WHEN IS THERE A NONTRIVIAL EXTENSION-CLOSED SUBCATEGORY?

RYO TAKAHASHI

Abstract. Let R be a commutative Noetherian local ring, and denote by $\text{mod } R$ the category of finitely generated R-modules. In this paper, we consider when $\text{mod } R$ has a nontrivial extension-closed subcategory. We prove that this is the case if there are part of a minimal system of generators x, y of the maximal ideal with $xy = 0$, and that it holds if R is a stretched Artinian Gorenstein local ring which is not a hypersurface.

Introduction

Let R be a commutative Noetherian local ring with maximal ideal m. Denote by $\text{mod } R$ the category of finitely generated R-modules. An extension-closed subcategory of $\text{mod } R$ is by definition a nonempty strict full subcategory of $\text{mod } R$ closed under direct summands and extensions. The zero R-module, the finitely generated free R-modules and all the finitely generated R-modules form extension-closed subcategories of $\text{mod } R$, respectively. We call these three subcategories trivial extension-closed subcategories of $\text{mod } R$.

In this paper, we consider when there are only trivial extension-closed subcategories and when a nontrivial one exists. In the case where R is an Artinian hypersurface, all the extension-closed subcategories of $\text{mod } R$ are trivial. Our conjecture is that the converse also holds true.

Conjecture. The following are equivalent.
(1) R is an Artinian hypersurface.
(2) $\text{mod } R$ has only trivial extension-closed subcategories.

Both conditions in this conjecture imply that R is an Artinian Gorenstein local ring. The conjecture holds if R is a complete intersection.

The main result of this paper is the following theorem.

Theorem. Let x, y be part of a minimal system of generators of m with $xy = 0$. Then R/m does not belong to the smallest extension-closed subcategory of $\text{mod } R$ containing $R/((x))$, and hence it is a nontrivial extension-closed subcategory.

Let R be an Artinian local ring of length l with embedding dimension e. Recall that R is said to be stretched if $m^{l-e} \neq 0$. An Artinian Gorenstein local ring which is not a field and the cube of whose maximal ideal is zero is an example of a stretched Artinian Gorenstein local ring. The above theorem yields the following corollary, which guarantees that our conjecture holds when R is a stretched Artinian Gorenstein local ring.

2010 Mathematics Subject Classification. 13C60.

Key words and phrases. extension-closed subcategory, stretched Artinian local ring, extension closure.
Corollary. Let R be a stretched Artinian Gorenstein local ring. Then the following are equivalent.

(1) R is an Artinian hypersurface.
(2) $	ext{mod } R$ has only trivial extension-closed subcategories.

Convention

1. Throughout the rest of this paper, we assume that all rings are commutative Noetherian local rings, and that all modules are finitely generated. Let R be a commutative Noetherian local ring. We denote by m the maximal ideal of R, by k the residue field of R and by $	ext{mod } R$ the category of finitely generated R-modules.

2. Let C be a category. In this paper, by a subcategory of C, we always mean a nonempty strict full subcategory of C. (Recall that a subcategory X of C is said to be strict if every object of C that is isomorphic in C to some object of X belongs to X.) By the subcategory of C consisting of objects $\{M_\lambda\}_{\lambda \in \Lambda}$, we always mean the smallest strict full subcategory of C to which M_λ belongs for all $\lambda \in \Lambda$. Note that this coincides with the full subcategory of C consisting of all objects $X \in C$ such that $X \cong M_\lambda$ for some $\lambda \in \Lambda$.

3. We will often omit a letter indicating the base ring if there is no fear of confusion.

1. Some observations

We begin with recalling the precise definition of an extension-closed subcategory of $\text{mod } R$.

Definition 1.1. Let \mathcal{X} be a subcategory of $\text{mod } R$. We say that \mathcal{X} is extension-closed if \mathcal{X} satisfies the following two conditions.

(1) \mathcal{X} is closed under direct summands: if M is an R-module in \mathcal{X} and N is a direct summand of M, then N is also in \mathcal{X}.
(2) \mathcal{X} is closed under extensions: for every exact sequence $0 \to L \to M \to N \to 0$ of R-modules, if L and N are in \mathcal{X}, then M is also in \mathcal{X}.

For an R-module X, we denote by $\text{add}_R X$ the additive closure of X, namely, the smallest subcategory of $\text{mod } R$ containing X which is closed under finite direct sums and direct summands. This is nothing but the subcategory of $\text{mod } R$ consisting of all direct summands of finite direct sums of copies of X. Note that the additive closure $\text{add}_R R$ of R is the same as the subcategory of $\text{mod } R$ consisting of all free R-modules.

We call the subcategory of $\text{mod } R$ consisting of the zero R-module the zero subcategory of $\text{mod } R$, and denote it by $\mathbf{0}$. Clearly,

$\mathbf{0}, \text{add } R, \text{mod } R$

are all extension-closed subcategories of $\text{mod } R$. We call these three subcategories trivial extension-closed subcategories of $\text{mod } R$.

Definition 1.2. We say that $\text{mod } R$ has only trivial extension-closed subcategories if all the extension-closed subcategories of $\text{mod } R$ are $\mathbf{0}$, $\text{add } R$ and $\text{mod } R$. If there exists an extension-closed subcategory of $\text{mod } R$ other than these three, then we say that $\text{mod } R$ has a nontrivial extension-closed subcategory.
A NONTRIVIAL EXTENSION-CLOSED SUBCATEGORY

Over an Artinian hypersurface, there exists no nontrivial extension-closed subcategory.

Proposition 1.3. If R is an Artinian hypersurface, then $\text{mod } R$ has only trivial extension-closed subcategories.

Proof. This is proved in [6, Proposition 5.6]. For the convenience of the reader, we give here a proof. There exist a discrete valuation ring S with maximal ideal (x) and a positive integer n such that R is isomorphic to $S/(x^n)$. Applying to S the structure theorem for finitely generated modules over a principal ideal domain, we have

$$\text{mod } R = \text{add}_R (R \oplus R/(x) \oplus R/(x^2) \oplus \cdots \oplus R/(x^{n-1})).$$

Let \mathcal{X} be an extension-closed subcategory of $\text{mod } R$. Suppose that \mathcal{X} is neither 0 nor $\text{add } R$. Then \mathcal{X} contains $R/(x^l)$ for some $1 \leq l \leq n - 1$. For each integer $1 \leq i \leq n - 1$ there exists an exact sequence

$$0 \rightarrow R/(x^i) \xrightarrow{f} R/(x^{i-1}) \oplus R/(x^{i+1}) \xrightarrow{g} R/(x^i) \rightarrow 0$$

of R-modules, where $x^0 := 1$, $f([a]) = \left(\frac{a}{x} \right)$ and $g(\left[\frac{a}{x} \right]) = ax - b$. Hence \mathcal{X} contains both $R/(x^{i-1})$ and $R/(x^{i+1})$. An inductive argument implies that \mathcal{X} contains $R/(x), R/(x^2), \ldots, R/(x^{n-1}), R/(x^n) = R$. Therefore \mathcal{X} coincides with $\text{mod } R$. □

We conjecture that the converse of Proposition 1.3 also holds. The main purpose of this paper is to study this conjecture.

Conjecture 1.4. If $\text{mod } R$ has only trivial extension-closed subcategories, then R is an Artinian hypersurface.

One can show that the assumption of Conjecture 1.4 implies that R is Artinian and Gorenstein.

Proposition 1.5. If $\text{mod } R$ has only trivial extension-closed subcategories, then R is an Artinian Gorenstein ring.

Proof. First, let \mathcal{X} be the subcategory of $\text{mod } R$ consisting of all R-modules of finite length. Clearly, \mathcal{X} is an extension-closed subcategory of $\text{mod } R$. Using the fact that \mathcal{X} contains k and our assumption, we easily deduce that \mathcal{X} coincides with $\text{mod } R$, which implies that R is Artinian.

Next, let \mathcal{Y} be the subcategory of $\text{mod } R$ consisting of all injective R-modules. It is obvious that \mathcal{Y} is extension-closed, and the injective hull of k belongs to \mathcal{Y}. Our assumption implies that \mathcal{Y} is equal to $\text{add } R$, and we see that R is Gorenstein. □

In the proposition below, we give a sufficient condition for $\text{mod } R$ to have a nontrivial extension-closed subcategory. This sufficient condition is a little complicated, but by using this, we will obtain some explicit sufficient conditions.

Proposition 1.6. Let $S \rightarrow R$ be a homomorphism of local rings. Assume that there exist R-modules M, N such that:

- M is S-flat and not R-free,
- N is not S-flat.

Then $\text{mod } R$ has a nontrivial extension-closed subcategory.
Proof. Let \mathcal{X} be the subcategory of $\text{mod } R$ consisting of all S-flat R-modules. It is easy to see that \mathcal{X} is an extension-closed subcategory of $\text{mod } R$. The existence of M and N shows that \mathcal{X} does not coincide with any of 0, $\text{add } R$, $\text{mod } R$. \hfill \Box

The following result is a direct consequence of Proposition 1.6.

Corollary 1.7. Suppose that there exists a local subring $S \subseteq R$ which is not a field and an ideal $I \subseteq R$ such that the composition $S \to R \to R/I$ is an isomorphism. Then $\text{mod } R$ has a nontrivial extension-closed subcategory.

Proof. Apply Proposition 1.6 to $M = R/I$ and $N = k$. \hfill \Box

The next three results, which give explicit sufficient conditions for $\text{mod } R$ to have a nontrivial extension-closed subcategory, are all deduced from Corollary 1.7.

Corollary 1.8. Let S be a local ring which is not a field and N a nonzero S-module. Let $R = S \ltimes N$ be the idealization of N over S. Then $\text{mod } R$ has a nontrivial extension-closed subcategory.

Proof. Setting $I = \{ (0, n) \in R \mid n \in N \}$, we see that the composite map $S \to R \to R/I$ of natural homomorphisms is an isomorphism. Corollary 1.7 yields the conclusion. \hfill \Box

Corollary 1.9. Let S, T be complete local rings which are not fields and have the same coefficient field k. Let $R = S \hat{\otimes}_k T$ be the complete tensor product of S and T over k. Then $\text{mod } R$ has a nontrivial extension-closed subcategory.

Proof. We can write $S \cong k[[x_1, \ldots, x_n]]/(f_1, \ldots, f_a)$ and $T \cong k[[y_1, \ldots, y_m]]/(g_1, \ldots, g_b)$, where $n, m \geq 1$, $f_1, \ldots, f_a \in (x_1, \ldots, x_n)^2$ and $g_1, \ldots, g_b \in (y_1, \ldots, y_m)^2$. Then R is isomorphic to the ring $k[[x_1, \ldots, x_n, y_1, \ldots, y_m]]/(f_1, \ldots, f_a, g_1, \ldots, g_b)$. The composition $S \to R \to R/(y_1, \ldots, y_m)R$ of natural maps is an isomorphism, and we can use Corollary 1.7. \hfill \Box

The following result is due to Shiro Goto.

Corollary 1.10. Let $R = k[[X_1, \ldots, X_n, Y]]/\mathfrak{a}$ be a residue ring of a formal power series ring over a field k with $n \geq 1$. Assume that $Y^{l+1} \in \mathfrak{a} \subseteq (X_1, \ldots, X_n, Y)^{l+1}$ holds for some $l \geq 1$. Then $\text{mod } R$ has a nontrivial extension-closed subcategory.

Proof. Let $x_1, \ldots, x_n, y \in R$ be the residue classes of X_1, \ldots, X_n, Y. Let $k[[y]]$ be the k-subalgebra of R generated by y. Since $Y^{l+1} = 0$, we have a surjective ring homomorphism $\phi : k[[t]]/(t^{l+1}) \to k[[y]]$ given by $\phi(f(t)) = f(y)$ for $f(t) \in k[[t]]$, where t is an indeterminate over k. Thus we obtain a ring homomorphism $\psi : k[[t]]/(t^{l+1}) \xrightarrow{\phi} k[[y]] \subseteq R \to R/(x_1, \ldots, x_n) + \mathfrak{m}^{l+1} = k[[Y]]/(Y^{l+1})$. We see that ψ is an isomorphism. Hence ϕ is injective, and therefore it is an isomorphism. Applying Corollary 1.7 to $S = k[[y]]$ and $I = (x_1, \ldots, x_n) + \mathfrak{m}^{l+1}$, we get the conclusion. \hfill \Box

Using Corollaries 1.8 and 1.9, let us construct examples of a ring R such that $\text{mod } R$ has a nontrivial extension-closed subcategory.
Example 1.11. Let k be a field.

(1) Consider the ring
$$R = k[[x, y, z, w]]/(x^2, xy, xz - yw, xw, y^2, yz, z^2, zw, w^2).$$
This is an Artinian Gorenstein local ring. Putting $S = k[[x, y]]/(x^2, xy, y^2)$, we observe that R is isomorphic to the idealization $S \ltimes E_S(k)$, where $E_S(k)$ denotes the injective hull of the S-module k. Hence it follows from Corollary 1.8 that $\text{mod } R$ has a nontrivial extension-closed subcategory.

In fact, for instance, let X be the subcategory of $\text{mod } R$ consisting of all R-modules X satisfying $\text{Tor}_1^R(R/(x), X) = 0$. It is clear that X is extension-closed. We have an exact sequence
$$0 \to R/(x, y, w) \overset{f}{\to} R \to R/(x) \to 0,$$
where $f(1) = x$. Making the tensor product over R of this exact sequence with $R/(z)$, we get an exact sequence
$$0 \to \text{Tor}_1^R(R/(x), R/(z)) \overset{g}{\to} k \to R/(z) \to R/(x, z) \to 0,$$
where $g(1) = \pi$. We see that $\text{Tor}_1^R(R/(x), R/(z)) = 0$, namely, $R/(z)$ belongs to X. Since $R/(x)$ is not a free R-module, k does not belong to X. Thus X is an extension-closed subcategory of $\text{mod } R$ which is different from any of 0, $\text{add } R$, $\text{mod } R$.

(2) Let
$$R = k[[x, y]]/(x^n, y^m)$$
with $n, m \geq 2$. This is an Artinian complete intersection. Since we have an isomorphism $R \cong k[[x]]/(x^n) \otimes_k k[[y]]/(y^m)$ of rings, $\text{mod } R$ has a nontrivial extension-closed subcategory by Corollary 1.9.

Indeed, for example, the subcategory of $\text{mod } R$ consisting of all R-modules X with $\text{Tor}_1^R(R/(x), X) = 0$ is extension-closed, and does not coincide with any of 0, $\text{add } R$, $\text{mod } R$ because it contains $R/(y)$ and does not contain k.

Now, we verify that Conjecture 1.4 holds for a ring admitting a module with bounded Betti numbers.

Proposition 1.12. Suppose that $\text{mod } R$ has only trivial extension-closed subcategories. If there exists a nonfree R-module M whose Betti numbers are bounded, then R is an Artinian hypersurface.

Proof. That the local ring R is Artinian follows from Proposition 1.5. Let X be the subcategory of $\text{mod } R$ consisting of all R-modules whose Betti numbers are bounded. Then it is easy to see that X is extension-closed. Since the nonfree R-module M belongs to X, our assumption implies that X coincides with $\text{mod } R$. In particular, the module k is in X, which forces R to be a hypersurface (cf. [7] or [1, Remarks 8.1.1(3)]). \hfill \square

Using [3, Theorem 3.2], we observe that such a module M as in Proposition 1.12 exists when there exists an R-complex of finite complete intersection dimension and of infinite projective dimension. (See [2] for the details of complete intersection dimension.) Thus we obtain:
Corollary 1.13. Assume that there exists an \(R \)-complex of finite complete intersection dimension and of infinite projective dimension. If \(\text{mod} \, R \) has only trivial extension-closed subcategories, then \(R \) is an Artinian hypersurface.

Since over a complete intersection local ring every module has finite complete intersection dimension, Corollary 1.13 and Proposition 1.5 guarantee that Conjecture 1.4 holds true in the case where the local ring \(R \) is a complete intersection. Combining this with Proposition 1.3, we get the following result.

Corollary 1.14. If \(R \) is a complete intersection, then the following are equivalent.

1. \(R \) is an Artinian hypersurface.
2. \(\text{mod} \, R \) has only trivial extension-closed subcategories.

2. Main results

In this section, we conduct a closer investigation of the condition that \(\text{mod} \, R \) has a nontrivial extension-closed subcategory. Establishing a certain assumption on the ring \(R \), we shall construct an explicit nontrivial extension-closed subcategory. For this purpose, we begin with introducing a notion of a subcategory constructed from a single module.

Definition 2.1. Let \(X \) be a nonzero \(R \)-module. We define the subcategory \(\text{filt}^n_R X \) of \(\text{mod} \, R \) inductively as follows.

1. Let \(\text{filt}^1_R X \) be the subcategory consisting of \(X \).
2. For \(n \geq 2 \), let \(\text{filt}^n_R X \) be the subcategory consisting of all \(R \)-modules \(M \) such that there are exact sequences

\[
0 \to Y \to M \to X \to 0
\]

of \(R \)-modules with \(Y \in \text{filt}^{n-1}_R X \).

We denote by \(\text{filt}_R X \) the subcategory of \(\text{mod} \, R \) consisting of all \(R \)-modules \(M \) such that \(M \in \text{filt}^n_R X \) for some \(n \geq 1 \).

Here is a result concerning the structure of \(\text{filt}^n_R X \). Its name comes from its property stated in the first assertion.

Proposition 2.2. Let \(X \) be a nonzero \(R \)-module.

1. An \(R \)-module \(M \) belongs to \(\text{filt}^n_R X \) if and only if there exists a filtration

\[
0 = M_0 \subsetneq M_1 \subsetneq M_2 \subsetneq \cdots \subsetneq M_n = M
\]

of \(R \)-submodules of \(M \) with \(M_i/M_{i-1} \cong X \) for all \(1 \leq i \leq n \).

2. If \(\text{filt}^p_R X \) intersects \(\text{filt}^q_R X \), then \(p = q \).

Proof. (1) This can be proved by induction on \(n \).

(2) It is seen from the definition that if an \(R \)-module \(M \) belongs to \(\text{filt}^n_R X \), then we have \(e(M) = n \cdot e(X) \), where \(e(-) \) denotes the multiplicity. The assertion immediately follows from this.

Corollary 2.3. Let \(X \) be a nonzero \(R \)-module.
A NONTRIVIAL EXTENSION-CLOSED SUBCATEGORY

Let \(0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0 \) be an exact sequence of \(R \)-modules. If \(L \) is in \(\text{filt}_R^n X \) and \(N \) is in \(\text{filt}_R^{p+q} X \), then \(M \) is in \(\text{filt}_R^{p+q} X \).

The subcategory \(\text{filt}_R X \) of \(\text{mod} R \) is closed under extensions.

Proof. (1) Using Proposition 2.2(1), we can prove the assertion.

(2) This assertion follows from (1). □

For an \(R \)-module \(X \), we denote by \(\text{ext}_R X \) the extension closure of \(X \), that is, the smallest extension-closed subcategory of \(\text{mod} R \) containing \(X \). One can describe \(\text{ext}_R X \) by using \(\text{filt}_R X \).

Proposition 2.4. Let \(X \) be a nonzero \(R \)-module. Then \(\text{ext}_R X \) coincides with the subcategory of \(\text{mod} R \) consisting of all direct summands of modules in \(\text{filt}_R X \).

Proof. Let \(\mathcal{X} \) be the subcategory of \(\text{mod} R \) consisting of all direct summands of modules in \(\text{filt}_R X \). It suffices to prove the following two statements.

(1) \(\mathcal{X} \) is an extension-closed subcategory of \(\text{mod} R \) containing \(X \).

(2) If \(\mathcal{X}' \) is an extension-closed subcategory of \(\text{mod} R \) containing \(X \), then \(\mathcal{X}' \) contains \(\mathcal{X} \).

As to (1): Obviously, \(\mathcal{X} \) contains \(X \) and is closed under direct summands. Let \(0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0 \) be an exact sequence of \(R \)-modules with \(L, N \in \mathcal{X} \). Then we have isomorphisms \(L \oplus L' \cong Y \) and \(N \oplus N' \cong Z \) for some \(L', N' \in \text{mod} R \) and \(Y, Z \in \text{filt} X \). Taking the direct sum of the above exact sequence with the exact sequences \(0 \rightarrow L' \rightarrow L' \rightarrow 0 \rightarrow 0 \) and \(0 \rightarrow 0 \rightarrow N' \rightarrow N' \rightarrow 0 \), we get an exact sequence

\[
0 \rightarrow Y \rightarrow L' \oplus M \oplus N' \rightarrow Z \rightarrow 0.
\]

Since \(Y, Z \) are in \(\text{filt} X \), so is \(L' \oplus M \oplus N' \), and hence \(M \) belongs to \(\mathcal{X} \). Thus \(\mathcal{X} \) is closed under extensions.

As to (2): Since \(\mathcal{X}' \) is closed under direct summands, we have only to prove that \(\mathcal{X}' \) contains \(\text{filt} X \), equivalently, that \(\mathcal{X}' \) contains \(\text{filt}^n X \) for every \(n \geq 1 \). This can easily be shown by induction on \(n \). □

Let \(x \) be an element of \(R \). To understand the subcategory \(\text{ext}_R(R/(x)) \), we investigate the structure of each module in \(\text{filt}_R^n(R/(x)) \) for \(n \geq 1 \).

Proposition 2.5. Let \(x \in R \) and \(n \geq 1 \). Let \(M \) be an \(R \)-module in \(\text{filt}_R^n(R/(x)) \). Then there exists an exact sequence

\[
\begin{pmatrix}
 x & c_{1,2} & \cdots & c_{1,n} \\
 0 & \ddots & \ddots & \vdots \\
 \vdots & \ddots & \ddots & c_{n-1,n} \\
 0 & \cdots & 0 & x
\end{pmatrix}
\]

of \(R \)-modules with each \(c_{i,j} \) being in \(R \) such that

\[
\begin{pmatrix}
 c_{1,j} \\
 \vdots \\
 c_{j-1,j}
\end{pmatrix}
\]

is in \(\text{span}_R(x) \).
for all $2 \leq j \leq n$.

Proof. We prove the proposition by induction on n. When $n = 1$, we have $M \cong R/(x)$, and there is an exact sequence $R \xrightarrow{x} R \rightarrow M \rightarrow 0$. Let $n \geq 2$. We have an exact sequence $0 \rightarrow Y \rightarrow M \rightarrow R/(x) \rightarrow 0$ of R-modules with $Y \in \text{filt}^{n-1}(R/(x))$. The induction hypothesis shows that there is an exact sequence $R^{n-1} \xrightarrow{A} R^{n-1} \rightarrow Y \rightarrow 0$ with $A = \begin{pmatrix} x & c_{1,2} & \cdots & c_{1,n-1} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & c_{n-2,n-1} \\ 0 & \cdots & 0 & x \end{pmatrix}$ such that $\begin{pmatrix} c_{1,j} \\ \vdots \\ c_{j-1,j} \\ 0 \end{pmatrix} (0 : x) \subseteq \text{Im} \begin{pmatrix} x & c_{1,2} & \cdots & c_{1,j-1} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & c_{j-2,j-1} \\ 0 & \cdots & 0 & x \end{pmatrix}$ for all $2 \leq j \leq n-1$. We have a commutative diagram

\[
\begin{array}{ccccccccc}
0 & \rightarrow & R^{n-1} & \xrightarrow{(A \begin{pmatrix} 1 \\ 0 \end{pmatrix})} & R^{n-1} \oplus R & \xrightarrow{(0 \ 1)} & R & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & R^{n-1} & \xrightarrow{(0 \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix})} & R^{n-1} \oplus R & \xrightarrow{(0 \ 1)} & R & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & Y & \rightarrow & M & \rightarrow & R/(x) & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & & 0 & & 0 & & 0 & & \\
\end{array}
\]

with exact rows and columns. The induced map $g : (0 : x) \rightarrow Y$ is the zero map by the snake lemma. By diagram chasing, we see that $g(r) = f(Br)$ holds for each $r \in (0 : x)$. Hence we have $f(Br) = 0$ for all $r \in (0 : x)$, whence Br is in the image of the map $A : R^{n-1} \rightarrow R^{n-1}$. Writing $B = \begin{pmatrix} c_{1,n} \\ \vdots \\ c_{n-1,n} \end{pmatrix}$, we obtain an inclusion relation $\begin{pmatrix} c_{1,n} \\ \vdots \\ c_{n-1,n} \end{pmatrix} (0 : x) \subseteq \text{Im} \begin{pmatrix} x & c_{1,2} & \cdots & c_{1,n-1} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & c_{n-2,n-1} \\ 0 & \cdots & 0 & x \end{pmatrix}$. Consequently, we have $\begin{pmatrix} c_{1,j} \\ \vdots \\ c_{j-1,j} \end{pmatrix} (0 : x) \subseteq \text{Im} \begin{pmatrix} x & c_{1,2} & \cdots & c_{1,j-1} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & c_{j-2,j-1} \\ 0 & \cdots & 0 & x \end{pmatrix}$.
for all $2 \leq j \leq n$. The middle column of the above diagram gives an exact sequence

$$
\begin{pmatrix}
 x & c_{1,2} & \cdots & c_{1,n-1} & c_{1,n} \\
 0 & \cdots & \cdots & \cdots & \cdots \\
 \vdots & \ddots & \ddots & \ddots & \cdots \\
 \vdots & \ddots & \ddots & \ddots & \cdots \\
 0 & \cdots & 0 & x & c_{n-1,n} \\
 0 & \cdots & 0 & 0 & x
\end{pmatrix}
$$

$$R^n \to R^n \to R^n \to M \to 0.$$

Thus the proof of the proposition is completed.

Now we can prove the following result concerning the structure of $\text{ext}_R(R/(x))$, which is the main result of this paper.

Theorem 2.6. Let x, y be part of a minimal system of generators of m with $xy = 0$. Then k does not belong to $\text{ext}_R(R/(x))$.

Proof. Let e be the embedding dimension of R. We have $e \geq 2$, and write $m = (x, y, z_3, \ldots, z_e)$. Let us assume that k belongs to $\text{ext}_R(R/(x))$. We want to derive a contradiction. By Proposition 2.4, the module k is isomorphic to a direct summand of a module $M \in \text{filt}_R(R/(x))$. We have an isomorphism $M \cong k \oplus N$ for some R-module N, and M belongs to $\text{filt}_R^n(R/(x))$ for some $n \geq 1$. Proposition 2.5 gives an exact sequence

$$(2.6.1) \quad R^n \to R^n \to M \to 0$$

of R-modules such that

$$\left(\begin{array}{c}
 c_{1,j} \\
 \vdots \\
 c_{j-1,j}
\end{array} \right) (0 : x) \subseteq \text{Im} \left(\begin{array}{c}
 x & c_{1,2} & \cdots & c_{1,j-1} \\
 0 & \cdots & \cdots & \cdots \\
 \vdots & \ddots & \ddots & \cdots \\
 \vdots & \ddots & \ddots & \cdots \\
 0 & \cdots & 0 & x
\end{array} \right)$$

for all $2 \leq j \leq n$. Since y is in $(0 : x)$, there are elements $d_{1,j}, \ldots, d_{j-1,j} \in R$ such that

$$\left(\begin{array}{c}
 c_{1,j} y \\
 \vdots \\
 c_{j-1,j} y
\end{array} \right) = \left(\begin{array}{c}
 x & c_{1,2} & \cdots & c_{1,j-1} \\
 0 & \cdots & \cdots & \cdots \\
 \vdots & \ddots & \ddots & \cdots \\
 \vdots & \ddots & \ddots & \cdots \\
 0 & \cdots & 0 & x
\end{array} \right) \left(\begin{array}{c}
 d_{1,j} \\
 \vdots \\
 d_{j-1,j}
\end{array} \right).$$

Hence the equality

$$c_{i,j} y = xd_{i,j} + c_{i,i+1} d_{i+1,j} + \cdots + c_{i,j-1} d_{j-1,j}$$

holds for $2 \leq j \leq n$ and $1 \leq i \leq j - 1$.

We claim that the elements $c_{i,j}, d_{i,j}$ belong to m for all $2 \leq j \leq n$ and $1 \leq i \leq j - 1$. Indeed, the hypothesis of induction on j implies that $c_{i,j}$ is in m for $i + 1 \leq l \leq j - 1$, and the assumption of descending induction on i shows that $d_{i,j}$ is in m for $i + 1 \leq l \leq j - 1$. Hence we have $c_{i,j} y - xd_{i,j} \in m^2$, which gives an equality

$$\overline{c_{i,j}} \cdot \overline{y} - \overline{x} \cdot \overline{d_{i,j}} = \overline{0}$$

in m/m^2. Since x, y are part of a k-basis of m/m^2, we have $\overline{c_{i,j}} = \overline{d_{i,j}} = \overline{0}$ in k. Therefore, $c_{i,j}, d_{i,j}$ belong to m, as desired.
By elementary column operations, the matrix
\[
\begin{pmatrix}
x & c_1,2 & \cdots & c_1,n \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & c_{n-1},n \\
0 & \cdots & 0 & x
\end{pmatrix}
\]
can be transformed into a matrix
\[
\begin{pmatrix}
x & b_1,2 & \cdots & b_1,n \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & b_{n-1},n \\
0 & \cdots & 0 & x
\end{pmatrix}
\]
such that each \(b_{i,j}\) is an element of the ideal \(I = (y, z_3, \ldots, z_e)\). We have an exact sequence
\[
\begin{array}{c}
R^n \\ R^n \\
\text{ann.} \\
M \\
0
\end{array} \rightarrow \\
\begin{array}{c}
R^n \\
R^n \\
\text{ann.} \\
M/IM \\
0
\end{array}
\]
and applying \(- \otimes_R R/I\) to this, we get an exact sequence
\[
\begin{array}{c}
(R/I)^n \\
(R/I)^n \\
(R/I)^n \\
M/IM \\
0
\end{array} \rightarrow \\
\begin{array}{c}
(R/I)^n \\
(R/I)^n \\
(R/I)^n \\
M/IM \\
0
\end{array}
\]
Hence we have an isomorphism \(M/IM \cong (R/I + (x))^n = k^n\). Since \(M/IM \cong k \oplus N/IN\), we see that \(N/IN\) is isomorphic to \(k^{n-1}\), and get an equality
\[
\beta_1^R(N/IN) = (n-1)\beta_1^R(k)
\]
of Betti numbers. There is an exact sequence \(R^\beta_1^R(N) \rightarrow R^\beta_1^R(N) \rightarrow N \rightarrow 0\) of \(R\)-modules, and tensoring \(R/I\) with this gives an exact sequence \((R/I)^\beta_1^R(N) \rightarrow (R/I)^\beta_1^R(N) \rightarrow N/IN \rightarrow 0\) of \(R/I\)-modules. It follows from this that
\[
\beta_1^R(N/IN) \leq \beta_1^R(N).
\]
The isomorphism \(M \cong k \oplus N\) shows
\[
\beta_1^R(M) = \beta_1^R(k) + \beta_1^R(N) = e + \beta_1^R(N).
\]
The existence of the exact sequence (2.6.1) implies
\[
\beta_1^R(M) \leq n.
\]
Since \(m/I = x(R/I)\) and \(x \notin I\), we have
\[
\beta_1^R(k) = 1.
\]
Using the (in)equalities (2.6.2)–(2.6.6), we obtain
\[
n - 1 = (n - 1)\beta_1^R(k) = \beta_1^R(N/IN) \leq \beta_1^R(N) = \beta_1^R(M) - e \leq n - e,
\]
whence \(e \leq 1\). This is a desired contradiction; this contradiction completes the proof of the theorem. \(\square\)

Let \(R\) be an Artinian local ring. Then, using the fact that every \(R\)-module \(M\) is annihilated by the ideal \(m^{\ell(M)}\), we can check that the equality \(m^{\ell(R) - \text{edim}R + 1} = 0\) holds. (Here, \(\ell(M)\) and \(\text{edim} R\) denote the length of \(M\) and the embedding dimension of \(R\),...
respectively.) Recall that R is called *stretched* if $m^i \neq 0$ for all $i < \ell(R) - \text{edim } R + 1$, or equivalently, if $m^{\ell(R) - \text{edim } R + 1} \neq 0$.

Example 2.7. (1) Every Artinian Gorenstein local ring R with $m^3 = 0$ that is not a field is stretched.

(2) Let k be a field, and let $R = k[[x, y, z]]/(xy, xz, yz, x^3 - y^2, x^3 - z^2)$ be a residue ring of a formal power series ring over k. Then R is an Artinian Gorenstein local ring. Since $\ell(R) = 6$, $\text{edim } R = 3$ and $m^3 = (x^3) \neq 0$, the ring R is stretched.

Now we have a sufficient condition for $\text{mod } R$ to have a nontrivial extension-closed subcategory.

Corollary 2.8. Let R be a stretched Artinian Gorenstein local ring with $\text{edim } R \geq 2$. Then $\text{mod } R$ has a nontrivial extension-closed subcategory.

Proof. If $\text{edim } R < \ell(R) - 2$, then by [5, Theorem 1.1] there exist elements $x, y \in R$ with $xy = 0$ which form part of minimal system of generators of m, and Theorem 2.6 shows that $\text{ext}_R(R/(x))$ is a nontrivial extension-closed subcategory of $\text{mod } R$.

Let $\text{edim } R \geq \ell(R) - 2$. Then we have $m^3 = 0$. Take an element $x \in m \setminus m^2$. First, assume that $(0 : x)$ is not contained in $(x) + m^2$. Then there exists an element $y \in (0 : x)$ which does not belong to $(x) + m^2$, and we see that $\overline{x}, \overline{y}$ form part of a k-basis of m/m^2. Hence x, y are part of a minimal system of generators of m with $xy = 0$, and the assertion follows from Theorem 2.6.

Next, assume that $(0 : x)$ is contained in $(x) + m^2$. Then we have

$$ (x) = (0 : (0 : x)) \supseteq (0 : (x) + m^2) = (0 : x) \cap (0 : m^2) = (0 : x). $$

Here, the equality (a) follows from the double annihilator property (cf. [4, Exercise 3.2.15]), and (b) from the inclusion $(0 : m^2) \supseteq m$. Suppose that $(0 : x) \neq (x)$. Then we have $xm \subseteq m^2 \subseteq (0 : x) \subseteq (x)$ and $\ell_R((x)/xm) = 1$, which imply $xm = m^2 = (0 : x)$. Hence $m \subseteq (0 : m^2) = (0 : (0 : x)) = (x)$, which contradicts the assumption that $\text{edim } R \geq 2$. Thus the equality $(0 : x) = (x)$ holds, and there exists an exact sequence

$$ \cdots \to R \xrightarrow{x} R \xrightarrow{y} R \to R/(x) \to 0 $$

of R-modules. This implies that $R/(x)$ belongs to the subcategory \mathcal{X} of $\text{mod } R$ consisting of all R-modules with bounded Betti numbers, which is extension-closed. Hence \mathcal{X} is neither 0 nor $\text{add } R$, and we also have $\mathcal{X} \neq \text{mod } R$ because R is not a hypersurface by the assumption that $\text{edim } R \geq 2$ again. Therefore \mathcal{X} is a nontrivial extension-closed subcategory of $\text{mod } R$.\[\square\]

We can guarantee that our Conjecture 1.4 holds true for a stretched Artinian Gorenstein local ring. The following result follows from Proposition 1.3 and Corollary 2.8.

Corollary 2.9. Let R be a stretched Artinian Gorenstein local ring. Then the following are equivalent.

(1) R is an Artinian hypersurface.
mod R has only trivial extension-closed subcategories.

We end this paper by posing a question.

Question 2.10. An extension-closed subcategory of mod R is called *resolving* if it contains R and is closed under syzygies. Does the assumption of Theorem 2.6 imply that k does not belong to the smallest resolving subcategory of mod R containing $R/(x)$?

Acknowledgments

The author is indebted to Shiro Goto, Petter Andreas Bergh and Kei-ichiro Iima for their valuable comments and useful suggestions.

References

Department of Mathematical Sciences, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan

E-mail address: takahasi@math.shinshu-u.ac.jp