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Abstract. This paper provides a method to get a noetherian equicharacteristic local UFD with an isolated
singularity from a given noetherian complete equicharacteristic local ring, preserving certain properties.
This is applied to invesitgate the (non)vanishing of Ext modules. It is proved that there exist a Gorenstein

local UFD A having an isolated singularity such that Ext≫0
A (M,N) = 0 does not imply Ext≫0

A (N,M) =

0, a Gorenstein local UFD B having an isolated singularity such that TorB>0(M,N) = 0 does not imply

depth(M ⊗B N) = depthM + depthN − depthB, and a Cohen–Macaulay local UFD C having an isolated

singularity such that Ext>0
C (M,C) = 0 does not imply the total reflexivity of M .

1. Introduction

Throughout the present paper, we assume that all rings are commutative noetherian rings with identity.
For a local ring R we denote by mR the unique maximal ideal of R.

Let P and Q be properties of local rings such that the following implications hold for each local ring R:

(1.0.1)
R[[X]] satisfies P =⇒ R satisfies P =⇒ R̂ satisfies P ,

R[[X]] satisfies Q ⇐= R satisfies Q ⇐= R̂ satisfies Q .

Here, R[[X]] denotes a formal power series ring over R, while R̂ stands for the mR-adic completion of R. The
main result of this paper is the following theorem concerning rings that do not satisfy P but do satisfy Q.

Theorem 1.1. Suppose that there exists an equicharacteristic complete local ring (A,mA, k) of depth α which
does not satisfy P but satisfies Q. Let ρ ⩾ max{2, α} and σ ⩾ max{1, α} be integers. Then there exist:

(1) an equicharacteristic local unique factorization domain (R,mR, k) of depth ρ with an isolated singularity
which does not satisfy P but satisfies Q, and

(2) an equicharacteristic local domain (S,mS , k) of depth σ with an isolated singularity which does not satisfy
P but satisfies Q.

In this paper, we are interested in applying the above theorem to investigate the vanishing of Ext modules
over a local (unique factorization) domain with an isolated singularity.

A ring R is said to satisfy (ee) if for all finitely generated R-modulesM and N such that Ext≫0
R (M,N) = 0

one has Ext≫0
R (N,M) = 0. Huneke and Jorgensen [10] introduce the notion of an AB ring, and prove that

any AB ring satisfies (ee). The relationships of (ee) with several other properties are described in [12, (4.15)].

We say that R satisfies (dep) if all finitely generated R-modules M and N with TorR>0(M,N) = 0 satisfy
the depth formula, i.e.,

depth(M ⊗R N) = depthM + depthN − depthR.

Christensen and Jorgensen [8] prove that every AB ring satisfies (dep). On the other hand, it has been an
open question for several decades now whether every local ring, or even every Gorenstein local ring, satisfies
(dep), and much work has been put towards providing sufficient conditions for (dep) to hold; see [1, 6, 8, 19]
for but a few examples, and see the introduction of [4] for an overview on the history of this problem. In this
work, we provide a negative answer to this question. Our result in this direction comes as a consequence of
the following theorem.

Theorem 1.2. A Gorenstein local ring of positive dimension satisfies (dep) if and only if it is an AB ring.

2020 Mathematics Subject Classification. 13D07, 13F15.
Key words and phrases. vanishing of Ext/Tor, unique factorization domain (UFD), (integral) domain, isolated singularity,

AB ring, totally reflexive module, totally acyclic complex, Gorenstein ring, Cohen–Macaulay ring, depth formula.
Kimura was partly supported by Grant-in-Aid for JSPS Fellows 23KJ1117. Otake was partly supported by Grant-in-Aid for

JSPS Fellows 23KJ1119. Takahashi was partly supported by JSPS Grant-in-Aid for Scientific Research 23K03070.

1



2 KAITO KIMURA, JUSTIN LYLE, YUYA OTAKE, AND RYO TAKAHASHI

The property (ee) implies Gorensteinness. A result that negates the converse is given by Jorgensen and
Şega [12], where they construct, for a field k that is not algebraic over a finite field, an artinian Gorenstein
equicharacteristic local ring (A,mA, k) which does not satisfy the property (ee). (Note that this also shows
that the “only if” part of Theorem 1.2 does not necessarily hold true without the assumption that the ring
has positive dimension.) One can apply Theorem 1.1 to this local ring A and the properties P = (ee) and
Q = Gorensteinness and use Theorem 1.2 to obtain the following corollary.

Corollary 1.3. Let k be a field which is not algebraic over a finite field.

(1) For every d ⩾ 2, there is a d-dimensional Gorenstein equicharacteristic local unique factorization domain
(R,mR, k) with an isolated singularity which does not satisfy (ee). Hence, R does not satisfy (dep).

(2) There exists a 1-dimensional Gorenstein equicharacteristic local domain (S,mS , k) that does not satisfy
(ee). Hence, S does not satisfy (dep).

In particular, R is a non-AB unique factorization domain, and S is a non-AB domain of dimension one.

We say that R satisfies (tr) if a finitely generated R-moduleM is totally reflexive whenever Ext>0
R (M,R) =

0; recall thatM is called totally reflexive if the natural mapM →M∗∗ is an isomorphism and Ext>0
R (M,R) =

Ext>0
R (M∗, R) = 0, where (−)∗ is the R-dual functor. The property (tr) is the same as the weakly Gorenstein

property in the sense of Ringel and Zhang [18]. A (chain) complex of projective R-modules is called totally
acyclic if it and its R-dual are both acyclic. We say that R satisfies (tac) if every acyclic complex of finitely
generated projective R-modules is totally acyclic. This is a finitely generated module version of the property
studied by Iyengar and Krause [11]. The following describes the relationships between (tr), (tac) and (dep).

Theorem 1.4. A local ring satisfying (tac) satisfies (tr). A Cohen–Macaulay local ring of positive dimension
satisfying (dep) satisfies (tr).

Since every Gorenstein ring satisfies (tr), the rings R and S given in Corollary 1.3 show that the converse
of the second assertion of Theorem 1.4 does not hold in general.

Jorgensen and Şega [13] construct, for a field k that is not algebraic over a finite field, an artinian equichar-
acteristic local ring (A,mA, k) which does not satisfy (tr). (This shows that the second assertion of Theorem
1.4 does not necessarily hold without the assumption of positive dimension.) Applying Theorem 1.1 to this
local ring A and the properties P = (tr) and Q = Cohen–Macaulayness and using Theorem 1.4, we obtain
the corollary below. It is claimed in [22, Theorem 1.1] that every generically Gorenstein ring satisfies (tac),
and it is claimed in [22, Corollary 1.3] that every generically Gorenstein ring satisfies (tr). Here, a generically
Gorenstein ring is defined as a ring which is locally Gorenstein on the associated prime ideals. Since every
domain is a generically Gorenstein ring, these claims turn out to be incorrect in any positive dimension.

Corollary 1.5. Let k be a field which is not algebraic over a finite field.

(1) For every integer d ⩾ 2, there exists a d-dimensional Cohen–Macaulay equicharacteristic local unique
factorization domain (R,mR, k) with an isolated singularity which does not satisfy (tr). Therefore, R
does not satisfy (tac). Moreover, R is a non-Gorenstein ring that does not satisfy (dep).

(2) There is a 1-dimensional Cohen–Macaulay equicharacteristic local domain (S,mS , k) which does not sat-
isfy (tr). Hence, S does not satisfy (tac). Also, S is a non-Gorenstein ring that does not satisfy (dep).

In particular, the rings R and S give counterexamples to [22, Theorem 1.1 and Corollary 1.3].

The paper is organized as follows. In Section 2, we show that several properties of local rings including
the above mentioned ones are preserved under fundamental operations. In Section 3, we shall investigate the
relationships between (tr), (dep), the AB property and a question of Araya. In Section 4, we provide all of
the proofs of those three results stated above, together with a couple of observations on related topics.

Acknowlegments. The authors thank Yuji Yoshino for reading this paper and giving them valuable comments.

2. Properties preserved under basic operations

First of all, for ease of reference, we make a list of those properties which we handle in this paper.

Definition 2.1. We consider the following conditions for a (commutative noetherian) local ring R.

(ab) The local ring R is an AB ring, that is, R is Gorenstein and there exists an integer n such that when-
ever one has Ext≫0

R (M,N) = 0 for finitely generated R-modulesM,N it holds that Ext>nR (M,N) = 0.
(ci) The local ring R is a complete intersection.
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(cm) The local ring R is Cohen–Macaulay.

(dep) All nonzero finitely generated R-modules M and N such that TorR>0(M,N) = 0 satisfy the depth
formula depth(M ⊗R N) = depthM + depthN − depthR.

(ee) For all finitely generated R-modulesM andN such that Ext≫0
R (M,N) = 0 one has Ext≫0

R (N,M) = 0.
(gap) The local ring R is Gorenstein and has finite Ext-gap, where the Ext-gap of R is defined to be the

supremum of integers g ⩾ 0 such that there exist finitely generated R-modules M,N and an integer
n ⩾ 0 such that ExtiR(M,N) does not vanish for i = n, n+ g + 1 but does for i = n+ 1, . . . , n+ g.

(gor) The local ring R is Gorenstein.
(tac) Every acyclic complex of finitely generated projective R-modules is totally acyclic.

(te) For any two finitely generated R-modules M,N with TorR≫0(M,N) = 0 one has Ext≫0
R (M,N) = 0.

(tr) A finitely generated R-module M is totally reflexive whenever Ext>0
R (M,R) = 0.

Throughout this section, let R be a local ring with maximal ideal m and residue field k. We first deal with
the property (ee). We establish two lemmas to prove a proposition on (ee).

Lemma 2.2. Let M be an R̂-module of finite length. Then M has finite length as an R-module as well. The

maps f :M ⇄M ⊗R R̂ : g, given by x 7→ x⊗ 1 and ax← [ x⊗ a, are mutually inverse R̂-isomorphisms.

Proof. By assumption, there is a composition series 0 = M0 ⊊ · · · ⊊ Mn = M of the R̂-module M , where

n = ℓR̂(M). Then for each i there is an R̂-isomorphism Mi/Mi−1
∼= R̂/m̂ ∼= k. Hence this is also a

composition series of the R-module M , and we have ℓR(M) = ℓR̂(M) = n. Thus, M has finite length as
an R-module. In particular, M is finitely generated and complete as an R-module, so that the map f is

an R-isomorphism. It is easy to see that g is an R̂-homomorphism and gf = idM . Therefore, f and g are

mutually inverse R̂-isomorphisms. ■

LetM be a finitely generated R-module. Take a minimal free resolution · · · ∂3−→ F2
∂2−→ F1

∂1−→ F0 →M → 0
of M . The image of the ith differential map ∂i is called the ith syzygy of M and denoted by ΩiM (or ΩiRM
to specify the base ring R). We set Ω0M =M and ΩM = Ω1M . Note that ΩiM is uniquely determined by
M and i up to isomorphism.

Lemma 2.3. Let M and N be finitely generated modules over the local ring R.

(1) Assume R is Gorenstein. Let m,n ⩾ 0. Then Ext≫0
R (M,N) = 0 if and only if Ext≫0

R (ΩmM,ΩnN) = 0.
(2) Let x = x1, . . . , xn be a regular sequence on M (resp. N). One then has that Ext≫0

R (M,N) = 0 if and
only if Ext≫0

R (M/xM,N) = 0 (resp. Ext≫0
R (M,N/xN) = 0).

Proof. (1) Fix an integer i > 0. We have ExtiR(Ω
mM,N) ∼= Exti+mR (M,N). There is an exact sequence 0→

ΩnN → Fn−1 → · · · → F0 → N → 0 of finitely generated R-modules with F0, . . . , Fn−1 free. Decomposing

this into short exact sequences and using the fact from the Gorensteinness of R that Ext>dR (ΩmM,R) = 0
with d = dimR, we observe that Ext>tR (ΩmM,N) = 0 if and only if Ext>t+nR (ΩmM,ΩnN) = 0 for each t ⩾ d.

Therefore, Ext≫0
R (M,N) = 0 if and only if Ext≫0

R (ΩmM,N) = 0, if and only if Ext≫0
R (ΩmM,ΩnN) = 0.

(2) We only show Ext≫0
R (M,N) = 0 if and only if Ext≫0

R (M/xM,N) = 0 for an M -regular sequence x =
x1, . . . , xn; the other assertion is shown similarly. By induction on n, it suffices to prove that Ext≫0

R (M,N) =
0 if and only if Ext≫0

R (M/xM,N) = 0 for an M -regular element x ∈ m. This is actually a consequence of the

application of Ext≫0
R (−, N) to the exact sequence 0→M

x−→M →M/xM → 0, plus Nakayama’s lemma. ■
The proposition below collects statements on (ee); it is preserved under several standard operations.

Proposition 2.4. (1) If R satisfies the property (ee), then R is a Gorenstein ring.
(2) Let R→ S be a flat local homomorphism of local rings. If S satisfies (ee), so does R.
(3) Let x ∈ m be an R-regular element. If R/(x) satisfies (ee), then so does R.

(4) If the local ring R satisfies the property (ee), then so does the m-adic completion R̂ of R.

Proof. (1) As Ext>0
R (R, k) = 0, the condition (ee) implies Ext≫0

R (k,R) = 0, which means that R is Gorenstein.

(2) Let M,N be finitely generated R-modules such that ExtiR(M,N) = 0 for i � 0. Then ExtiS(M ⊗R
S,N ⊗R S) ∼= ExtiR(M,N)⊗R S = 0 for i� 0. As S satisfies (ee) and M ⊗R S,N ⊗R S are finitely generated
S-modules, we have ExtiS(N ⊗R S,M ⊗R S) = 0 for i� 0. Hence ExtiR(N,M)⊗R S = 0 for i� 0. Since S
is faithfully flat over R, we get ExtiR(N,M) = 0 for i� 0.

(3) As R/(x) satisfies (ee), it is Gorenstein by (1), and so is R. Let M,N be finitely generated R-modules
with Ext≫0

R (M,N) = 0. Lemma 2.3(1) implies Ext≫0
R (ΩM,ΩN) = 0. Note that x is regular on ΩM and
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ΩN . Lemma 2.3(2) shows Ext≫0
R (ΩM/xΩM,ΩN) = 0. As ExtiR/(x)(ΩM/xΩM,ΩN/xΩN) is isomorphic to

Exti+1
R (ΩM/xΩM,ΩN) by [17, §18, Lemma 2], we have Ext≫0

R/(x)(ΩM/xΩM,ΩN/xΩN) = 0. Since R/(x)

satisfies (ee), it follows that Ext≫0
R/(x)(ΩN/xΩN,ΩM/xΩM) = 0. Hence Ext≫0

R (ΩN/xΩN,ΩM) = 0. We

get Ext≫0
R (ΩN,ΩM) = 0 by Lemma 2.3(2), and Ext≫0

R (N,M) = 0 by Lemma 2.3(1).

(4) Since R satisfies (ee), it is Gorenstein by (1), and so is R̂. Let M,N be finitely generated R̂-modules
with Ext≫0

R̂
(M,N) = 0. Choose integers m,n ⩾ 0 such that Z = Ωm

R̂
M and Y = Ωn

R̂
N are maximal

Cohen–Macaulay R̂-modules. Lemma 2.3(1) shows Ext≫0

R̂
(Z, Y ) = 0. Let x = x1, . . . , xd be a system of

parameters of R. Then x is a regular sequence on R and R̂. By Lemma 2.3(2) we have Ext≫0

R̂
(V,W ) = 0,

where V = Z/xZ and W = Y/xY . Since V,W have finite length as R̂-modules, Lemma 2.2 implies

(2.4.1) ExtiR(V,W )⊗R R̂ ∼= Exti
R̂
(V ⊗R R̂,W ⊗R R̂) ∼= Exti

R̂
(V,W ) = 0 for i� 0.

The faithful flatness of R̂ over R implies Ext≫0
R (V,W ) = 0. As V,W are finitely generated R-modules and R

satisfies (ee), we get Ext≫0
R (W,V ) = 0. Similarly as in (2.4.1) we have Exti

R̂
(W,V ) ∼= ExtiR(W,V )⊗R R̂ = 0

for i� 0. We obtain Ext≫0

R̂
(Y, Z) = 0 by Lemma 2.3(2), and Ext≫0

R̂
(N,M) = 0 by Lemma 2.3(1). ■

A similar argument to the above proof shows that the same statement as Proposition 2.4 holds for the
property (te).

Proposition 2.5. (1) If R satisfies the property (te), then R is a Gorenstein ring.
(2) Let R→ S be a flat local homomorphism of local rings. If S satisfies (te), so does R.
(3) Let x ∈ m be an R-regular element. If R/(x) satisfies (te), then so does R.

(4) If the local ring R satisfies the property (te), then so does the m-adic completion R̂ of R.

Next we deal with the property (tr). For a finitely generated module M over a ring R we denote by
GdimRM the G-dimension of M . Note that M is totally reflexive if and only if GdimRM ⩽ 0. For the
details of G-dimension, we refer the reader to [2, 7]. The property (tr) is retained under taking a local flat
extension and modding out by a regular element.

Proposition 2.6. (1) Let R→ S be a flat local homomorphism of local rings. If S satisfies (tr), so does R.
(2) Let x ∈ m be an R-regular element. Then R satisfies (tr) if and only if so does R/(x).

Proof. (1) Let M be a finitely generated R-module such that Ext>0
R (M,R) = 0. Then M ⊗R S is a finitely

generated S-module with Ext>0
S (M ⊗R S, S) = 0, as S is flat over R. Since S satisfies (tr), the S-module

M ⊗R S is totally reflexive. As S is faithfully flat over R, the R-module M is totally reflexive by [3, (4.1.4)].
(2) The ‘only if’ part: Let M be a finitely generated R/(x)-module such that Ext>0

R/(x)(M,R/(x)) = 0.

Then Ext>1
R (M,R) = 0 by [17, §18, Lemma 2], and hence Ext>0

R (ΩRM,R) = 0. Since the ring R satisfies
(tr), the R-module ΩRM is totally reflexive, so that GdimRM ⩽ 1 by [7, (1.2.9)]. We get GdimR/(x)M =
GdimRM − 1 ⩽ 0 by [7, (1.5.3)], and therefore M is totally reflexive over R/(x).

The ‘if’ part: Let M be a finitely generated R-module with Ext>0
R (M,R) = 0. Then Ext>0

R (ΩRM,R) = 0.

As x is ΩRM -regular, there is an exact sequence 0→ ΩRM
x−→ ΩRM → ΩRM/xΩRM → 0, which shows that

Ext>1
R (ΩRM/xΩRM,R) = 0. Using [17, §18, Lemma 2] again, we get Ext>0

R/(x)(ΩRM/xΩRM,R/(x)) = 0.

Since R/(x) satisfies (tr), the R/(x)-module ΩRM/xΩRM is totally reflexive. By [7, (1.2.9)&(1.4.5)] we get

GdimRM − 1 ⩽ GdimR(ΩRM) = GdimR/(x)(ΩRM/xΩRM) ⩽ 0,

and hence GdimRM ⩽ 1. It follows by [7, (1.2.7)] or [3, (4.1.3)] thatM is totally reflexive as an R-module. ■

Now we consider the property (tac). We first remark that it can be described in terms of frequently used
notations of homotopy categories.

Remark 2.7. Denote by ProjR the category of projective R-modules, and by projR the category of finitely
generated projective R-modules. For C ∈ {ProjR, projR}, denote by K(C) the homotopy category of com-
plexes over C, by Kac(C) the full subcategory of K(C) consisting of acyclic complexes, and by Ktac(C) the full
subcategory of K(C) consisting of totally acyclic complexes. Then by definition one has:

(2.7.1) R satisfies (tac) ⇐⇒ Kac(projR) = Ktac(projR).



ON THE VANISHING OF EXT MODULES OVER A LOCAL UFD WITH AN ISOLATED SINGULARITY 5

This equivalence should be compared with the equivalence below, which holds when R admits a dualizing
complex and is due to Iyengar and Krause [11, Corollary 5.5].

(2.7.2) R is Gorenstein ⇐⇒ Kac(ProjR) = Ktac(ProjR).

We say that an R-moduleM is an∞-syzygy if there exists an exact sequence 0→M → F 0 → F 1 → F 2 →
· · · of finitely generated free R-modules. We set (−)∗ = HomR(−, R) and denote by Tr(−) the (Auslander)
transpose. The following proposition tells us the relationship of (tac) with other properties including (tr).

Proposition 2.8. The following implications hold true.

R is Gorenstein ⇒ R satisfies (tac) ⇔ any ∞-syzygy is totally reflexive
⇔ any ∞-syzygy M satisfies Ext1R(M,R) = 0 ⇒ R satisfies (tr).

Proof. Call the five conditions (1)–(5) in order. Combining (2.7.1) and (2.7.2) shows (1) implies (2).
Let M be an ∞-syzygy. There is an exact sequence 0 → M → F 0 → F 1 → · · · of finitely generated free

R-modules. Splicing this with a minimal free resolution · · · → F1 → F0 →M → 0, we get an acyclic complex
(· · · → F1 → F0 → F 0 → F 1 → · · · ) of finitely generated free R-modules. If this is totally acyclic, then M
is totally reflexive by [7, (4.2.6)]. Thus (2) implies (3). By the definition of total reflexivity, (3) implies (4).

Let P = (· · · → P i
∂i

−→ P i+1 → · · · ) be an acyclic complex of finitely generated free R-modules. Then
for each i the image Ci of the map ∂i is an ∞-syzygy. If Ext1R(C

i, R) = 0 for all i, then the complex P ∗ is
exact, and hence P is totally acyclic. Hence, (4) implies (2).

Let N be a finitely generated R-module such that Ext>0
R (N,R) = 0. Then TrN is an ∞-syzygy by [2,

(2.17)]. If TrN is totally reflexive, then so is N . Therefore, (3) implies (5). ■

Using the above proposition, we obtain the following corollary regarding the property (tac).

Corollary 2.9. Let x ∈ m be an R-regular element. Then R satisfies (tac) if and only if so does R/(x).

Proof. Let M be an ∞-syzygy over R. Then there exists an exact sequence 0 → M → F 0 → F 1 → · · ·
of finitely generated R-modules such that each F i is free. Note then that x is regular on M and each F i.
Tensoring R/(x) over R gives rise to an exact sequence 0→M/xM → F 0/xF 0 → F 1/xF 1 → · · · of finitely
generated R/(x)-modules and each F i/xF i is free over R/(x). Hence M/xM is an ∞-syzygy over R/(x). If
M/xM is totally reflexive over R/(x), then M is totally reflexive over R by [7, (1.4.4)].

Let M be an ∞-syzygy over R/(x). Then there exists an exact sequence 0 → M → P 0 → P 1 → · · ·
of finitely generated R/(x)-modules such that each P i is free over R/(x). Decompose it into short exact
sequences {0 → M i → P i → M i+1 → 0}i⩾0 of R/(x)-modules, where M0 = M . Taking the syzygy over
R, we get short exact sequences {0 → ΩRM

i → Qi → ΩRM
i+1 → 0}i⩾0 of R-modules, where Qi is free

over R. Splicing them gives rise to an exact sequence 0 → ΩRM → Q0 → Q1 → · · · of finitely generated
R-modules. Hence ΩRM is an ∞-syzygy over R. If it is totally reflexive over R, then GdimRM ⩽ 1 and
GdimR/(x)M = GdimRM − 1 ⩽ 0 by [7, (1.2.9) and (1.5.3)], so that M is totally reflexive over R/(x). ■

Next we study a property that unifies both of the properties P and Q as in (1.0.1). Let E be a property
of local rings. We consider the following condition.

(2.9.1)
A local ring R satisfies E if and only if so does the formal power series ring R[[X]],

if and only if so does the completion R̂.

Note that if E satisfies the equivalences (2.9.1), then the implications (1.0.1) hold for P = Q = E. We also
consider the following condition.

(2.9.2)
Let (R,m) be a local ring. Let x ∈ m \m2 be an R-regular element.

Then R satisfies E if and only if so does R/(x).

These two conditions have the relationship as stated in the lemma below.

Lemma 2.10. If (2.9.2) holds, then (2.9.1) holds as well.

Proof. We divide the proof into two steps; combining (1) and (2) below completes the proof of the lemma.
(1) We show that a local ring R satisfies E if and only if the formal power series ring R[[X]] satisfies E.

Let M be the maximal ideal of R[[X]]. Then X belongs to M \M2 and is R[[X]]-regular. Considering (2.9.2)
for the local ring R[[X]], we see that R[[X]] satisfies E if and only if so does R[[X]]/(X) ∼= R.
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(2) We show that a local ring R satisfies E if and only if the completion R̂ satisfies E. By [17, Theorem

8.12] we have R̂ ∼= R[[X1, . . . , Xn]]/(X1−a1, . . . , Xn−an), where R[[X1, . . . , Xn]] is a formal power series ring
and a1, . . . , an is a system of generators of m. It is seen from (1) that R satisfies E if and only if so does
R[[X1, . . . , Xn]]. For each 1 ⩽ i ⩽ n, set Ri = R[[X1, . . . , Xn]]/(X1 − a1, . . . , Xi−1 − ai−1) and let mi be the
maximal ideal of Ri. Then the image of Xi− ai in Ri belongs to mi \m2

i and Ri-regular. Considering (2.9.2)
for the local ring Ri, we observe that Ri satisfies E if and only if so does Ri/(Xi − ai)Ri ∼= Ri+1. Hence

R[[X1, . . . , Xn]] = R1 satisfies E if and only if so does Rn+1 = R̂. ■
The following result says that each of the properies that have been introduced so far is preserved under

the formal power series extension and the completion.

Theorem 2.11. The statement (2.9.1) holds for E ∈ {(ab), (ci), (cm), (ee), (gap), (gor), (tac), (te), (tr)}.
Proof. Proposition 2.4(2) implies that if the formal power series ring R[[X]] over a local ring R satisfies
(ee), then so does R, while the converse holds by Proposition 2.4(3) and the isomorphism R[[X]]/(X) ∼= R.
Combining this with Proposition 2.4(4) shows that (2.9.1) holds for (ee). An analogous argument using
Proposition 2.5 instead of Proposition 2.4 shows that (2.9.1) holds for (te).

We shall show that (2.9.2) actually holds for the remaining seven properties; then so does (2.9.1) by
Lemma 2.10. It follows from (1) and (3) of [10, Proposition 3.3] that (2.9.2) holds for (ab) and (gap),
respectively. Fundamental facts say that (2.9.2) holds for (ci), (cm) and (gor). It is stated in Corollary 2.9
and Proposition 2.6(2) respectively that (2.9.2) holds for (tac) and (tr). ■
Remark 2.12. We do not know whether (2.9.2) holds for (ee) or (te). More precisely, we have no idea how to
prove that if a local ring (R,m) satisfies (ee)/(te), then so does R/(x) for each R-regular element x ∈ m\m2.
Suppose that R satisfies (ee) and letM,N be finitely generated R/(x)-modules such that Ext≫0

R/(x)(M,N) = 0.

Then, as in [10, (1.3)], there is an exact sequence · · · → ExtiR/(x)(M,N)→ ExtiR(M,N)→ Exti−1
R/(x)(M,N)→

· · · , which implies Ext≫0
R (M,N) = 0. Since the ring R satisfies (ee), we get Ext≫0

R (N,M) = 0. As R is
Gorenstein by Proposition 2.4(1), we see that Ext≫0

R (N,ΩRM) = 0, and Ext≫0
R/(x)(N,ΩRM/xΩRM) = 0 by

[17, §18, Lemma 2]. Let · · · → F1 → F0 →M → 0 be a minimal free resolution of M as an R-module. This
gives an exact sequence 0→ ΩRM → F0 →M → 0. The chain map given by the multiplication by x yields
an exact sequence σ : 0 → M → ΩRM/xΩRM → ΩR/(x)M → 0 of R/(x)-modules. If σ splits, then we will

get that Ext≫0
R/(x)(N,M) = 0 and conclude that R satisfies (ee). However, σ does not split in general.

3. On a question of Araya and the depth formula

In a private communication of Justin Lyle with Tokuji Araya, the following question is posed.

Question 3.1 (Araya). Let R be a local ring of positive depth. Let M be a finitely generated R-module
such that Ext>0

R (M,R) = 0. Then must M have positive depth?

We relate this question with the property (tr). For this we prepare two lemmas. The first one is elementary.

Lemma 3.2. Let R be a local ring with maximal ideal m such that depthR > 0. Let M be a finitely generated
R-module such that depthM > 0 and M ∈ mod0R. Then M is torsionless.

Proof. Fix a prime ideal p of R. First, assume that p ∈ AssR. Then p 6= m, and hence Mp is Rp-free. In
particular, the Rp-module Mp is torsionless. Next, assume that depthRp > 0. Suppose that depthMp = 0.
Then p 6= m, and hence Mp is Rp-free. We have 0 = depthMp = depthRp > 0, which is a contradiction.
Therefore, we must have depthMp > 0. It follows from [5, Proposition 1.4.1] that M is torsionless. ■

The second lemma is shown by a similar argument as in the proof of [21, Theorem 4.3]. To prove the
lemma, we need to recall some notation and terminology. We denote by modR the category of finitely
generated R-modules, and by mod0R the full subcategory of modR consiting of modules which are locally
free on the punctured spectrum of R. A resolving subcategory of modR is by definition a full subcategory
of modR containing R and closed under direct summands, extensions and syzygies. For a finitely generated
R-module M , we denote by resM the resolving closure of M , that is, the smallest resolving subcategory of
modR containing M , and by NF(M) the nonfree locus of M , that is, the set of prime ideals p of R such that
the Rp-module Mp is nonfree. The subset NF(M) of SpecR is Zariski-closed; see [21, Corollary 2.11].

Lemma 3.3. Let (R,m) be a local ring with depthR > 0. Let M be an R-module such that depthM > 0 and
GdimM =∞. Then there exists an R-module N ∈ resM∩mod0R such that depthN > 0 and GdimN =∞.
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Proof. If M ∈ mod0R, letting N = M completes the proof. Assume M /∈ mod0R. Then there is a prime
ideal p of R with m 6= p ∈ NF(M). We find an R-regular element x ∈ m \ p. Consider the pushout diagram:

0 // ΩM //

x

��

R⊕n //

��

M // 0

0 // ΩM // N // M // 0

The bottom row shows depthN > 0 and N ∈ resM . We observe NF(N) ⊆ NF(M) and Np
∼= R⊕n

p . Hence
NF(N) ⊊ NF(M). Applying the snake lemma to the diagram, we get an exact sequence 0 → R⊕n → N →
ΩM/xΩM → 0. The bottom row again shows that if GdimN < ∞, then GdimM < ∞, a contradiction.
Hence GdimN =∞. If N ∈ mod0R, then we are done. If N /∈ mod0R, then applying the above argument
to N gives us an R-module L ∈ resN ⊆ resM such that NF(L) ⊊ NF(N), depthL > 0 and GdimL =∞. It
is impossible to repeat this argument infinitely many times, because otherwise we get a chain · · · ⊊ NF(L) ⊊
NF(N) ⊊ NF(M) of Zariski-closed sets, which contradicts the fact that SpecR is a noetherian space. ■

We denote by addR the full subcategory of modR consisting of free modules, and by (−)∗ the R-dual
functor HomR(−, R). The first cosyzygy Ω−1M of a finitely generated R-module M is defined as the cokernel
of a left addR-approximation (or addR-preenvelope) f : M → F , that is, f is a morphism in modR with F
free such that f∗ : F ∗ →M∗ is surjective. For an integer n ⩾ 2 the nth cosyzygy Ω−nM is defined inductively
by Ω−nM = Ω−1(Ω−(n−1)M). It is known that Ω−1M always exists and is isomorphic to TrΩTrM up to
free summands, so that Ext1R(Ω

−1M,R) = 0. For the details of cosyzygies, we refer the reader to [2, 20].
In the theorem below, we obtain characterizations of local rings of positive depth that satisfy (tr).

Theorem 3.4. Let R be a local ring with depthR > 0. Then the following are equivalent.

(1) Every finitely generated R-module M with Ext>0
R (M,R) = 0 is totally reflexive, that is, R satisfies (tr).

(2) Every finitely generated R-module M with Ext>0
R (M,R) = 0 satisfies depthM > 0.

In particular, Question 3.1 has an affirmative answer for R if and only if R satisfies (tr).

Proof. It is clear that (1) implies (2). Assume that (1) does not hold but (2) does. Then there is an R-module
M which is not totally reflexive but satisfies Ext>0

R (M,R) = 0. It is seen from [7, (1.2.7)] that GdimM =∞.
By (2) we have depthM > 0. Also, M belongs to the full subcategory X of modR consisting of modules
X with Ext>0

R (X,R) = 0. As X is resolving, by Lemma 3.3 we find an R-module N ∈ X ∩ mod0R,
depthN > 0 and GdimN = ∞. Lemma 3.2 implies that N is torsionless. Therefore, there is an exact
sequence 0 → N → F 0 → Ω−1N → 0 with F 0 free. This exact sequence implies GdimΩ−1N = ∞ and
Ext>0(Ω−1N,R) = 0, while we see that Ω−1N ∈ mod0R. By (2) again we have depthΩ−1N > 0. Applying
Lemma 3.2 again, we see that Ω−1N is torsionless, and get an exact sequence 0→ Ω−1N → F 1 → Ω−2N → 0
with F 1 free. Iterating this procedure yields an exact sequence

0→ N → F 0 ∂1

−→ F 1 ∂2

−→ F 2 ∂3

−→ · · ·
such that for each i > 0 we have that F i is free, the image of ∂i is Ω−iN , and Ext>0(Ω−iN,R) = 0. Applying
the functor (−)∗ gives rise to an exact sequence · · · → (F 2)∗ → (F 1)∗ → (F 0)∗ → N∗ → 0, and applying (−)∗
again restores the original exact sequence. This shows that N is totally reflexive. However, this contradicts
the fact that GdimN =∞. We now conclude that (2) implies (1). ■

We can show the following proposition on the relationship between (dep) and (tr).

Proposition 3.5. Let R be a Cohen–Macaulay local ring of positive dimension. If R satisfies (dep), then it
satisfies (tr).

Proof. Suppose that R does not satisfy (tr). Then there exists an R-module M such that Ext>0
R (M,R) = 0

and depthM = 0 by Theorem 3.4. Since R̂ is complete, it admits a canonical module ω. Take a system of

parameters x = x1, . . . , xd of R, where d = dimR > 0. Note that x is an R-sequence, an R̂-sequence and an

ω-sequence. We have Ext>0

R̂
(M̂, R̂) = 0. It follows from [16, Lemma 3.4] that TorR̂>0(M̂, ω) = 0 and M̂ ⊗R̂ ω

is maximal Cohen–Macaulay. Hence x is an M̂ ⊗R̂ ω-sequence. There are isomorphisms

M ⊗L
R ω/xω

∼=M ⊗L
R ω ⊗L

R̂
R̂/xR̂ ∼=M ⊗L

R R̂⊗L
R̂
ω ⊗L

R̂
R̂/xR̂ ∼= (M̂ ⊗L

R̂
ω)⊗L

R̂
R̂/xR̂

∼= (M̂ ⊗R̂ ω)⊗
L
R̂
R̂/xR̂ ∼= (M̂ ⊗R̂ ω)⊗R̂ R̂/xR̂ ∼=M ⊗R ω/xω.
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We obtain TorR>0(M,ω/xω) = 0. Since ω/xω has finite length as an R̂-module, it has finite length as an
R-module. In particular, ω/xω is a finitely generated R-module. As R satisfies (dep), we have

0 ⩽ depthR(M ⊗R ω/xω) = depthRM + depthR ω/xω − depthR = 0 + 0− d = −d < 0.

This contradiction completes the proof of the proposition. ■

In the theorem below we investigate the relationship between (dep) and the vanishing of Ext modules.

Theorem 3.6. Let (R,m, k) be a Cohen–Macaulay local ring of dimension d > 0 with a canonical module
ω. If R satisfies (dep), then for all two finitely generated R-modules M and N such that Ext≫0

R (M,N) = 0

one has Ext>dR (M,N) = 0. The converse holds true if R is Gorenstein.

Proof. A Gorenstein local ring satisfying the condition in the assertion about modules M,N is an AB ring.
It is shown in [8, Corollary 5.3(b)] that every AB ring satisfies (dep).

Assume that R satisfies (dep). Let n ⩾ 0 be an integer, and let M and N be finitely generated R-modules
such that Ext>nR (M,N) = 0 and ExtnR(M,N) 6= 0.

We claim that if M and N are maximal Cohen–Macaulay R-modules, then n = 0. In fact, assume n > 0.
Let x = x1, . . . , xd be a system of parameters of R. This is a regular sequence on K := Ωn−1M . Since
Ext>1

R (K,N) = 0 and Ext1R(K,N) 6= 0, an analogous argument as in the proof of Lemma 2.3(2) shows that

Ext>d+1
R (K/xK,N) = 0 and Extd+1

R (K/xK,N) 6= 0. The dth syzygy L = ΩdR(K/xK) is a maximal Cohen–

Macaulay R-module such that Ext>1
R (L,N) = 0 and Ext1R(L,N) 6= 0. As L is locally free on the punctured

spectrum of R and d > 0, by [14, Lemma 3.5(2)] we get TorRi (L,N
†) ∼= Extd+iR (L,N)∨ = 0 for all i > 0,

where (−)† = HomR(−, ω) is the canonical dual and (−)∨ = HomR(−,ER(k)) is the Matlis dual. Since R
satisfies (dep), we have depth(L⊗RN†) = depthL+depthN†−depthR = d, and hence L⊗RN† is maximal
Cohen–Macaulay. It follows from [14, Proposition 2.5] that ExtiR(L,N) = 0 for all integers 1 ⩽ i ⩽ d. This
contradicts the fact that Ext1R(L,N) 6= 0; recall that d > 0. Thus we must have n = 0. The claim follows.

As R is a Cohen–Macaulay local ring with a canonical module, there exists a maximal Cohen–Macaulay
approximation of N , that is to say, an exact sequence 0→ Y → X → N → 0 of finitely generated R-modules
such that Y has finite injective dimension and X is maximal Cohen–Macaulay; see [15, Theorem 11.17]. Since
H := ΩdM is maximal Cohen–Macaulay, we have Ext>0

R (H,Y ) = 0. We see that ExtiR(H,X) ∼= ExtiR(H,N)

for all i > 0, and that ExtiR(H,N) ∼= Exti+dR (M,N) = 0 for all i� 0. The above claim implies Ext>0
R (H,X) =

0, whence Ext>0
R (H,N) = 0 and Ext>dR (M,N) = 0. This completes the proof of the theorem. ■

4. Proofs of the main results

We give proofs of the five results stated in the Introduction. The first theorem is shown by a short proof
and independent of the results given in the previous sections. A theorem of Heitmann [9] plays a key role.

Proof of Theorem 1.1. (1) Consider the formal power series ring B = A[[X1, . . . , Xn]], where n := ρ− α ⩾ 0.
Then B is complete (see [17, Exercise 8.6]), B/mB ∼= A/mA = k, charB = charA = char k, and depthB =
ρ ⩾ 2. Since A contains a field, any integer m such that m · 1 6= 0 in R is a non-zerodivisor of R. By virtue
of [9, Main Theorem], there exists a local unique factorization domain R having an isolated singularity such

that R̂ ∼= B. We have depthR = ρ, charR = charB and R/mR ∼= B/mB . As A does not satisfy P, neither
does B, and neither does R. Since A satisfies Q, so does B, and so does R.

(2) Apply the proof of (1) to n := σ − α ⩾ 0; note that depthB = σ ⩾ 1. Then we find a local domain

S having an isolated singularity such that Ŝ ∼= B, and observe that S does not satisfy P but satisfies Q,
depthS = σ and charS = charA = char k. ■

Proof of Theorem 1.2. The assertion immediately follows from Theorem 3.6 and [10, Proposition 3.2]. ■

Proof of Corollary 1.3. By virtue of [12, Corollary 4.2], there exists an artinian Gorenstein equicharacteristic
local ring A which does not satisfy (ee). Note then that A is complete. Set P = (ee) and Q = (gor).
Theorem 2.11 says that P and Q satisfy the implications (1.0.1). The assertion follows from Theorem 1.1.
The last assertions of (1) and (2) are consequences of the first ones and Theorem 1.2. ■

Proof of Theorem 1.4. The assertion is an immediate consequence of Propositions 2.8 and 3.5. ■
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Proof of Corollary 1.5. By [13, Theorem 1.7], there is an artinian equicharacteristic local ring A which does
not satisfy (tr). Then A is complete and Cohen–Macaulay. Let P = (tr) and Q = (cm). Theorem 2.11 says
P,Q satisfy (1.0.1). The first assertions of (1) and (2) follow by Theorem 1.1. The last assertions of (1) and
(2) are consequences of the first ones and Theorem 1.4. ■

Combining Theorem 3.4 with Corollary 1.5, we obtain the following result.

Corollary 4.1. Let k be a field which is not algebraic over a finite field.

(1) For each d ⩾ 2, there exists a d-dimensional Cohen–Macaulay equicharacteristic local unique factorization
domain (R,mR, k) with an isolated singularity which admits a finitely generated module M such that
Ext>0

R (M,R) = 0 and depthM = 0.
(2) There exists a 1-dimensional Cohen–Macaulay equicharacteristic local domain (S,mS , k) which admits a

finitely generated module N such that Ext>0
S (N,S) = 0 and depthN = 0.

In particular, both (1) and (2) give negative answers to Question 3.1.

In a similar way, it is actually possible to get more results in the same context. For instance, let A =
k[X,Y, Z]/(X2 − Y 2, X2 − Z2, XY,XZ, Y Z) be a residue ring of a polynomial ring over a field k. Then A
is an artinian Gorenstein non-complete intersection equicharacteristic local ring with embedding dimension
3 and multiplicity 5. It is seen from [10, Theorem 3.4(2) and Lemma 3.7] that A satisfies (gap) and (te).
Applying Theorems 1.1 and 2.11 to this ring A and the properties P = (ci) and Q = (gap) ∧ (te) yields:

Corollary 4.2. Let k be a field. Then the following two statements hold true.

(1) For any d ⩾ 2, there exists a d-dimensional equicharacteristic local unique factorization domain (R,mR, k)
with an isolated singularity which is not a complete intersection but satisfies both (gap) and (te).

(2) There exists a 1-dimensional equicharacteristic local domain (S,mS , k) which is not a complete intersec-
tion but satisfies both (gap) and (te).

No counterexample has been found so far to each of the implications (gap) ⇒ (ab) ⇒ (ee) ⇐ (te) and
(tac) ⇒ (tr). Once a counterexample of an artinian equicharacteristic local ring is found, one can lift it to
a counterexample of a (unique factorization) domain with an isolated singularity by Theorems 1.1 and 2.11.

Finally, we give some comments on [22].

Remark 4.3. Corollary 1.5 says that the assertions of [22, Theorem 1.1 and Corollary 1.3] are both incorrect.
In their proofs, [22, Theorem 8.5] plays an essential role, and the authors wonder if the proof of [22, Theorem
8.5] contains gaps. To be more precise, the following sentence is given in [22, page 132, lines 8–9].

Similarly, φFn : F̃ → X0 is represented by (0 φFn−1) : Fn−1[n− 1]⊕ F̃ ′ → X0.

We are not sure why this sentence is true. If it were true, by induction φFn would be represented by
(0 0 · · · 0 pF0 ) : Fn−1[n−1]⊕Fn−2[n−2]⊕· · ·⊕F1[1]⊕F0 → X0, but we feel that this claim is too strong. In
fact, for example, in [22, Lemma 9.4], to deduce that φFn has such a representation, a very strong assumption
is imposed on those complexes for which contraction is taken. Other than this, a lot of identifications are
done in the proof of [22, Theorem 8.5], about whose correctness we are not sure. The classical proof that the

octahedral axiom holds in the homotopy category would give that φFn : F̃ → X0 is represented by

(pFn−1[n− 1] φFn−1) : Fn−1[n− 1]⊕ F̃ ′ → X0

instead of (0 φFn−1), noting one of the identifications here is to identify X0 with cone(ψFn−1) which as an

underlying graded R-module is Xn−1[n− 1]⊕ F̃ ′. To be more precise, inductively there is a diagram:

Xn−1[n− 2]
ψF

n−1 // F̃ ′
φF

n−1 // X0

ω̃F
n−1 //

δFn−1

��

Xn−1[n− 1]

Xn−1[n− 2]
ψF

n−1 // F̃ ′
λF
n−1 // cone(ψFn−1)

µF
n−1 //

ϵFn−1

OO

Xn−1[n− 1]

where δFn−1 and ϵFn−1 are homotopy inverses and where the bottom row is the natural strict triangle, which

identifies the top row as a triangle in K(R). Then the map φFn is given by (εFn−1 ◦
(pFn−1[n−1]

0

)
φFn−1) from the

standard proof that the octahedral axiom holds, but importantly, with this description of φFn , the diagram
in the proof of [22, Theorem 8.5] does not obviously commute, and should not commute in general. At least
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many of the remaining identifications made in the proof of [22, Theorem 8.5] could be similarly avoided by
keeping track of the relevant isomorphisms between the given triangles and their strict counterparts. So the
key point is that the correct inductive description of the map φFn is one where the relevant diagram does not
commute in general.

On the other hand, the ring R produced by Corollary 1.5 is not excellent. So, even if the proof of [22,
Theorem 8.5] contains gaps, the assertion itself may be true in the case where the base ring is excellent.
However, the theory developed in [22] does not seem to be related to the excellence of the base ring, so even
if the assertion of [22, Theorem 8.5] is true for excellent rings, we would need another approach to show it.
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