(λ, ν) is unitary if
and only if V1(λ, ν) is.

Proof. We take −1/2(λ−ν)−ρ to be dominant, so that Vq(λ, ν) is a quotient
of Lq(λ, ν) = Lλ. Pick w ∈ W such that wν = −ν. Then the invariant
sesquilinear form (·, ·)q : Lλ × Lλ → C is given by

(x, y)q = (x, Twq y)0
q ,

where Twq is the intertwining operator Lq(λ, ν)→ Lq(wλ,wν) = Lq(λ,−ν).
Hence it varies continuously with respect to q.

Since Lq(λ, ν) = L0
q(λ, ν), the image of the intertwining operator Twq is

L0
q(wλ,wν). Thanks to Lemma 5.4, the annihilator of this sesquilinear form

is the kernel of Lq(λ, ν)→ Vq(λ, ν). In particular, this is the unique invari-
ant hermitian form in Corollary 5.9 composited with the natural quotient
map. Moreover, Corollary 5.10 shows that the dimensions of the annihila-
tors restricted to each K-type are constant. Thus, we can apply Lemma
5.11 to each K-type to get the desired conclusion. �

For arbitrary algebra A, the set of all irreducible modules has a natural
topology as follows:
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A net of irreducible modules (Vi) converges to an irreducible representa-
tion V if for any v ∈ V and f ∈ V ∗, there exists vi ∈ Vi and fi ∈ V ∗i such
that

(xv, f) = lim
i

(xvi, fi)

for any x ∈ A.
Notice that the Fell topology on the irreducible unitary representations of

Gq is nothing but the restriction of topology on Adm(Gq) defined as above.

Proposition 5.13. Let (λi, νi) be a net in (P ×X)/W and (λ, ν) ∈ (P ×
X)/W . Take the corresponding parameter (Λi,Λ

′
i) and (Λ,Λ′) such that Λ

is dominant. Then the net of modules Vq(λi, νi) converges to Vq(λ, ν) if and
only if

Λi → Λ, Vq(Λ
′
i)→ Vq(Λ) as i→∞.

Proof. The assertion follows from the construction of ΨΛ and TΛ in Theorem
4.4. �

In particular, the modules Vq(λi, νi) converges to the trivial representation
if and only if (λi, νi)→ (0, 2ρ) in the usual topology on (P ×X)/W .

Corollary 5.14. Let K be a connected simply connected compact simple
Lie group whose rank is at least 2 and fix 0 < q < 1. Then the discrete

quantum group K̂q has central property (T) in the sense of [1]. Equivalently,
the tensor category Rep(Kq) has property (T) in the sense of [18].

Proof. Since the set of almost real weights is open, we get the conclusion. �

We conclude this section with the case of K = SU(n). Let us remark
that for χ ∈ 2πi log(q)−1P∨, the module Vq(λ, ν−χ) is unitary if and only if
Vq(λ, ν) is. The following corollary is an immediate consequence of Lemma
2.4 and Theorem 5.12.

Corollary 5.15. Let K = SU(n). For (λ, ν) ∈ P × h∗, the representation
Vq(λ, ν) is unitary if and only if there exists χ ∈ 2πi log(q)−1P∨ such that
V1(λ, ν − χ) is unitary.
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