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Abstract. Let R be a commutative noetherian ring. Denote by modR the category of finitely generated R-
modules, by Db(R) the bounded derived category of modR, and by Dsg(R) the singularity category of R. The
main result of this paper provides, when R is a complete intersection, a complete classification of the preaisles

of Db(R) containing R and closed under direct summands, which includes as restrictions the classification

of thick subcategories of Dsg(R) due to Stevenson, and the classification of resolving subcategories of modR
due to Dao and Takahashi.

1. Introduction

A thick subcategory of a triangulated category is a full triangulated subcategory closed under direct sum-
mands. Classifying thick subcategories of a triangulated category has been one of the most central subjects
shared by many areas of mathematics including representation theory, homotopy theory, algebraic geometry
and commutative/noncommutative algebra; see [13, 17, 18, 19, 31, 34, 36, 37, 43, 44, 51, 52, 55, 58, 60, 61]
for instance. A significant work in commutative algebra is a classification of thick subcategories of derived
categories of complete intersections by Stevenson [51]. We introduce a setup to explain Stevenson’s theorem.

Setup 1.1. Let (R, V ) be a pair, where R and V satisfy either of the following two conditions.

(1) R is a commutative noetherian ring which is locally a hypersurface, and V is the singular locus of R.
(2) R is a quotient ring of the form S/(a) where S is a regular ring of finite Krull dimension and a = a1, . . . , ac

is a regular sequence, and V is the singular locus of the zero subscheme of a1x1+· · ·+acxc ∈ Γ(X,OX(1))
where X = Pc−1

S = Proj(S[x1, . . . , xc]).

Under this setup, Stevenson [51] proved the following classification theorem of thick subcategories.

Theorem 1.2 (Stevenson). Let (R, V ) be as in Setup 1.1. Then there are one-to-one correspondences{
thick subcategories

of Dsg(R)

}
∼=

{
thick subcategories

of Db(R) containing R

}
(a)∼=

{
specialization-closed

subsets of V

}
.

Here, Db(R) denotes the bounded derived category of the category modR of finitely generated R-modules,
and Dsg(R) stands for the singularity category of R, that is to say, the Verdier quotient of Db(R) by the full
subcategory Dperf(R) of perfect complexes, i.e., Dsg(R) = Db(R)/Dperf(R).

A resolving subcategory of an abelian cateory is a full subcategory containing projectives and closed under
direct summands, extensions and syzygies. This notion has been studied in various approaches so far; see
[3, 4, 28, 29, 30, 35, 38, 41, 42, 49, 54, 55, 56, 57] for instance. In commutative algebra, Dao and Takahashi
[30] gave a complete classification of the resolving subcategories of modR under the setup introduced above.

Theorem 1.3 (Dao–Takahashi). Let (R, V ) be as in Setup 1.1. Then there is a one-to-one correspondence{
resolving subcategories

of modR

}
(b)∼=

{
grade-consistent

functions on SpecR

}
×

{
specialization-closed

subsets of V

}
.

Here, a grade-consistent function on SpecR is an order-preserving map f : SpecR → N which satisfies the
inequality f(p) ⩽ grade(p) for every p ∈ SpecR.

The notion of a t-structure in a triangulated category has been introduced by Bĕılinson, Bernstein and
Deligne [16] in the 1980s. As with classifying thick subcategories and resolving subcategories mentioned
above, classifying t-structures in a given triangulated category T , which is equivalent to classifying aisles of
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T , has been an important fundamental problem. Actually, this problem has almost been settled for Db(R)
for a commutative noetherian ring R. Indeed, if R has a dualizing complex, then the aisles of Db(R) were
completely classified by Alonso Tarŕıo, Jeremı́as López and Saoŕın [2] in terms of the filtrations by supports
that satisfy the weak Cousin condition. Recently, this has been extended by Takahashi [59] to the case where
R has finite Krull dimension such that SpecR is a CM-excellent scheme in the sense of Česnavičius [24].

Now that classifying aisles of Db(R) has almost been completed, what we should consider next is classifying
preaisles of Db(R), which are defined as full subcategories closed under extensions and positive shifts. An
aisle is none other than a preaisle whose inclusion functor has a right adjoint, but there exists a big difference
between being an aisle and being a preaisle. Classifying preaisles is thus much harder than classifying aisles,
and so it would be reasonable to impose some appropriate assumptions on the preaisles we try to classify.

The main result of this paper is the following theorem. This theorem provides a classification of preaisles
of Db(R) that satisfy some mild and natural conditions. Also, the theorem includes both the classification of
thick subcategories by Stevenson and the classification of resolving subcategories by Dao and Takahashi.

Theorem 1.4. Let (R, V ) be a pair as in Setup 1.1. Then there are one-to-one correspondences preaisles of Db(R)
containing R and closed
under direct summands

 ∼=

 resolving
subcategories
of Db(R)

 (∗)∼=

 order-preserving
maps from SpecR

to N ∪ {∞}

×
{
specialization-closed

subsets of V

}
.

The restriction of (∗) to the thick subcategories of Db(R) containing R is identified with (a) in Theorem 1.2.
Each resolving subcategory X of modR equals the restriction to modR of the smallest resolving subcategory

X̃ of Db(R) containing X . The composition of (∗) with the map X 7→ X̃ coincides with (b) in Theorem 1.3.

Here, a resolving subcategory of Db(R) is a full subcategory containing R and closed under direct summands,
extensions and negative shifts, which we shall newly introduce in this paper. We adopt this name because it
is viewed as a triangulated category version of a resolving subcategory of an abelian cateory stated above.

This paper is organized as follows. In Section 2, together with several preliminaries for later sections, we
give the precise definition of a resolving subcategory of Db(R) and states its basic properties. In Sections 3,
5 and 6, we mainly deal with perfect complexes. In Section 3, we classify those resolving subcategories of
Dperf(R) whose objects are perfect complexes locally with nonpositive projective dimension; it turns out that
they are totally ordered. In Section 4, we introduce the key notion of NE-loci in Db(R), which are regarded
as extensions of nonfree loci in modR. We find out several fundamental properties of NE-loci. In Section 5,
we provide a complete classification of the resolving subcategories of Dperf(R) in terms of order-preserving
maps from SpecR to N∪ {∞}. The proof uses induction whose basis is formed by the classification theorem
obtained in Section 3. The use of Koszul complexes and NE-loci is crucial here. In Section 6, we realize results
of Dao and Takahashi [30] about modules of finite projective dimension, as restrictions of our results about
perfect complexes, which are obtained in Sections 3 and 5. In Section 7, we consider classifying preaisles of
Dperf(R) containing R and closed under direct summands. We also compare our results with a classification
theorem of aisles given in [59]. From Section 8 to 10 we mainly handle locally complete intersection rings. In
Section 8, we prove that the resolving subcategories of Db(R) bijectively correspond to the direct product of
the resolving subcategories of perfect complexes and the resolving subcategories of maximal Cohen–Macaulay
complexes. In Section 9, applying the result obtained in Section 8, we provide complete classifications of the
resolving subcategories of Db(R) and the preaisles of Db(R) containing R and closed under direct summands.
We also observe that this classification restricts to the classification of thick subcategories of Dsg(R) given in
Theorem 1.2. In Section 10, we realize the classification of resolving subcategories of modR given in Theorem
1.3 as a restriction of the classification of resolving subcategories of Db(R) given in Section 9.

Finally, we should emphasize that some of our methods to investigate resolving subcategories of Db(R) are
similar to methods given in the literature to investigate resolving subcategories of modR, but we do need to
invent and develop a lot of new techinques to obtain our results. We should also emphasize that our main
result, Theorem 1.4, is obtained at the end of this paper, by using results given in all the previous sections.

2. Resolving subcategories of triangulated categories

In this section, we state basic definitions which are used throughout this paper. Mimicking the definition of
a resolving subcategory of an abelian category, we define a resolving subcategory of a triangulated category.
We also explore fundamental properties of resolving subcategories. We begin with giving our convention.

Convention 2.1. All subcategories are assumed to be strictly full. An object X of a category C is identified
with the subcategory of C consisting of X. An exact triangle A → B → C → A[1] is often abbreviated to
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A→ B → C ⇝. Let R be a commutative noetherian ring with identity. For a prime ideal p of R, we denote
by κ(p) the residue field of the local ring Rp, that is, κ(p) = Rp/pRp. Subscripts and superscripts may be
omitted if there is no danger of confusion.

In the next two Definitions, we explain basic closedness conditions in an additive/abelian/triangulated
category, and introduce certain subcategories determined by a given subcategory.

Definition 2.2. Let C be an additive category, and let X be a subcategory of C.
(1) We say that X is closed under finite direct sums provided that for any finite number of objects X1, . . . , Xn

in X the direct sum X1 ⊕ · · · ⊕Xn is also in X . This is equivalent to saying that the direct sum of any
two objects in X also belongs to X .

(2) We say that X is closed under direct summands provided that if X is an object in X and Y is a direct
summand of X in A, then Y is also in X.

(3) We denote by addC X the additive closure of X , that is, the smallest subcategory of C containing X and
closed under finite direct sums and direct summands.

(4) Assume C is abelian (resp. triangulated). We say that X is closed under extensions provided for an exact
sequence 0 → L→M → N → 0 (resp. exact triangle L→M → N ⇝) in C, if L,N ∈ X , then M ∈ X .

(5) Suppose that C is either abelian or triangulated. The extension closure extC X of X is defined as the
smallest subcategory of C containing X and closed under direct summands and extensions.

Definition 2.3. Let T be a triangulated category, and let X be a subcategory of T .

(1) For any n ∈ Z denote by X [n] the subcategory of T consisting of objects of the form X[n] with X ∈ X .
(2) We say that X is closed under positive shifts (resp. closed under negative shifts) if X [n] is contained in

X for all n > 0 (resp. n < 0), which is equivalent to saying that X [1] (resp. X [−1]) is contained in X .
(3) We say that X is thick if X is a nonempty triangulated subcategory of T closed under direct summands.

We denote by thickT X the thick closure of X , namely, the smallest thick subcategory of T containing X .

Here we compare closedness under positive/negative shifts with other conditions regarding subcategories
of a triangulated category.

Proposition 2.4. Let T be a triangulated category. Let X be a subcategory of T .

(1) Suppose X is closed under extensions and contains the zero object of T . Then the following are equivalent.
(a) The subcategory X of T is closed under positive (resp. negative) shifts.
(b) If A→ B → C ⇝ is an exact triangle with A,B ∈ X (resp. B,C ∈ X ), then C (resp. A) is in X .

(2) Suppose that X is nonempty. Then X is a thick subcategory of T if and only if X is closed under direct
summands, extensions, positive shifts and negative shifts.

Proof. (1) The exact triangle A → B → C ⇝ induces exact triangles B → C → A[1] ⇝ and C[−1] → A →
B ⇝. This shows that (a) implies (b). For each object X ∈ T there exist exact triangles X → 0 → X[1]⇝
and X[−1] → 0 → X ⇝ in T . This shows that (b) implies (a).

(2) By assumption, there exists an object X in X . Suppose that X is closed under direct summands and
extensions. Then X contains 0, since 0 is a direct summand of X. Now the assertion follows from (1). ■

We introduce categories and subcategories which we basically use in this paper.

Definition 2.5. We denote by modR the category of finitely generated R-modules, by projR the subcategory
of modR consisting of projective modules, and by fpdR the subcategory of modR consisting of modules of
finite projective dimension. Also, we denote by D(R) the bounded derived category of modR which is denoted
by Db(R) in Section 1, and by K(R) the bounded homotopy category of projR. Via the natural fully faithful
functors, we regard modR and K(R) as (strictly full) subcategories of D(R). In particular, we identify K(R)
with the derived category Dperf(R) of perfect R-complexes that appears in Section 1. Here, a perfect complex
is defined to be a bounded complex of finitely generated projective modules. We thus have inclusions

projR ⊆ fpdR = K(R) ∩modR, fpdR ⊆ K(R) ⊆ D(R), fpdR ⊆ modR ⊆ D(R).

Now we remind ourselves of the definition of a resolving subcategory of the module category.

Definition 2.6. Let X be a subcategory of modR.

(1) We say that X is resolving if it satisfies the following four conditions.
(i) X contains R. (ii) X is closed under direct summands. (iii) X is closed under extensions.
(iv) For an exact sequence 0 → A→ B → C → 0 in modR with B,C ∈ X , one has A ∈ X .
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Conditions (i) and (ii) imply that a resolving subcategory of modR contains the zero object 0 of modR.
Condition (i) can be replaced with the condition that X contains projR. Condition (iv) can be replaced
with the condition that X is closed under syzygies; see [54, Remark 2.3].

(2) The resolving closure resmodR X of X is the smallest resolving subcategory of modR containing X .

Imitating this definition, we shall introduce the notion of a resolving subcategory of a triangulated category.

Definition 2.7. Let T be a triangulated subcategory of D(R) containing R. Let X be a subcategory of T .

(1) We say that X is resolving if it satisfies the following four conditions.
(i) X contains R. (ii) X is closed under direct summands. (iii) X is closed under extensions.
(iv) For an exact triangle A→ B → C ⇝ in T with B,C ∈ X , one has A ∈ X .

Conditions (i) and (ii) imply that a resolving subcategory of T contains the zero object 0 of T . Condition
(i) can be replaced with the condition that X contains projR. Condition (iv) can be replaced with the
condition that X is closed under negative shifts; see Proposition 2.4(1).

(2) The resolving closure resT X of X is defined to be the smallest resolving subcategory of T containing X .

In the next proposition we explore the relationship between resolving closures and shifts. It turns out that
compatibility of taking the resolving closure and taking a shift is subtle; see also Remark 2.16 given later.

Proposition 2.8. Let T be a triangulated subcategory of D(R) containing R.

(1) For each object X of T and each integer n, there is an equality resT {X[i] | i ∈ Z} = resT {X[i] | i ⩾ n}.
(2) Let X be a subcategory of T , and let n be an integer.

(a) Let n ⩽ 0. Then there is an inclusion (resT X )[n] ⊆ resT (X [n]).
(b) Let n ⩾ 0. If X is resolving, then so is X [n]. More generally, (resT X )[n] = resT (X [n] ∪ {R[n]}).

Proof. (1) Set X = resT {X[i] | i ⩾ n}. Fix j ∈ Z. If j ⩾ n, then X[j] is clearly in X . If j < n, then j−n < 0
and one has X[j] = (X[n])[j − n] ∈ res(X[n]) ⊆ X . Hence X[j] ∈ X for all j ∈ Z, and the assertion follows.

(2a) Consider the subcategory Y = {Y ∈ T | Y [n] ∈ resT (X [n])} of T . Since resT (X [n]) is resolving, it
contains R. As n ⩽ 0, we have R[n] ∈ resT (X [n]). Hence R belongs to Y. Let Y be an object in Y and Z a
direct summand of Y . Then Y [n] is in resT (X [n]) and Z[n] is a direct summand of Y [n]. Hence Z[n] is in
resT (X [n]), which implies Z ∈ Y . Let A → B → C ⇝ be an exact triangle in T with C ∈ Y . Then there is
an exact triangle A[n] → B[n] → C[n] ⇝ and C[n] is in resT (X [n]). Hence A[n] ∈ resT (X [n]) if and only if
B[n] ∈ resT (X [n]). Therefore, A ∈ Y if and only if B ∈ Y . Consequently, Y is a resolving subcategory of T .
Since Y contains X , we see that Y contains resT X . It follows that (resT X )[n] ⊆ resT (X [n]).

(2b) To show the first assertion, suppose that X is resolving. As X is closed under negative shifts, we have
that X [−1] ⊆ X , and that R[−n] ∈ X since R ∈ X and −n ⩽ 0. Hence (X [n])[−1] = (X [−1])[n] ⊆ X [n] and
R = (R[−n])[n] ∈ X [n], that is, X [n] is closed under negative shifts and contains R. Let A → B → C ⇝
be an exact triangle in T with A,C ∈ X [n]. Then there is an exact triangle A[−n] → B[−n] → C[−n] ⇝
in T and A[−n], C[−n] ∈ X . Since X is closed under extensions, it contains B[−n]. Hence B = (B[−n])[n]
belongs to X [n], and therefore X [n] is closed under extensions. Let K be an object in X [n] and L a direct
summand of K. Then K[−n] is in X and L[−n] is a direct summand of K[−n]. As X is closed under direct
summands, L[−n] is in X . Hence L belongs to X [n], and therefore X [n] is closed under direct summands.
Consequently, X [n] is a resolving subcategory of T .

Now we prove the second assertion. Replacing X with X ∪ {R}, we may assume R ∈ X . We want to
deduce (resT X )[n] = resT (X [n]). As resT X ⊇ X , we have (resT X )[n] ⊇ X [n]. As (resT X )[n] is resolving by
the first assertion, (resT X )[n] contains resT (X [n]). To show the opposite inclusion, consider the subcategory
Y = {Y ∈ T | Y [n] ∈ resT (X [n])} of T . Since R ∈ X , we get R[n] ∈ X [n] ⊆ resT (X [n]), which implies R ∈ Y .
An analogous argument as in the proof of (1) shows Y is a resolving subcategory of T . Since Y contains X , it
contains resT X . Thus (resT X )[n] ⊆ resT (X [n]). We now obtain the equality (resT X )[n] = resT (X [n]). ■

We define the minimum resolving subcategory, which plays a crucial role in the proofs of our main results.

Definition 2.9. Let T be a triangulated subcategory of D(R) containing R. We set ET = resT 0 and call it
the minimum resolving subcategory of T . It is minimum in the sense that every resolving subcategory of T
contains ET . We simply write ER = ED(R).

The resolving closure resT X of a subcategory X of T , particularly the minimum resolving subcategory
ET = resT 0 of T , depends on which triangulated subcategory T of D(R) is taken as the ambient category.
The proposition below collects properties of resolving subcategories, the second and third of which produce
sufficient conditions for T to satisfy resT X = resD(R) X for every subcategory X of T .
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Proposition 2.10. The following assertions hold true.

(1) Let T be a triangulated subcategory of D(R) containing R. Then ET = resT 0 = resT R = resT (projR).
(2) Let T be a thick subcategory of D(R) containing R. Then the resolving subcategories of T are the resolving

subcategories of D(R) contained in T . Hence resT X = resD(R) X for any subcategory X of T .
(3) The equality K(R) = thickD(R)R holds. Hence, there is an equality resK(R) X = resD(R) X for any subcat-

egory X of K(R). In particular, it holds that EK(R) = ER.
(4) If X is a resolving subcategory of D(R), then X ∩ modR is a resolving subcategory of modR. If X is a

resolving subcategory of K(R), then X ∩modR is a resolving subcategory of modR contained in fpdR.

Proof. (1) The assertion follows from the inclusions projR ⊆ ET = resT 0 ⊆ resT R ⊆ resT (projR).
(2) Let X be a subcategory of T with R ∈ X and X [−1] ⊆ X . Since T is closed under extensions as a

subcategory of D(R), we see that X is closed under extensions as a subcategory of T if and only if X is closed
under extensions as a subcategory of D(R). If A,B are objects of D(R) with A ⊕ B ∈ X , then A ⊕ B ∈ T ,
which implies A,B ∈ T since T is thick. It is seen that X is closed under direct summands as a subcategory
of T if and only if X is closed under direct summands as a subcategory of D(R). The first assertion follows.

Since resT X is a resolving subcategory of T containing X , by the first assertion it is a resolving subcategory
of D(R) contained in T and containing X . Hence T ⊇ resT X ⊇ resD(R) X . Therefore, resD(R) X is a resolving
subcategory of D(R) contained in T and containing X , so that it is a resolving subcategory of T containing
X by the first assertion again. This implies that resD(R) X ⊇ resT X . The second assertion now follows.

(3) It is a well-known fact that K(R) = thickD(R)R; see [43, Proposition 1.4(2)] for instance. In particular,
K(R) is a thick subcategory of D(R) containing R. It follows from (2) that resK(R) X = resD(R) X for any
subcategory X of K(R). We get the equalities EK(R) = resK(R) 0 = resD(R) 0 = ED(R) = ER.

(4) Let X be a resolving subcategory of D(R). Then R belongs to X ∩modR. If M ∈ X ∩modR and N is
a direct summand in modR of M , then M is in X and N is a direct summand in D(R) of M , so that N is in
X and hence N ∈ X ∩modR. Let 0 → A→ B → C → 0 be an exact sequence in modR with C ∈ X ∩modR.
Then there is an exact triangle A → B → C ⇝ in D(R) and C ∈ X . Hence A ∈ X if and only if B ∈ X , so
that A ∈ X ∩modR if and only if B ∈ X ∩modR. Thus, X ∩modR is a resolving subcategory of modR.

Let X be a resolving subcategory of K(R). By (2) and (3), X is a resolving subcategory of D(R) contained
in K(R). Hence X ∩modR is a resolving subcategory of modR contained in K(R) ∩modR = fpdR. ■

Here we state simple observations about representing each closure as an intersection of subcategories.

Proposition 2.11. Let C be an additive category, and let X be a subcategory of C.
(1) The additive closure addC X is equal to the intersection of all subcategories of C that contain X and are

closed under finite direct sums and direct summands.
(2) Assume that C is either abelian or triangulated. Then the extension closure extC X is equal to the inter-

section of all subcategories of C that contain X and are closed under direct summands and extensions.
(3) Assume that C is triangulated. Then the thick closure thickC X is equal to the intersection of all thick

subcategories of C containing X .
(4) Assume that C is a triangulated subcategory of D(R) containing R. Then the resolving closure resC X is

equal to the intersection of all resolving subcategories of C containing X . In particular, EC coincides with
the intersection of all resolving subcategories of C.

Proof. Let P be a property of subcategories of C which is preserved under intersections, that is, for a family
{Xλ}λ∈Λ of subcategories of C, if each Xλ satisfies P, then so does the intersection

⋂
λ∈Λ Xλ. For a subcategory

X of C, let PC(X ) be the P-closure of X , that is, the smallest subcategory of C satisfying P and containing
X . Then PC(X ) coincides with the intersection of all subcategories of C that satisfy P and contain X . ■

Next we recall the definitions of projective dimension and depth for complexes, and of Koszul complexes.

Definition 2.12. (1) The supremum supX and infimum infX of an object X ∈ D(R) is defined by supX =
sup{i ∈ Z | HiX 6= 0} and infX = inf{i ∈ Z | HiX 6= 0}.

(2) The projective dimension pdRX of an object X ∈ D(R) is the infimum of integers n such that X ∼= P in
D(R) for some perfect R-complex P with P−i = 0 for all integers i > n. One has pdX ∈ Z∪ {±∞} and
pdX ⩾ − infX. Also, pdX <∞ if and only if X ∈ K(R). One does not necessarily have pdX ⩽ n even
if X ∼= P in D(R) for some complex P of finitely generated projective modules with P−i = 0 for all i > n;
see [10, 2.6.P]. We refer to [10, 1.2.P, 1.7, 2.3.P, 2.4.P and 2.7.P] for details of projective dimension.

(3) For each integer n, we denote by Kn(R) the subcategory of K(R) consisting of perfect complexes having
projective dimension at most n.
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(4) For a sequence x = x1, . . . , xn we denote by K(x, R) the Koszul complex of x over R. When the ambient
ring R is clear, we simply write K(x).

(5) Let R be a local ring with residue field k. For an object X of D(R), we denote by depthRX the depth
of X, which is defined by the equality depthRX = infRHomR(k,X).

We make a collection of basic properties of projective dimension and depth which are frequently used later.

Proposition 2.13. (1) Let X be an object of D(R), and let r be an integer. Then pdR(X[r]) = pdRX + r.
When the ring R is local, the equality depthR(X[r]) = depthRX − r holds.

(2) Let R be a local ring with residue field k. Let X ∈ D(R). One has the equality pdRX = − inf(X ⊗L
R k).

Also, the Auslander–Buchsbaum formula holds: If pdRX <∞, then pdRX = depthR− depthRX.
(3) Let A → B → C ⇝ be an exact triangle in D(R). Then the following inequalities hold true, where for

the latter ones we assume that the ring R is local.
pdRB ⩽ sup{pdRA, pdR C},
pdRA ⩽ sup{pdRB, pdR C − 1},
pdR C ⩽ sup{pdRB, pdRA+ 1},


depthRB ⩾ inf{depthRA, depthR C},
depthRA ⩾ inf{depthRB, depthR C + 1},
depthR C ⩾ inf{depthRB, depthRA− 1}

(4) Let X and Y be objects of D(R). Then one has the equality pdR(X ⊕ Y ) = sup{pdRX, pdR Y }. When
R is local, one also has the equality depthR(X ⊕ Y ) = inf{depthRX, depthR Y }.

(5) For all nonnegative integers n, the subcategory Kn(R) of K(R) is resolving.
(6) There is an equality K0(R) = ER. In particular, the equality ER ∩modR = projR holds.
(7) Let R be a local ring with maximal ideal m. Let x = x1, . . . , xn be a sequence of elements of R. If xi ∈ m

for all i, then pdRK(x) = n. If xi /∈ m for some i, then K(x) ∼= 0 in K(R) and pdRK(x) = −∞.

Proof. (1) We easily deduce the assertion from the definitions of projective dimension and depth.
(2) The first assertion follows from [25, (A.5.7.2)]. The second assertion is stated in [27, (1.5)] for example.
(3) Suppose that R is a local ring with residue field k. The two exact triangles

RHomR(k,A) → RHomR(k,B) → RHomR(k, C)⇝, A⊗L
R k → B ⊗L

R k → C ⊗L
R k ⇝

give rise to the inequalities inf RHomR(k,B) ⩾ inf{infRHomR(k,A), infRHomR(k, C)} and inf(B ⊗L
R k) ⩾

inf{inf(A⊗L
R k), inf(C ⊗L

R k)}. Therefore we have depthB ⩾ inf{depthA, depthC}, and by (2) we get

pdRB = − inf(B ⊗L
R k) ⩽ − inf{inf(A⊗L

R k), inf(C ⊗L
R k)}

= sup{− inf(A⊗L
R k),− inf(C ⊗L

R k)} = sup{pdRA, pdR C}.
Now we consider the case where R is nonlocal. Using [10, Proposition 5.3.P] and the local case, we get

pdRB = supp∈SpecR{pdRp
Bp} ⩽ supp∈SpecR{sup{pdRp

Ap, pdRp
Cp}} ⩽ sup{pdRA, pdR C}.

Applying the argument given so far to the exact triangles C[−1] → A → B ⇝ and B → C → A[1] ⇝ and
using (1), we obtain the remaining four inequalities.

(4) Suppose that the ring R is local, and let k be the residue field of R. Using (2) for the former, we have

pdR(X ⊕ Y ) = − inf((X ⊕ Y )⊗L
R k) = − inf((X ⊗L

R k)⊕ (Y ⊗L
R k))

= − inf{inf(X ⊗L
R k), inf(Y ⊗L

R k)} = sup{− inf(X ⊗L
R k),− inf(Y ⊗L

R k)} = sup{pdRX, pdR Y },
depthR(X ⊕ Y ) = infRHomR(k,X ⊕ Y ) = inf(RHomR(k,X)⊕RHomR(k, Y ))
= inf{infRHomR(k,X), infRHomR(k, Y )} = inf{depthRX, depthR Y }.

Now let the ring R be nonlocal. Applying (3) to the exact triangle X → X⊕Y → Y ⇝ gives pdR(X⊕Y ) ⩽
sup{pdRX, pdR Y }. Assume that pdR(X ⊕ Y ) < sup{pdRX, pdR Y }. We may assume pdRX ⩾ pdR Y .

We claim that if pdRp
Xp <∞ for all prime ideals p of R, then pdRX <∞. Indeed, putting t = infX and

s = supX, we find a complex P = (· · · → P t → · · · → P s → 0) of finitely generated projective R-modules
such that P ∼= X in D(R). Let C be the cokernel of the map P t−1 → P t. Let Q = (0 → P t+1 → · · · → P s →
0) be the truncation of P , which is a perfect complex. There is an exact triangle Q → P → C[−t] ⇝. For
each p ∈ SpecR we have pdRp

Qp <∞ and pdRp
Pp = pdRp

Xp <∞, so that pdRp
Cp <∞. It follows from

[15, Lemma 4.5] that pdR C <∞. As pdRQ <∞, we get pdRX = pdR P <∞. The claim thus follows.
The claim and [10, Proposition 5.3.P] produce a prime ideal p such that pdRX = pdRp

Xp ⩽∞. We have

pdRp
Xp ⩽ sup{pdRp

Xp, pdRp
Yp} = pdRp

(Xp ⊕ Yp)

⩽ pdR(X ⊕ Y ) < sup{pdRX, pdR Y } = pdRX = pdRp
Xp,

where the first equality holds since the ring Rp is local. We now get a contradiction, and therefore, the
equality pdR(X ⊕ Y ) = sup{pdRX, pdR Y } holds.



CLASSIFYING PREAISLES OF DERIVED CATEGORIES OF COMPLETE INTERSECTIONS 7

(5) As n is nonnegative, R belongs to Kn(R). The assertion is shown to hold by using (3) and (4).
(6) As ER contains R and is closed under negative shifts, it contains R[i] for all i ⩽ 0. Hence we will get

the required equality K0(R) = ER once we prove that the following inclusions hold.

K0(R) ⊆ extK(R){R[i] | i ⩽ 0} ⊆ ER ⊆ K0(R).

The second inclusion holds since ER is closed under extensions, while the last inclusion comes from the fact
that K0(R) is a resolving subcategory and ER is a minimum resolving subcategory. To show the first inclusion,
pick an object P in K0(R). We may assume that P = (0 → P 0 → P 1 → · · · → P s → 0). Then P belongs to
extK(R){P s[−s], . . . , P 1[−1], P 0}, which is contained in extK(R){R[i] | i ⩽ 0}. Thus the first inclusion follows.

(7) If xi ∈ m for all i, then pdRK(x) = n by (2). If xi /∈ m for some i, then K(xi) ∼= 0 in D(R), and hence
K(x) ∼= K(x1)⊗L

R · · · ⊗L
R K(xi)⊗L

R · · · ⊗L
R K(xn) ∼= 0 in D(R). Hence K(x) ∼= 0 in K(R). ■

Here, let us present an application of the above proposition. The corollary below is thought of as a derived
category version of [55, Proposition 1.12(2)].

Corollary 2.14. Let R be a local ring. Let X and Y be complexes that belong to D(R). Suppose that X is
in the resolving closure resD(R) Y . Then there is an inequality depthRX ⩾ inf{depthR Y, depthR}.

Proof. Let Z be the subcategory of D(R) consisting of objects Z such that depthZ ⩾ inf{depthY, depthR}.
It is evident that Z contains Y and R. Using the depth equality in Proposition 2.13(4), we see that Z is
closed under direct summands. Also, the first depth inequality in Proposition 2.13(3) shows that Z is closed
under extensions. By the depth equality in Proposition 2.13(1), it follows that Z is closed under negative
shifts. Consequently, Z is a resolving subcategory of D(R) containing Y . Hence Z contains resD(R) Y , and
therefore X belongs to Z. Now the assertion of the corollary follows. ■

By definition, a thick subcategory of D(R) containing R is a resolving subcategory of D(R). The converse
of this statement is not necessarily true. Actually, we state and prove the following proposition, which gives
rise to an example of a resolving subcategory of D(R) that is not a thick subcategory of D(R).

Proposition 2.15. The equality resD(R)(modR) = {X ∈ D(R) | H<0X = 0} of subcategories of D(R) holds.
Thus, the resolving subcategory resD(R)(modR) of D(R) is not thick; it is not closed under positive shifts.

Proof. Let X be the subcategory of D(R) consisting of complexes X with H<0X = 0. Evidently, X contains
modR. In particular, X contains R. It is straightforward to verify that X is closed under direct summands,
extensions, and negative shifts. Hence X is a resolving subcategory of D(R) containing modR. Therefore, X
contains resD(R)(modR). Conversely, pick X ∈ X . Since H<0X = 0, we may assume X = (0 → X0 → X1 →
· · · → Xn → 0); see [25, (A.1.14)]. There is a series {Xi[−i] → Xi → Xi−1 ⇝}ni=0 of exact triangles in D(R)
with Xn = X and X−1 = 0. The object Xi[−i] is in resD(R)(modR) for all 0 ⩽ i ⩽ n, since Xi ∈ modR and
−i ⩽ 0. It is observed that X belongs to resD(R)(modR). Therefore, X is contained in resD(R)(modR).

As for the last assertion of the proposition, we have R ∈ X , but R[1] /∈ X since H−1(R[1]) = R 6= 0. ■
We close the section by stating a remark on the second assertion of Proposition 2.8.

Remark 2.16. Let T be a triangulated subcategory of D(R) containing R. Let X and Y be objects of T .
Assume that X belongs to resY . Then X[n] belongs to res(Y [n]) if n ⩽ 0 by Proposition 2.8(2a). However,
X[n] does not necessarily belong to res(Y [n]), if n > 0. In fact, we have the following observations.

(1) Let X = R and Y = R[−1]. Then X ∈ resD(R) Y , but X[1] = R[1] /∈ ER = resD(R)R = resD(R)(Y [1]); see

Proposition 2.10(1). Indeed, we have pdR[1] = 1 and R[1] /∈ K0(R) = ER by Proposition 2.13(1)(6).
(2) Suppose that there exists an exact triangle X → E → Y ⇝ in T such that E ∈ ET . Then X belongs to

resT Y . An exact triangle X[1] → E[1] → Y [1] ⇝ in T is induced. If E[1] is in resT (Y [1]), then X[1] is
in resT (Y [1]). However, as we have seen in (1), the object E[1] may not belong to resT (Y [1]).

3. Classification of resolving subcategories of K0(R)

In this section, we classify the resolving subcategories of K(R) consisting of perfect complexes locally of
projective dimension at most zero. In the next section we give a classification of resolving subcategories of
K(R) by using an inductive argument, and what we get in the present section forms its basis. First of all, we
recall some basic notions and introduce certain subcategories of D(R) and K(R).

Definition 3.1. Let R be a local ring with maximal ideal m and residue field k.

(1) We denote by edimR the embedding dimension of R, that is, the number of elements in a minimal system
of generators of m, which is equal to the dimension of the k-vector space m⊗R k = m/m2.
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(2) For a minimal system of generators x of m, we set KR = K(x, R) and call it the Koszul complex of R.
(3) We denote by D0(R) the subcategory of D(R) consisting of complexes X with Xp ∈ ERp

(or in other
words, pdRp

Xp ⩽ 0 by Proposition 2.13(6)) for all prime ideals p of R such that p 6= m. We set

K0(R) = K(R) ∩ D0(R), Kn0 (R) = Kn(R) ∩ K0(R) = Kn(R) ∩ D0(R) for n ∈ Z.

Here are a couple of statements about the notions just introduced.

Proposition 3.2. Let R be a local ring. Then the following statements are true.

(1) Let X ∈ D(R). If HiX has finite length as an R-module for all i ∈ Z, then X[i] ∈ D0(R) for all i ∈ Z.
(2) The Koszul complex KR of R is uniquely determined up to complex isomorphism.

(3) Put e = edimR and K = KR. One then has that K[i] ∈ Ke+i0 (R) \ Ke+i−1
0 (R) for each integer i.

(4) It holds that D0(R) is a resolving subcategory of D(R). Hence K0(R) is a resolving subcategory of K(R),
and so is Kn0 (R) for every nonnegative integer n.

Proof. (1) Let p be a nonmaximal prime ideal of R. Let i be an integer. Then Hj((X[i])p) = (Hj+iX)p = 0
for all j ∈ Z, which means that (X[i])p ∼= 0 in D(Rp). Hence (X[i])p belongs to ERp

, so that X[i] ∈ D0(R).
(2) The assertion is shown in [21, page 52].
(3) The complex K[i] is in K0(R) by (1). Since pdK = e, we have pdK[i] = e+ i by Proposition 2.13(1).
(4) The first statement is deduced by using the fact that ERp

is a resolving subcategory of D(Rp) for each
prime ideal p of R. The second statement follows from the first statement, Propositions 2.13(5), 2.10(2)(3)
and the fact that the resolving property is preserved under taking intersections. ■

We recall the definitions of an R-linear additive category and an ideal quotient of such a category.

Definition 3.3. Let C be an R-linear additive category, that is, an additive category whose hom-sets are
R-modules and composition of morphisms is R-bilinear.

(1) An ideal I of C is by definition a family {I(X,Y )}X,Y ∈C of R-submodules of HomC(X,Y ) such that
bfa ∈ I(W,Z) for all a ∈ HomC(W,X), f ∈ I(X,Y ), b ∈ HomC(Y, Z) and W,X, Y, Z ∈ C. The ideal
quotient C/I of C by I is by definition the category whose objects are those of C and morphisms are given
by HomC/I(X,Y ) = HomC(X,Y )/I(X,Y ) for X,Y ∈ C. Note that C/I is an R-linear additive category.

(2) Let D be a subcategory of C. For two objects X,Y of C, let [D](X,Y ) be the subset of HomC(X,Y )
consisting of morphisms that factor through some finite direct sums of objects in D. Then it is easy to
observe that [D] is an ideal of C, and hence the ideal quotient C/[D] is defined.

Now we can define the category D(R), which plays an important role in the remainder of this section.

Definition 3.4. We denote by D(R) the ideal quotient of D(R)/[ER]. The hom-set HomD(R)(X,Y ) is a finitely
generated R-module for all X,Y ∈ D(R), as it is a factor of the finitely generated R-module HomD(R)(X,Y ).

Let us investigate when an object and a morphism in D(R) are zero in the category D(R).

Proposition 3.5. (1) A morphism in D(R) is zero in D(R) if and only if it factors through an object in ER.
(2) Let X ∈ D(R). The following are equivalent: (a)X ∼= 0 in D(R); (b) HomD(R)(X,X) = 0; (c) X ∈ ER.

Proof. (1) A morphism f : X → Y in D(R) is zero in D(R) if and only if f belongs to [ER](X,Y ), if and only
if f factors through some finite direct sum of objects in ER. Since ER is closed under finite direct sums, the
last condition is equivalent to saying that f factors through some object in ER.

(2) It is clear that (a) implies (b). Assume (b). Then by (1) the identity morphism X → X factors through
some object E ∈ ER. It is seen that X is a direct summand of E. As ER is closed under direct summands, X
is in ER. Therefore, (b) implies (c). Finally, assume (c). Then every morphism from/to X factors through
X ∈ ER. Hence HomD(R)(X,Y ) = 0 and HomD(R)(Y,X) = 0 for every object Y ∈ D(R). The former (resp.
latter) means that X is an initial (resp. a final) object of the additive category D(R). Thus (a) follows. ■

We define the localization of a given subcategory of D(R) by a multiplicatively closed subset of R.

Definition 3.6. Let X be a subcategory of D(R). For a multiplicatively closed subset S of R, we define the
subcategory XS of D(RS) by XS = {XS | X ∈ X}. When S = R \ p with p ∈ SpecR, we set Xp = XS .

In the lemma below we study the structure of localizations of morphisms in the category D(R).

Lemma 3.7. (1) Let p be a prime ideal of R. Taking the localization of a morphism in D(R) at p induces
an isomorphism HomD(R)(X,Y )p → HomD(Rp)(Xp, Yp) of Rp-modules for all objects X,Y ∈ D(R).
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(2) Suppose that R is a local ring. Let X and Y be objects of D(R). Assume that either of the objects X and
Y belongs to the subcategory D0(R) of D(R). Then the R-module HomD(R)(X,Y ) has finite length.

Proof. (1) Localization at p gives an isomorphism φ : HomD(R)(X,Y )p → HomD(Rp)(Xp, Yp); see [25, Lemma

(A.4.5)]. If P = (0 → P 0 → · · · → Pn → 0) is a perfect R-complex, then Pp = (0 → P 0
p → · · · → Pnp → 0)

is a perfect Rp-complex. By Proposition 2.13(6), the subcategory (ER)p of D(Rp) is contained in ERp
. Thus

φ restricts to an injection ψ : ([ER](X,Y ))p → [ERp
](Xp, Yp). Let Q = (0 → R⊕r0

p → · · · → R⊕rn
p → 0) be

a perfect Rp-complex with Qi = R⊕ri
p for each i ∈ Z. Then we easily find a perfect R-complex P = (0 →

R⊕r0 → · · · → R⊕rn → 0) such that Pp is isomorphic to Q as an Rp-complex; see [1, Lemma 4.2(1) and its
proof]. Hence P belongs to ER, and the equality (ER)p = ERp

follows. Consider the decomposition

(Xp

f
s−→ Yp) = (Xp

g
t−→ Ep

h
u−→ Yp)

of a morphism f
s : Xp → Yp in D(Rp), where f, g, h are morphisms in D(R), s, t, u ∈ R \ p and E ∈ ER. Then

vutf = vshg for some v ∈ R \ p. We have f
s = vutf

vuts and (X
vutf−−−→ Y ) = (X

g−→ E
vsh−−→ Y ). This shows that

the injection ψ is surjective. Consequently, φ induces an isomorphism HomD(R)(X,Y )p → HomD(Rp)(Xp, Yp).
(2) Fix a nonmaximal prime ideal p of R. Then HomD(R)(X,Y )p is isomorphic to HomD(Rp)(Xp, Yp) by

(1), while either Xp or Yp belongs to ERp
. It follows from Proposition 3.5(2) that HomD(Rp)(Xp, Yp) = 0. ■

Here, we are necessary to prove an elementary lemma concerning a gerenal triangulated category, which
produces a certain exact triangle of mapping cones.

Lemma 3.8. Let T be a triangulated category.

(1) Suppose that there exists a commutative diagram

A // B //

��

C //

��

A[1]

A // B′ // C ′ // A[1]

of exact triangles in T . Then there exists an exact triangle B → B′ ⊕ C → C ′ → B[1] in T .

(2) Let X
f−→ Y

g−→ Z be morphisms in T . Then there exists an exact triangle cone(gf) → cone(g)⊕X[1] →
Y [1] → cone(gf)[1] in T .

Proof. The first assertion immediately follows from [45, Lemma 1.4.3]. To show the second, let X
f−→ Y

g−→ Z
be morphisms in T . Then we have a commutative diagram of exact triangles at the lower left, which induces
a commutative diagram of exact triangles at the lower right.

X
gf //

f ��

Z // cone(gf) //

��

X[1]

��
Y

g // Z // cone(g) // Y [1]

Z // cone(gf) //

��

X[1] //

��

Z[1]

Z // cone(g) // Y [1] // Z[1]

By the first assertion, we get an exact triangle cone(gf) → cone(g)⊕X[1] → Y [1] → cone(gf)[1] in T . ■

Now, applying the previous two lemmas, we consider when a given object of the derived category D(R)
belongs to the resolving closure of the (derived) tensor product with a Koszul complex.

Lemma 3.9. (1) For elements x, y ∈ R there is an exact triangle K(x) → K(xy) → K(y)⇝ in K(R).

(2) Let X be an object of D(R) and let x be an element of R. Suppose that the morphism X
x−→ X in D(R)

defined by multiplication by x is zero. Then X belongs to resD(R)(K(x)⊗R X[−1]).
(3) Suppose that (R,m) is local. Let X be an object in D0(R). Let x = x1, . . . , xn be a sequence of elements

in m. Then X belongs to resD(R)(K(x)⊗R X[−n]). In particular, X is in resD(R)(KR ⊗R X[− edimR]).

Proof. (1) The assertion is shown by applying the octahedral axiom to (R
xy−→ R) = (R

x−→ R
y−→ R).

(2) There exist morphisms X
f−→ E

g−→ X in D(R) such that E is in ER and the composition gf is equal

to the mutiplication morphism X
x−→ X in D(R). By Lemma 3.8(2) we have an exact triangle cone(gf) →

cone(g)⊕X[1] → E[1]⇝ in D(R). The object cone(gf) is the mapping cone of the morphism X
x−→ X, which

is isomorphic to K(x)⊗X. We get an exact triangle K(x)⊗X[−1] → cone(g)[−1]⊕X → E ⇝ in D(R). It
follows that X ∈ extD(R){K(x)⊗X[−1], E} ⊆ resD(R)(K(x)⊗X[−1]).
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(3) Lemma 3.7(2) says that the R-module HomD(R)(X,X) has finite length, and hence it is annihilated by

some power mr of m. Fix an element x ∈ m. Then the multiplication morphism X
xr

−→ X in D(R) is zero. By
(2) the object X is in resD(R)(K(xr)⊗X[−1]), which is contained in resD(R)(K(x)⊗X[−1]) by (1). It follows
that resD(R)X is contained in resD(R)(K(x)⊗X[−1]). We observe that there is a sequence of inclusions

resD(R)X ⊆ resD(R)(K(x1)⊗X[−1]) ⊆ resD(R)(K(x2)⊗K(x1)⊗X[−2])
⊆ · · · ⊆ resD(R)(K(xn)⊗ · · · ⊗K(x1)⊗X[−n]) = resD(R)(K(x)⊗X[−n]).

Thus, X belongs to the resolving closure resD(R)(K(x)⊗R X[−n]). ■

Applying the above lemma, we can prove the following proposition about Koszul complexes, which is
thought of as an essential part of the proof of the main result of this section.

Proposition 3.10. Let R be a local ring. Put e = edimR and K = KR.

(1) For every integer n ⩾ 0 there is an equality Kn0 (R) = resK(R)(K[n− e]).
(2) Let F be an object of K(R), and put t = pdR F . Then the object K[t− e] belongs to resK(R) F .

Proof. (1) We have K[n − e] ∈ Kn0 (R), so that resK(R)(K[n − e]) ⊆ Kn0 (R); see (3) and (4) of Proposition
3.2. Conversely, pick an object P ∈ Kn0 (R). Lemma 3.9(3) and Proposition 2.10(3) imply that P belongs to
resK(R)(K ⊗P [−e]). We may assume that the perfect complex P has the form (0 → P−n → P−n+1 → · · · →
P s → 0). Then it holds that P ∈ extK(R){P s[−s], . . . , P−n[n]} ⊆ extK(R){R[i] | −s ⩽ i ⩽ n}, and hence

(K ⊗ P )[−e] ∈ extK(R){K[i− e] | −s ⩽ i ⩽ n} ⊆ resK(R)(K[n− e]).

Therefore, the complex P belongs to resK(R)(K[n− e]).
(2) We shall prove that K[i − e] ∈ resF for all i ⩽ t. For this we use induction on t. When t ⩽ 0, for

each i ⩽ t we have pdK[i − e] = pdK + (i − e) = i ⩽ t ⩽ 0 by (1) and (7) of Proposition 2.13, and hence

K[i − e] ∈ ER ⊆ resF . Let t > 0. We may assume that F = (0 → F−t ∂−→ F−t+1 → · · · → F s → 0), where
F−t, F−t+1, . . . , F s are free, F−t 6= 0, −t + 1 ⩽ s and Im ∂ ⊆ mF−t+1. Since pdF [−1] = t − 1 < t, the
induction hypothesis implies K[j − e] ∈ resF [−1] for all j ⩽ t− 1. As F [−1] belongs to resF , we see that

(3.10.1) the object K[j − e] belongs to resK(R) F for all integers j ⩽ t− 1.

It remains to show that K[t− e] is in resF . Let P = (0 → F−t ∂−→ F−t+1 → 0) be a truncation of F . Then

there is an exact triangle F−t ∂−→ F−t+1 → P [1− t]⇝ in K(R). Tensoring K over R gives an exact triangle

(3.10.2) F−t ⊗K
∂⊗K−−−→ F−t+1 ⊗K → (P ⊗K)[1− t]⇝

in K(R). Write F−t = R⊕n and F−t+1 = R⊕m. The inclusion Im ∂ ⊆ mF−t+1 implies that the map
∂ : R⊕n → R⊕m is represented by an m×n matrix (aij) with aij ∈ m. The chain map ∂⊗K : K⊕n → K⊕m

is given by the matrix (aij). The multiplication morphism K
aij−−→ K is zero in K(R) by [43, Proposition

2.3(3)], and so is the morphism K⊕n (aij)−−−→ K⊕m; the matrix (sij) of null-homotopies sij of K
aij−−→ K is a

null-homotopy of K⊕n (aij)−−−→ K⊕m. It follows from (3.10.2) that (P ⊗K)[1 − t] is isomorphic to the direct
sum of F−t+1 ⊗K = K⊕m and (F−t ⊗K)[1] = (K[1])⊕n. As F−t 6= 0, we have n > 0 and the complex K[1]
is a direct summand of (P ⊗K)[1− t] as an object of K(R). Applying the functor [t− e− 1] shows that

(3.10.3) the object K[t− e] is a direct summand of the object(P ⊗K)[−e] in K(R).

Let Q = (0 → F−t+2 → · · · → F s → 0) be another truncation of F . There is an exact triangle Q → F →
P ⇝, which induces an exact triangle (Q⊗K)[−e] → (F ⊗K)[−e] → (P ⊗K)[−e]⇝. This shows that

(3.10.4) the object (P ⊗K)[−e] belongs to extK(R){(F ⊗K)[−e], (Q⊗K)[1− e]}.

The Koszul complex K = (0 → K−e → · · · → K0 → 0) is in ext{K−i[i] | 0 ⩽ i ⩽ e}, which is contained in
ext{R[i] | 0 ⩽ i ⩽ e}. Applying (F ⊗−)[−e] shows (F ⊗K)[−e] is in ext{F [i] | −e ⩽ i ⩽ 0}, which implies

(3.10.5) the object (F ⊗K)[−e] belongs to resK(R) F .

The perfect complex Q = (0 → F−t+2 → · · · → F s → 0) is in extK(R){F i[−i] | −t + 2 ⩽ i ⩽ s}, which is
contained in extK(R){R[−i] | −t+ 2 ⩽ i ⩽ s}. Hence the object (Q⊗K)[1− e] belongs to the subcategory

extK(R){K[1− e− i] | −t+ 2 ⩽ i ⩽ s} = extK(R){K[i] | (1− s)− e ⩽ i ⩽ (t− 1)− e}
of K(R). By (3.10.1), this extension closure is contained in the resolving closure resK(R) F . Therefore,

(3.10.6) the object (Q⊗K)[1− e] belongs to resK(R) F .
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It follows from (3.10.3), (3.10.4), (3.10.5) and (3.10.6) that K[t− e] is in resK(R) F as desired. ■

Remark 3.11. We may wonder if the Hopkins–Neeman classification theorem [36, 44] can be applied to
deduce Proposition 3.10(2). Actually, the proof of the Hopkins–Neeman theorem provides a certain integer
m such that K[m] belongs to resK(R) F . However, this is done by applying the smash nilpotence theorem [44,
Theorem 1.1], which relies on the fact that R is noetherian, so that m cannot be described concretely. Note
that there is no meaning for us unless m > −e, since we know that K[i] ∈ ER ⊆ resK(R) F for all i ⩽ −e.

The following two corollaries are direct consequences of the above proposition.

Corollary 3.12. Suppose that R be a local ring. Then the following two statements hold true.

(1) There is an equality K0(R) = resK(R){KR[i] | i ∈ Z} of subcategories of K(R).

(2) Let F be an object in K0(R) and assume pdR F = t ⩾ 0. Then the equality resK(R) F = Kt0(R) holds.

Proof. Put e = edimR, K = KR and set X = res{K[i] | i ∈ Z}. Proposition 3.2(3) implies that X ⊆ K0(R).
Fix F ∈ K0(R) and set t = pdF . If t ⩽ 0, then F ∈ ER ⊆ X by Proposition 2.13(6). Let t ⩾ 0. We have

F ∈ Kt0(R) = resK(R)K[t− e] ⊆ X ∩ resK(R) F ⊆ resK(R) F ⊆ Kt0(R),

where the equality and the first inclusion follow from Proposition 3.10, and the other inclusions are obvious.
We thus obtain the equalities X = K0(R) and Kt0(R) = resK(R) F . ■

Corollary 3.13. Let R be a local ring. Let X be a resolving subcategory of K(R) contained in K0(R). Suppose
that one has supX∈X {pdRX} = ∞. Then the equality X = K0(R) holds true.

Proof. Assume that X is strictly contained in K0(R). Then there exists an object Y ∈ K0(R) such that Y /∈ X .
Put u = pdR Y . As Y is a nonzero object of K(R), we have that −∞ < u <∞. Since supX∈X {pdX} = ∞,
there exists an object X ∈ X such that t := pdX ⩾ max{u, 0}. Then X ∈ K0(R), pdX = t ⩾ 0 and u ⩽ t.
Applying Corollary 3.12(2), we observe Y ∈ Ku0 (R) ⊆ Kt0(R) = resK(R)X ⊆ X . This gives a contradiction. ■

Now we can give a proof of the main result of this section. It provides an explicit description of the
resolving subcategories of K(R) contained in K0(R); in particular, they form a totally ordered set.

Theorem 3.14. Suppose that R is a local ring with e = edimR and K = KR. Then one has strict inclusions

(3.14.1) ER = K0
0(R) ⊊ K1

0(R) ⊊ · · · ⊊ Kn0 (R) ⊊ Kn+1
0 (R) ⊊ · · · ⊊ K0(R)

of resolving subcategories of K(R) such that K[n − e] ∈ Kn0 (R) \ K
n−1
0 (R) for each n ⩾ 1. Moreover, all the

resolving subcategories of K(R) contained in K0(R) appear in the above chain of subcategories of K(R).

Proof. Proposition 2.13(6) says ER = K0(R) ⊇ K0
0(R). Since K0

0(R) is resolving by Proposition 3.2(4) and
ER is the minimum resolving subcategory, the equality ER = K0

0(R) holds. For each n ⩾ 1 it is clear that
Kn−1
0 (R) ⊆ Kn0 (R), while K[n− e] ∈ Kn0 (R) \K

n−1
0 (R) by Proposition 3.2(3). The first assertion now follows.

Now, let us show the second assertion. Let X be a resolving subcategory of K(R) contained in K0(R). We
may assume that X is different from K0(R). Corollary 3.13 says that t := supX∈X {pdX} is finite, and in

particular, X is contained in Kt0(R). Choose an an object X ∈ X such that pdX = t. We have t ⩾ 0 as R is
in X . Using Corollary 3.12(2), we see that Kt0(R) = resK(R)X ⊆ X . The equality X = Kt0(R) follows. ■

4. NE-loci of objects and subcategories of D(R)

Recall that the nonfree locus NF(M) of each object M of modR is by definition the set of prime ideals p
of R such that the localization Mp is nonfree as an Rp-module. Also, recall that the nonfree locus NF(X )
of a subcategory X of modR is defined as the union of NF(M) where M runs through the objects of X .
In this section, we introduce and study NE-loci NE(−), which extend nonfree loci NF(−) to objects and
subcategories of D(R). We begin with defining the NE-loci of objects of D(R).

Definition 4.1. Let X be an object of D(R). We denote by NE(X) the set of prime ideals p of R such that
Xp /∈ ERp

, and call it the NE-locus of X. According to Proposition 2.13(6), this is equal to the set of prime
ideals p of R such that the Rp-complex Xp has positive (possibly infinite) projective dimension. Thus we
may also call NE(X) the positive projective dimension locus of X. Clearly, the equality NE(M) = NF(M)
holds for each finitely generated R-module. Note that NE(X) is contained in SuppX, where the latter set is
the support of X, which is defined by the equality SuppX = {p ∈ SpecR | Xp ≇ 0 in D(Rp)}.

We state a basic fact on free resolutions and truncations of complexes, which is frequently used later.
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Remark 4.2. Let X ∈ D(R) be a complex. Put t = infX and s = supX. Then there exists a complex

F = (· · · ∂t−1

−−−→ F t
∂t

−→ F t+1 ∂t+1

−−−→ · · · ∂s−2

−−−→ F s−1 ∂s−1

−−−→ F s → 0)

of finitely generated free R-modules such that X ∼= F in D(R); see [25, (A.3.2)] for instance.

(1) Let C be the cokernel of the differential map ∂t−1, and let P = (0 → F t+1 → · · · → F s → 0) be a
truncation of F . Then P is a perfect complex and one has an exact triangle P → X → C[−t]⇝ in D(R).

(2) Let P = (0 → F 1 → · · · → F s → 0) and Y = (· · · → F−1 → F 0 → 0) be truncations of F . Then Y is an
object of D(R) with supY ⩽ 0. There is an exact triangle P → X → Y ⇝ in D(R), which induces an
exact triangle X → Y → P [1]⇝ in D(R). Proposition 2.13(6) implies that P and P [1] belong to ER.

Here are several basic properties of the NE-loci of objects of the derived category D(R).

Lemma 4.3. (1) Let X be an object of D(R). Then, the set NE(X) is empty if and only if X belongs to ER.
(2) For any objects X1, . . . , Xn of D(R) one has the equality NE(

⊕n
i=1Xi) =

⋃n
i=1 NE(Xi).

(3) For every X ∈ D(R) there exists Y ∈ D(R) with supY ⩽ 0, resD(R)X = resD(R) Y and NE(X) = NE(Y ).
(4) For an exact triangle X → Y → Z ⇝ one has NE(X) ⊆ NE(Y )∪NE(Z) and NE(Y ) ⊆ NE(X)∪NE(Z).

Proof. (1) By [10, Proposition 5.3.P] and Proposition 2.13(6), we get NE(X) = ∅ if and only if Xp ∈ ERp
for

all p ∈ SpecR, if and only if pdRp
Xp ⩽ 0 for all p ∈ SpecR, if and only if pdRX ⩽ 0, if and only if X ∈ ER.

(2) Let p be a prime ideal of R. Since ERp
is a resolving subcategory of D(Rp), we have that

⊕n
i=1(Xi)p =

(
⊕n

i=1Xi)p ∈ ERp
if and only if (Xi)p ∈ ERp

for all 1 ⩽ i ⩽ n. The assertion follows from the contrapositive.
(3) According to Remark 4.2(2), there exists an exact triangle X → Y → Z ⇝ in D(R) such that sup Y ⩽ 0

and Z ∈ ER. For each resolving subcategory X of D(R) we have X ∈ X if and only if Y ∈ X . In particular,
it holds that resD(R)X = resD(R) Y . For every p ∈ SpecR there exists an exact triangle Xp → Yp → Zp ⇝ in
D(Rp). Since Zp belongs to ERp

, we again have Xp ∈ Y if and only if Yp ∈ Y for each resolving subcategory
Y of D(Rp). In particular, Xp /∈ ERp

if and only if Yp /∈ ERp
. Hence the equality NE(X) = NE(Y ) holds.

(4) Fix p ∈ SpecR. By Proposition 2.13(3), if pd Yp ⩽ 0 and pdZp ⩽ 0, then pdXp ⩽ sup{pdYp, pdZp −
1} ⩽ 0. Also, if pdXp ⩽ 0 and pdZp ⩽ 0, then pdYp ⩽ sup{pdXp, pdZp} ⩽ 0. The assertion follows. ■

Remark 4.4. In view of Lemma 4.3(4), we may wonder if the inclusion NE(Z) ⊆ NE(X) ∪ NE(Y ) holds
for every exact triangle X → Y → Z ⇝ in D(R). This is not true in general. In fact, the exact triangle

R
=−→ R → 0 ⇝ induces an exact triangle R → 0 → R[1] ⇝. Then NE(R[1]) = SpecR because pd(R[1])p =

pdRp[1] = pdRp + 1 = 1 for each p ∈ SpecR by Proposition 2.13(1), while NE(R) ∪NE(0) is an empty set.

We provide a generalization (or a derived category version) of [54, Proposition 2.10 and Corollary 2.11(1)].

Proposition 4.5. For every object X of D(R) there is an equality NE(X) = SuppRHomD(R)(X,X). In
particular, the NE-loci of objects of D(R) are closed subsets of SpecR in the Zariski topology.

Proof. A prime ideal p of R does not belong to the support of the R-module HomD(R)(X,X) if and only if
HomD(R)(X,X)p = 0, if and only if HomD(Rp)(Xp, Xp) = 0 by Lemma 3.7(1), if and only if Xp belongs to ERp

by Proposition 3.5(2), if and only if p is not in NE(X). It follows that NE(X) = SuppHomD(R)(X,X). ■

Next we state the definition of the NE-locus of a subcategory of D(R).

Definition 4.6. For a subcategory X of D(R), we set NE(X ) =
⋃
X∈X NE(X) and call it the NE-locus of

X . Since each NE(X) in the union is a Zariski-closed subset of SpecR by Proposition 4.5, the subset NE(X )
of SpecR is specialization-closed; this statement is a generalization of [54, Corollary 2.11(2)].

The following proposition is regarded as a derived category version of [54, Corollary 3.6].

Proposition 4.7. For every subcategory X of D(R) the equality NE(resD(R) X ) = NE(X ) holds.

Proof. Since X is contained in resD(R) X , we see that NE(X ) is contained in NE(resX ). Let p be a prime ideal
of R with p /∈ NE(X ). We have pdRp

Xp ⩽ 0 for every X ∈ X , so that X is contained in the subcategory Y of

D(R) consisting of complexes Y such that pdRp
Yp ⩽ 0. Clearly, Y contains R. By the projective dimension

equality in Proposition 2.13(4), we see that Y is closed under direct summands. The first projective dimension
inequality in Proposition 2.13(3) shows that Y is closed under extensions. The projective dimension equality
in Proposition 2.13(1) implies that Y is closed under negative shifts. Thus, Y is a resolving subcategory of
D(R) containing X , so that it contains resX . It follows that p /∈ NE(resX ). Thus, NE(X ) = NE(resX ). ■
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Recall that a finitely generated R-module M is called a maximal Cohen–Macaulay module provided that
it satisfies the inequality depthRp

Mp ⩾ dimRp for all prime ideals p of R. Now, extending this, we introduce
the notion of a maximal Cohen–Macaulay complex. This plays an important role in the rest of this paper.

Definition 4.8. (1) We call an object X of D(R) a maximal Cohen–Macaulay complex if depthRp
Xp ⩾

dimRp for all prime ideals p. By definition, a finitely generated R-moduleM is maximal Cohen–Macaulay
if and only if the complex (0 →M → 0) concentrated in degree zero is maximal Cohen–Macaulay.

(2) We denote by C(R) the subcategory of D(R) consisting of all maximal Cohen–Macaulay R-complexes.

Recall that SingR stands for the singular locus of R, that is to say, the set of prime ideals p of R such
that the local ring Rp is not regular. In the proposition below, we state some properties of maximal Cohen–
Macaulay complexes, whose module category version can be found in [54, Example 2.9].

Proposition 4.9. (1) Let X ∈ D(R) be maximal Cohen–Macaulay. Then NE(X) is contained in SingR.
(2) The subcategory C(R) of D(R) is closed under direct summands, extensions and negative shifts. If R is

a Cohen–Macaulay ring, then C(R) is a resolving subcategory of D(R) and vice versa.

Proof. (1) Let p be a prime ideal of R with p /∈ SingR. Then Rp is a regular local ring, so that pdRp
Xp <∞.

By Proposition 2.13(2), we have pdRp
Xp = depthRp−depthXp = dimRp−depthXp ⩽ 0. Thus p /∈ NE(X).

(2) The depth equality in Proposition 2.13(4) shows C(R) is closed under direct summands. Using the first
inequality in Proposition 2.13(3), we observe that C(R) is closed under extensions. It is seen from the depth
equality in Proposition 2.13(1) that C(R) is closed under negative shifts. The ring R is Cohen–Macaulay if
and only if R belongs to C(R), if and only if C(R) is a resolving subcategory of D(R). ■

Recall that a thick subcategory X of CM(R) is by definition a subcategory of CM(R) closed under direct
summands and such that for every short exact sequence 0 → L→M → N → 0 of maximal Cohen–Macaulay
R-modules, if two of L,M,N belong to X , then so does the third. Also, for each set Φ of prime ideals of R,
the subcategory NF−1(Φ) is defined as the subcategory of modR consisting of modules whose nonfree loci
are contained in Φ, and NF−1

CM(Φ) is defined to be the intersection of NF−1(Φ) with CM(R). These three
subcategories play important roles in [55, 57, 58]. Now we introduce their derived category versions.

Definition 4.10. (1) We say that a subcategory X of C(R) is thick provided that X is closed under direct
summands in the additive category C(R), and that for each exact triangle A→ B → C ⇝ in D(R) such
that A,B,C ∈ C(R), if two of A,B,C belong to X , then so does the third. (We should be careful not to
confuse a thick subcategory of C(R) with a thick subcategory of D(R) in the sense of Definition 2.3.)

(2) For a subset Φ of SpecR, we denote by NE−1(Φ) the subcategory of D(R) consisting of complexes whose
NE-loci are contained in Φ. We define the subcategory NE−1

C (Φ) of C(R) by NE−1
C (Φ) = NE−1(Φ)∩C(R).

The following proposition includes a derived category version of [55, Propositions 1.15(3), 4.2 and Theorem
4.10(3)]. Compare this proposition with Theorem 9.1 stated later.

Proposition 4.11. The following statements hold true.

(1) Every thick subcategory of D(R) contained in C(R) is a thick subcategory of C(R). Every thick subcategory
of C(R) containing R is a resolving subcategory of D(R) contained in C(R).

(2) For Φ ⊆ SpecR the subcategory NE−1(Φ) of D(R) is resolving. If R is Cohen–Macaulay, then NE−1
C (Φ)

is a thick subcategory of C(R) containing R, and a resolving subcategory of D(R) contained in C(R).

Proof. (1) First of all, note that since C(R) is closed under direct summands as a subcategory of D(R) by
Proposition 4.9(2), being closed under direct summands as a subcategory of C(R) implies being closed under
direct summands as a subcategory of D(R). The first assertion now follows. To show the second, let X be a
thick subcategory of C(R) containing R. Then X is closed under direct summands as a subcategory of D(R).
Let A → B → C ⇝ be an exact triangle in D(R) with C ∈ X . Then C is in C(R), and we observe from
Propositions 4.9(2) and 2.4(1) that A ∈ C(R) if and only if B ∈ C(R). Since X is a thick subcategory of
C(R), it is easy to verify that A ∈ X if and only if B ∈ X . Thus, X is a resolving subcategory of D(R).

(2) Since NE(R) = ∅ ⊆ Φ, we have R ∈ NE−1(Φ). Using Lemma 4.3(2), we see that NE−1(Φ) is closed
under direct summands. Let X → Y → Z ⇝ be an exact triangle in D(R) with Z ∈ NE−1(Φ). Then Φ
contains NE(Z). It follows from Lemma 4.3(4) that Φ contains NE(X) if and only if Φ contains NE(Y ). This
means that X ∈ NE−1(Φ) if and only if Y ∈ NE−1(Φ). Thus, NE−1(Φ) is a resolving subcategory of D(R).

Let R be Cohen–Macaulay. The first assertion of (2) shows NE−1(Φ) is a resolving subcategory of D(R),
and so is C(R) by Proposition 4.9(2), whence so is NE−1(Φ) ∩ C(R) = NE−1

C (Φ). Let A → B → C ⇝ be an

exact triangle in D(R) with A,B ∈ NE−1
C (Φ) and C ∈ C(R). Assume C /∈ NE−1

C (Φ). Then we find p ∈ NE(C)
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such that p /∈ Φ. Hence p does not belong to NE(A) or NE(B), which means that pdAp ⩽ 0 and pdBp ⩽ 0.
The exact triangle Ap → Bp → Cp ⇝ in D(Rp) and Proposition 2.13(3) show pdCp ⩽ 1 <∞, and we get

pdCp = depthRp − depthCp = dimRp − depthCp ⩽ 0,

where the first equality comes from Proposition 2.13(2), the second equality holds since the local ring Rp is
Cohen–Macaulay, and the inequality holds as C is maximal Cohen–Macaulay. This is a contradiction because
p ∈ NE(C). It follows that C ∈ NE−1

C (Φ). Thus NE−1
C (Φ) is a thick subcategory of C(R) (containing R). ■

Remark 4.12. The converse of the first assertion of Proposition 4.11(1) does not necessarily hold true.
In fact, C(R) is itself a thick subcategory of C(R), but it is not necessarily a thick subcategory of D(R).
For example, let R be a Cohen–Macaulay local ring of positive Krull dimension. Then there exists a non-

zerodivisor x in the maximal ideal of R, which gives rise to an exact sequence 0 → R
x−→ R → R/(x) → 0 in

modR, which induces an exact triangle R
x−→ R→ R/(x)⇝ in D(R). We have R ∈ C(R) but R/(x) /∈ C(R).

Therefore, C(R) is not a thick subcategory of D(R). This argument also shows the module category version:
a thick subcategory of CM(R) is not necessarily a thick subcategory of modR contained in CM(R).

5. Classification of resolving subcategories of K(R)

The purpose of this section is to give a complete classification of the resolving subcategories of K(R). We
start by defining, for each object of the derived category D(R), another object by tensoring a Koszul complex
and taking a shift. This is used in the proof of the first main result of this section.

Definition 5.1. Let X ∈ D(R). For x ∈ R, set X(x) = K(x) ⊗L
R X[−1] ∈ D(R). For a sequence x =

x1, . . . , xn in R, we inductively define X(x) ∈ D(R) by X(x1, . . . , xi) = (X(x1 . . . , xi−1))(xi) for 1 ⩽ i ⩽ n.
We make a list of basic properties of the object X(x) for X ∈ D(R) and x ∈ R.

Lemma 5.2. Let X be an object of D(R), and let x be an element of R.

(1) If x is a unit of R, then there is an isomorphism X(x) ∼= 0 in D(R).

(2) There exists an exact triangle X(x) → X
x−→ X ⇝ in D(R). In particular, one has the containment

X(x) ∈ resD(R)X and the isomorphisms X(x) ∼= RHomR(K(x), X) ∼= HomR(K(x), X) in D(R).
(3) Let R be a local ring with maximal ideal m and residue field k. Let x ∈ m. Then one has the equalities

depthRX(x) = depthRX and pdRX(x) = pdRX. In particular, X ∈ ER if and only if X(x) ∈ ER.
(4) There is an equality NE(X(x)) = NE(X) ∩V(x) of subsets of SpecR.

Proof. (1) If x is a unit of R, then K(x) ∼= 0 in D(R), and hence X(x) = K(x)⊗L
R X[−1] ∼= 0 in D(R).

(2) There exists an exact triangle e : R
x−→ R→ K(x)⇝ in D(R). Applying the functor −⊗L

RX to e gives

rise to an exact triangle X
x−→ X → K(x)⊗L

RX ⇝ in D(R), which induces an exact triangle a : X(x) → X
x−→

X ⇝ in D(R). Hence X(x) belongs to resD(R)X. Applying the functor RHomR(−, X) to e yields an exact

triangle b : RHomR(K(x), X) → X
x−→ X ⇝. It follows from a and b that X(x) ∼= RHomR(K(x), X).

(3) As x belongs to m, we have K(x)⊗L
R k

∼= (0 → k
x−→ k → 0) = (0 → k

0−→ k → 0) ∼= k ⊕ k[1]. Hence

RHomR(k,X(x)) ∼= RHomR(k,RHomR(K(x), X)) ∼= RHomR(K(x)⊗L
R k,X)

∼= RHomR(k ⊕ k[1], X) ∼= RHomR(k,X)⊕RHomR(k,X)[−1] by (2), and
X(x)⊗L

R k
∼= K(x)⊗L

R X[−1]⊗L
R k

∼= (K(x)⊗L
R k)⊗L

R X[−1]
∼= (k ⊕ k[1])⊗L

R X[−1] ∼= (X ⊗L
R k)⊕ (X ⊗L

R k)[−1].

As inf Y [−1] = inf Y +1 for any complex Y , we get depthX(x) = infRHomR(k,X(x)) = infRHomR(k,X) =
depthX and pdX(x) = − inf(X(x) ⊗L

R k) = − inf(X ⊗L
R k) = pdX, where we use Proposition 2.13(2) for

the latter statement. By virtue of Proposition 2.13(6), we have X ∈ ER if and only if X(x) ∈ ER.
(4) To show (⊇), let p ∈ NE(X) ∩V(x). Then pdRp

Xp > 0 and x
1 ∈ pRp. By (3) we have pdRp

Xp(
x
1 ) =

pdRp
Xp > 0, whence p ∈ NE(X(x)). To show (⊆), let p ∈ NE(X(x)). Then pdRp

Xp(
x
1 ) > 0. In particular,

Xp(
x
1 ) ≇ 0 in D(R). Hence x ∈ p by (1). By (3) we get 0 < pdRp

Xp(
x
1 ) = pdRp

Xp, so that p ∈ NE(X). ■

The theorem below is the first main result of this section. The first and last assertions of the theorem are
regarded as derived category versions of [54, Theorem 4.3] and [28, Lemma 4.6] respectively, which concern
the nonfree locus and the resolving closure of an object in the module category modR.

Theorem 5.3. Let X be an object of D(R). Let W be a closed subset of SpecR contained in NE(X). Then:

(1) There exists an object Y ∈ resD(R)X such that W = NE(Y ).
(2) If R is local and W is nonempty, then Y can be chosen so that pdY = pdX and depthY = depthX.
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(3) If W is irreducible, then Y can be chosen so that pdYp = pdXp and depthYp = depthXp for all p ∈W .

Proof. WhenW is empty, we can take Y := R. Assume that W 6= ∅. Then there exist prime ideals p1, . . . , pn
of R such that n > 0 and W = V(p1) ∪ · · · ∪ V(pn). Each V(pi) is contained in NE(X). If we find an
object Yi ∈ resD(R)X such that V(pi) = NE(Yi), then Y := Y1 ⊕ · · · ⊕ Yn belongs to resX and satisfies
W = NE(Y ) by Lemma 4.3(2). If R is local, pdR Yi = pdRX and depthR Yi = depthRX for all 1 ⩽ i ⩽ n,
then pdR Y = sup1⩽i⩽n{pdR Yi} = pdRX and depthR Y = inf1⩽i⩽n{depthR Yi} = depthRX by Proposition
2.13(4). Thus, it suffices to show that in the case where W = V(p) for some prime ideal p of R there exists
Y ∈ resD(R)X such that W = NE(Y ), pdRP

YP = pdRP
XP and depthRP

YP = depthRP
XP for all P ∈W .

The set NE(X) contains V(p). If NE(X) = V(p), then we are done by letting Y = X. Suppose that NE(X)
strictly contains V(p) and choose an element q ∈ NE(X)\V(p). Then q does not contain p, and we can choose
an element x ∈ p \ q. Using Lemma 5.2(4), we get p ∈ NE(X) ∩V(x) = NE(X(x)). As NE(X(x)) is Zariski-
closed by Proposition 4.5, it contains V(p). It follows that V(p) ⊆ NE(X(x)) = NE(X)∩V(p) ⊆ NE(X) and
the fact that q ∈ NE(X) \V(p) says NE(X) ∩V(p) 6= NE(X). We conclude V(p) ⊆ NE(X(x)) ⊊ NE(X).

By Lemma 5.2(2)(3), we have that X(x) ∈ resX, and that pdRP
X(x)P = pdRP

XP (
x
1 ) = pdRP

XP and
depthRP

X(x)P = depthRP
XP (

x
1 ) = depthRP

XP for all P ∈ V(p) since x ∈ p ⊆ P . If NE(X(x)) is equal to
V(p), we are done by letting Y = X(x). If NE(X(x)) strictly contains V(p), we apply the above argument
to find y ∈ p with V(p) ⊆ NE(X(x, y)) ⊊ NE(X(x)). Iterating this procedure, we get an ascending chain

V(p) ⊆ · · · ⊊ NE(x, y, z, w) ⊊ NE(x, y, z) ⊊ NE(X(x, y)) ⊊ NE(X(x)) ⊊ NE(X)

of subsets of SpecR with x, y, z, w, . . . ∈ p. However, we can do this only finitely many times, since each
NE-locus appearing in the above chain is Zariski-closed, and the topological space SpecR is noetherian.

We thus obtain a sequence x = x1, . . . , xn in p with NE(X(x)) = V(p) and X(x) ∈ resX, pdRP
X(x)P =

pdRP
XP and depthRP

X(x)P = depthRP
XP for all P ∈ V(p). The theorem follows by letting Y = X(x). ■

From the above theorem we can deduce the following corollary. Thanks to this result, for each object X
in a fixed resolving subcategory of D(R), one may often assume that X belongs to D0(R).

Corollary 5.4. Let R be a local ring. For every object X ∈ D(R) there exists an object Y ∈ resD(R)X∩D0(R)
such that pdR Y = pdRX and depthR Y = depthRX.

Proof. When X belongs to ER, we put Y := X and are done. Let X be outside of ER. Then the maximal
ideal m of R belongs to NE(X) by Lemma 4.3(1) and Proposition 4.5, and hence V(m) is contained in
NE(X). Applying Theorem 5.3 to V(m), we find an object Y ∈ resD(R)X such that NE(Y ) = V(m) = {m},
pdY = pdX and depthY = depthX. The equality NE(Y ) = {m} implies that Y belongs D0(R). ■

Next, we prove the following lemma, which is thought of as a derived category version of [30, Lemma 3.2
and Proposition 3.3]. For a partially ordered set P we denote by minP the set of mimimal elements of P .

Lemma 5.5. Let X be a subcategory of D(R).

(1) Let S be a multiplicatively closed subset of R. Suppose that X is a resolving subcategory of D(R). Then
addD(RS) XS is a resolving subcategory of D(RS). Hence, the equality addD(RS) XS = resD(RS) XS holds.

(2) Suppose that X contains R and is closed under finite direct sums. Let Z be a nonempty finite subset of
SpecR. Let C ∈ D(R) be such that Cp ∈ addD(Rp) Xp for all p ∈ Z. Then there exist exact triangles

K → X → C → K[1], L→ K ⊕ C → X → L[1]

in D(R) such that X ∈ X , that NE(L) ⊆ NE(C), that SuppL∩Z = ∅, and that pdRp
Lp ⩽ pdRp

Cp and
depthRp

Lp ⩾ depthRp
Cp for all prime ideals p of R.

(3) Assume that X is a resolving subcategory of D(R). The following are equivalent for each C ∈ D(R).
(a) The object C belongs to X .
(b) The localization Cp belongs to addD(Rp) Xp for all prime ideals p of R.
(c) The localization Cm belongs to addD(Rm) Xm for all maximal ideals m of R.

Proof. (1) By definition, the additive closure addXS is closed under direct summands. As R is in X , we have
RS ∈ XS ⊆ addXS . Let A ∈ addXS . Then A ⊕ B is isomorphic to XS for some B ∈ D(RS) and X ∈ X ,
whence A[−1]⊕B[−1] is isomorphic to (X[−1])S . As X is closed under negative shifts, we see that A[−1] is in
addXS . Therefore, addXS is closed under negative shifts. Let L→M → N ⇝ be an exact triangle in D(RS)
with L,N ∈ addXS . Then L⊕ L′ ∼= XS and N ⊕N ′ ∼= YS for some L′, N ′ ∈ D(RS) and X,Y ∈ X . Taking
the direct sum with the exact triangles L′ → L′ → 0 ⇝ and 0 → N ′ → N ′ ⇝, we observe that there exists

an exact triangle L′ ⊕M ⊕N ′ → YS
f−→ X[1]S ⇝ in D(RS). Write f = g

s , where g : Y → X[1] is a morphism
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in D(R) and s is an element of S; see [10, Lemma 5.2(b)]. There is an exact triangle X → Z → Y
g−→ X[1]

in D(R). Since X is closed under extensions, Z is in X . Also, we see that ZS is isomorphic to L′ ⊕M ⊕N ′

in D(RS). It follows that M belongs to addXS , which shows that addXS is closed under extensions.
(2) Write Z = {p1, . . . , pn}. Fix 1 ⩽ i ⩽ n. There exists Xi ∈ X such that Cpi

is a direct summand of
(Xi)pi

in D(Rpi
). We have a split epimorphism fi : (Xi)pi

→ Cpi
in D(Rpi

), so that there is a morphism
αi : Cpi → (Xi)pi in D(Rpi) with fiαi = idCpi

. Choose a morphism gi : Xi → C in D(R) and an element

si ∈ R\pi such that gisi = fi. Set X = X1⊕· · ·⊕Xn ∈ X and consider the morphism g = (g1, . . . , gn) : X → C

in D(R). Then g
1 = ( g11 , . . . ,

gn
1 ) : Xpi → Cpi is a split epimorphism in D(Rpi) for each i, since letting

βi : Cpi
→ Xpi

be the transpose of (0, . . . , 0, 1
si
αi, 0, . . . , 0), we have g

1βi = idCpi
. There is an exact triangle

K → X
g−→ C

h−→ K[1] in D(R). For any integer 1 ⩽ i ⩽ n it holds that hpi
= h

1 = 0 in D(Rpi
), which means

that the annihilator annR h of h ∈ HomD(R)(C,K[1]) is not contained in pi. By prime avoidance, we find an
element s ∈ annR h such that s /∈ p for all p ∈ Z. The octahedral axiom gives rise to a commutative diagram

C
s // C

h��

// K(s)⊗L
R C

//

��

C[1]

C
hs

0
//

��

K[1] // K[1]⊕ C[1]

��

// C[1]

��
C

h //

��

K[1] //

��

X[1]
g[1] // C[1]

��
K(s)⊗L

R C
// K[1]⊕ C[1] // X[1] // (K(s)⊗L

R C)[1]

in D(R) whose rows are exact triangles. The bottom row in the diagram induces an exact triangle L →
K ⊕ C → X → L[1] in D(R), where we put L := C(s) = K(s)⊗L

R C[−1].
Let p ∈ Z. Then the element s

1 of Rp is a unit, and hence it holds in D(Rp) that K(s)p = K( s1 , Rp) ∼= 0.

Therefore, Lp = K(s)p ⊗L
Rp
Cp[−1] ∼= 0 in D(Rp). It follows that the intersection SuppL∩Z is an empty set.

Fix a prime ideal p of R. Note that we have Lp = C(s)p = Cp(
s
1 ). If s is in p, then pdCp(

s
1 ) = pdCp

and depthCp(
s
1 ) = depthCp by Lemma 5.2(3). If s is not in p, then Cp(

s
1 ) = 0 by Lemma 5.2(1), so that

pdCp(
s
1 ) = −∞ and depthCp(

s
1 ) = ∞. Therefore, there are inequalities pdLp ⩽ pdCp and depthLp ⩾

depthCp. If p is not in NE(C), then Cp is in ERp
, and so is Lp. Hence NE(L) is contained in NE(C).

(3) Localization shows the implications (a) ⇒ (c) ⇒ (b). Assume that (b) holds and C /∈ X . Then the set

A = {NE(Y ) | Y ∈ D(R), Y /∈ X and Yp ∈ addD(Rp) Xp for all prime ideals p of R}

is nonempty. Since SpecR is a noetherian space and each NE(Y ) is Zariski-closed by Proposition 4.5, the set
A contains a minimal element NE(B) with B ∈ D(R), B /∈ X and Bp ∈ addXp for every prime ideal p of R.
If NE(B) is an empty set, then we have B ∈ ER ⊆ X by Lemma 4.3(1), which gives a contradiction. Thus
NE(B) is a nonempty Zariski-closed set, which implies that minNE(B) is nonempty and finite. It follows
from (2) that there exist exact triangles K → X → B ⇝ and L→ K⊕B → X ⇝ in D(R) such that X ∈ X ,
NE(L) ⊆ NE(B) and NE(L) ∩minNE(B) = ∅. In particular, NE(L) is strictly contained in NE(B).

We claim that Lp is in addXp for every p ∈ SpecR. In fact, there is an exact triangle Kp → Xp → Bp ⇝.
It follows from (1) that addXp is a resolving subcategory of D(Rp). Since Xp and Bp belong to addXp, so
does Kp. There is an exact triangle Lp → Kp ⊕Bp → Xp ⇝. As Kp ⊕Bp and Xp are in addXp, so is Lp.

Now the minimality of NE(B) forces L to be in X . The exact triangle L → K ⊕ B → X ⇝ implies that
B belongs to X , which contradicts the choice of B. We thus conclude that the object C belongs to X . ■

Remark 5.6. In Lemma 5.5(2), the object L is taken in such a way that SuppL∩Z = ∅. Comparing this with
the module category version of Lemma 5.5(2) given in [30, Lemma 3.2], we see that the expected condition
satisfied by the object L in Lemma 5.5(2) is the weaker condition that NE(L) ∩ Z = ∅. It is an advantage
the derived category possesses against the module category that one can get L so that SuppL ∩ Z = ∅. By
the way, only for the purpose of proving our main results, it does suffice to have the equality NE(L)∩Z = ∅.

Here we define assignments between subcategories of D(R) and maps from SpecR to Z∪{±∞}, and state
a couple of properties which are used in the next main result of this section and its proof.

Definition 5.7. For a subcategory X of D(R), we define the map Φ(X ) : SpecR→ Z∪{±∞} by Φ(X )(p) =
supX∈X {pdRp

Xp} for p ∈ SpecR. For a map f : SpecR→ Z∪{±∞}, we denote by Ψ(f) the subcategory of

D(R) consisting of objects X with pdRp
Xp ⩽ f(p) for all p ∈ SpecR. We equip the sets SpecR and Z∪{±∞}

with the partial orders given by the inclusion relation (⊆) and the inequality relation (⩽), respectively.
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Lemma 5.8. (1) Let X be a subcategory of D(R) which contains R. Then Φ(X ) defines an order-preserving
map from SpecR to N ∪ {∞}.

(2) Let f : SpecR→ N ∪ {∞} be a map. Then Ψ(f) is a resolving subcategory of D(R).

Proof. (1) Fix a prime ideal p of R. Since R belongs to X , it holds that supX∈X {pdXp} ⩾ pdRp = 0.
Thus, Φ(X )(p) is an element of N∪ {∞}. If q is a prime ideal of R that contains p, then we have pdRp

Xp =

pd(Rq)pRq
(Xq)pRq

⩽ pdRq
Xq for each X ∈ D(R) (see [10, Proposition 5.1(P)]), whence Φ(X )(p) ⩽ Φ(X )(q).

(2) We have pdRp = 0 ⩽ f(p) for every prime ideal p of R, which shows that Ψ(f) contains R. If X is
an object of Ψ(f) and Y is a direct summand of X in D(R), then pdYp ⩽ pdXp ⩽ f(p) for all p ∈ SpecR
by Proposition 2.13(4), which shows that Y belongs to Ψ(f). Let X → Y → Z ⇝ be an exact triangle in
D(R) with Z ∈ Ψ(f). Then for each p ∈ SpecR there is an exact triangle Xp → Yp → Zp ⇝ in D(Rp) and
pdZp ⩽ f(p). It is seen from Proposition 2.13(3) that pdXp ⩽ f(p) if and only if pd Yp ⩽ f(p). Therefore,
X is in Ψ(f) if and only if Y is in Ψ(f). We now conclude that Ψ(f) is a resolving subcategory of D(R). ■

Now we have reached the stage to state and prove the second main result of this section, which provides
a complete classification of the resolving subcategories of K(R).

Theorem 5.9. The assignments X 7→ Φ(X ) and f 7→ Ψ(f) ∩ K(R) give mutually inverse bijections between
the resolving subcategories of K(R), and the order-preserving maps from SpecR to N ∪ {∞}.

Proof. Fix a resolving subcategory X of K(R) and an order-preserving map f : SpecR → N ∪ {∞}. Lemma
5.8 implies that Φ(X ) : SpecR → N ∪ {∞} is an order-preserving map and Ψ(f) is a resolving subcategory
of D(R). Hence Ψ(f) ∩ K(R) is a resolving subcategory of K(R). Fix a prime ideal p of R. It is clear that

Φ(Ψ(f) ∩ K(R))(p) = sup{pdRp
Pp | P ∈ K(R) and pdRq

Pq ⩽ f(q) for all q ∈ SpecR} ⩽ f(p).

Let x = x1, . . . , xs be a system of generators of p, and let q be a prime ideal of R. First, we consider the case
where f(p) =: n <∞. Set P = K(x)[n− s] ∈ K(R). We have pdRp

Pp = n = f(p) by Proposition 2.13(1)(7).

If p is contained in q, then pdRq
Pq = pdRq

K(x, Rq) + (n− s) ⩽ s+ (n− s) = n = f(p) ⩽ f(q). If p is not

contained in q, then pdRq
Pq = −∞ ⩽ f(q) by Proposition 2.13(7). Thus Φ(Ψ(f) ∩ K(R))(p) = f(p). Next,

we consider the case where f(p) = ∞. Then for any integer n we set P = K(x)[n− s] to have pdRp
Pp = n.

If p is contained in q, then ∞ = f(p) ⩽ f(q), so that pdRq
Pq ⩽ ∞ = f(q). If p is not contained in q, then

pdRq
Pq = −∞ ⩽ f(q). We get Φ(Ψ(f) ∩ K(R))(p) = ∞ = f(p). It now follows that Φ(Ψ(f) ∩ K(R)) = f .

It remains to prove that Ψ(Φ(X )) ∩ K(R) = X . Note that there are an equality and an inclusion

Ψ(Φ(X )) ∩ K(R) = {P ∈ K(R) | pdRp
Pp ⩽ supX∈X {pdRp

Xp} for all p ∈ SpecR} ⊇ X .

Let P ∈ Ψ(Φ(X ))∩K(R). All we need to do is show that P is in X . Fix a maximal ideal m of R and a prime
ideal p of R contained in m. Then addXm is a resolving subcategory of K(Rm) by Lemma 5.5(1). We have

(5.9.1)
pd(Rm)pRm

(Pm)pRm
= pdRp

Pp ⩽ supX∈X {pdRp
Xp} = supX∈X {pd(Rm)pRm

(Xm)pRm
}

⩽ supY ∈addXm
{pd(Rm)pRm

YpRm
}.

By Lemma 5.5(3), it suffices to show Pm ∈ addXm. Thus we may assume that (R,m) is local. Then the
dimension n := dimNE(P ) of the Zariski-closed set NE(P ) is finite. We prove by induction on n that P ∈ X .

When n ⩽ 0, the set NE(P ) is contained in {m}, which means that P belongs to K0(R). By the choice of P ,
we have pdR P ⩽ supX∈X {pdRX}, which implies that there is an object X ∈ X such that pdR P ⩽ pdRX.
Corollary 5.4 gives rise to an object X ′ ∈ D0(R) ∩ resD(R)X with pdRX

′ = pdRX. Hence X ′ ∈ X ∩ K0(R)
and pdR P ⩽ pdRX

′. Replacing X with X ′, we may assume that X ∈ K0(R). Setting t = pdRX, we have
the inequality pdR P ⩽ t, so that P ∈ Kt0(R) = resK(R)X ⊆ X , where the equality holds by Theorem 3.14.

Now we deal with the case where n > 0. Then minNE(P ) is nonempty and finite. Write minNE(P ) =
{p1, . . . , pr} and fix 1 ⩽ i ⩽ r. We have NE(Ppi) = {piRpi}, whence dimNE(Ppi) = 0. The subcategory
addXpi

of K(Rpi
) is resolving by Lemma 5.5(1). Similarly as in (5.9.1), the inequality pd(Rpi

)qRpi
(Xpi

)qRpi
⩽

supY ∈addXpi
{pd(Rpi

)qRpi
YqRpi

} holds for every prime ideal q of R contained in pi. The induction basis implies

that Ppi
belongs to addXpi

. Lemma 5.5(2) yields exact triangles K → Z → P ⇝ and L→ K ⊕P → Z ⇝ in
D(R) such that Z ∈ X , NE(L) ⊆ NE(P ), NE(L) ∩minNE(P ) = ∅, and pdRp

Lp ⩽ pdRp
Pp for every prime

ideal p of R. Since Z and P are in K(R), so is K, and so is L. The inequality dimNE(L) < dimNE(P ) = n
holds, while pdRp

Lp ⩽ pdRp
Pp ⩽ supX∈X {pdRp

Xp} for all p ∈ SpecR. Hence we can apply the induction
hypothesis to L to deduce that L is in X . The exact triangle L→ K ⊕ P → Z ⇝ shows that P is in X . ■
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6. Restricting the classification of resolving subcategories of K(R)

In this section, we compare our results obtained so far with the results of Dao and Takahashi concerning
resolving subcategories of modR contained in fpdR. For this purpose, we begin with recalling some notation.

Definition 6.1. Let R be a local ring. We set mod0(R) = modR ∩ D0(R). Note that mod0(R) consists of
the finitely generated R-modules which are locally free on the punctured spectrum of R. We also put

fpd0(R) = fpdR ∩mod0(R) = K0(R) ∩modR = {M ∈ mod0(R) | pdRM <∞},
fpdn0 (R) = Kn0 (R) ∩modR = Kn(R) ∩mod0(R) = {M ∈ fpd0(R) | pdRM ⩽ n} for n ∈ Z.

The following theorem is [30, Theorem 2.1]. Denote by Ω and Tr the syzygy and transpose functors.

Theorem 6.2 (Dao–Takahashi). Let R be a local ring of depth t and with residue field k. Then one has

(6.2.1) projR = fpd00(R) ⊊ fpd10(R) ⊊ · · · ⊊ fpdt0(R) = fpdt+1
0 (R) = · · · = fpd0(R)

such that TrΩn−1k ∈ fpdn0 (R) \ fpd
n−1
0 (R) for each t ⩾ n ⩾ 1. Moreover, all the resolving subcategories of

modR contained in fpd0(R) appear in the above chain.

Remark 6.3. (1) Theorem 3.14 is viewed as a derived category version of Theorem 6.2.
(2) A remarkable difference between Theorems 3.14 and 6.2 is that the former says that there exist only

finitely many resolving subcategories of modR contained in fpd0(R), while the latter says that there
exist infinitely (but countably) many resolving subcategories of K(R) contained in K0(R).

(3) Although both have similar configurations, the proof of Theorem 3.14 is completely different from that
of Theorem 6.2. Indeed, the latter requires much more complicated arguments on modules which involve
syzygies and transposes; the whole of [30, §2] is devoted to giving a proof of Theorem 6.2.

(4) The restriction of (3.14.1) to modR coincides with (6.2.1). Indeed, Proposition 2.13(6) says that ER ∩
modR = projR, while by definition we have Kn0 (R)∩modR = fpdn0 (R) for each integer n. The Auslander–
Buchsbaum formula [21, Theorem 1.3.3] shows fpdn0 (R) = fpd0(R) for all integers n ⩾ t.

In the proof of Theorem 6.2, the resolving closure resmodR k in modR of the residue field k of R does play
a crucial role; it coincides with mod0(R). Here we consider a derived category version of this fact.

Proposition 6.4. Let R be a local ring with residue field k. Let X ∈ D0(R) and put h = depthX. One then
has X ∈ resD(R)(k[−h]). In particular, it holds that D0(R) = resD(R){k[i] | i ∈ Z}.

Proof. Take a system of parameters x = x1, . . . , xd of R. Set Y = K(x) ⊗L
R X. It follows from Lemma

3.9(3) that X ∈ resD(R)(Y [−d]). Taking soft truncations of the complex Y implies that Y is in the extension

closure extD(R){HiY [−i] | inf Y ⩽ i ⩽ supY }. Localization at nonmaximal prime ideals shows that each

HiY has finite length as an R-module (see Proposition 2.13(7)), so that it is in extD(R) k. We have Y ∈
extD(R){k[−i] | inf Y ⩽ i ⩽ supY } ⊆ resD(R)(k[− inf Y ]), where the inclusion comes from the fact that every
resolving subcategory is closed under negative shifts. Using [33, Theorem I], we get inf Y = h − d, which
implies Y ∈ resD(R)(k[d− h]). Therefore, the object X belongs to resD(R)(k[−h]) by Proposition 2.8(2a). ■

We recall the definition of a grade-consistent function which has been introduced in [30].

Definition 6.5. A grade-consistent function on SpecR is by definition an order-preserving map f : SpecR→
N such that the inequality f(p) ⩽ grade p holds for all prime ideals p of R.

The grade condition in the definition of a grade-consistent function can be changed to a depth condition.

Lemma 6.6. Let f : SpecR→ N ∪ {∞} be an order-preserving map. Then f is a grade-consistent function
on SpecR if and only if f(p) ⩽ depthRp for all prime ideals p of R.

Proof. Fix p ∈ SpecR. The equality grade p = inf{depthRq | q ∈ V(p)} holds by [21, Proposition 1.2.10(a)].
In particular, one has grade p ⩽ depthRp, which shows the ‘only if’ part of the lemma. To show the ‘if’ part,
suppose f(q) ⩽ depthRq for all q ∈ SpecR. Then the image of f is contained in N. If q ∈ V(p), then p ⊆ q
and f(p) ⩽ f(q) ⩽ depthRq. This shows f(p) ⩽ inf{depthRq | q ∈ V(p)} = grade p. Thus, we are done. ■

Applying the above lemma, we can show the following result on the assignments used in Theorem 5.9.

Proposition 6.7. Let Φ and Ψ be the ones introduced in Definition 5.7.

(1) Let X be a subcategory of modR containing R. Then Φ(X ) is a grade-consistent function on SpecR.
(2) Let f : SpecR→ N be a map. Then the equality Ψ(f)∩modR = (Ψ(f)∩K(R))∩modR holds, and it is

a resolving subcategory of modR contained in fpdR.
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Proof. (1) Lemma 5.8(1) implies that Φ(X ) is an order-preserving map from SpecR to N ∪ {∞}. For each
p ∈ SpecR we have Φ(X )(p) = supX∈X {pdXp} ⩽ depthRp since the Auslander–Buchsbaum formula implies
pdXp = depthRp − depthXp ⩽ depthRp. Lemma 6.6 shows Φ(X ) is a grade-consistent function on SpecR.

(2) According to Lemma 5.8(2), the subcategory Ψ(f) of D(R) is resolving. It follows from Proposition
2.10(4) that Ψ(f)∩modR is a resolving subcategory of modR, and (Ψ(f)∩K(R))∩modR = Ψ(f)∩ fpdR =
(Ψ(f)∩modR)∩ fpdR is a resolving subcategory of modR contained in fpdR. Let M ∈ Ψ(f)∩modR. Then
for every prime ideal p of R one has pdRp

Mp ⩽ f(p) ∈ N, which particularly says that pdRp
Mp < ∞. By

[15, Lemma 4.5], we get pdRM <∞. Therefore, Ψ(f) ∩modR coincides with (Ψ(f) ∩modR) ∩ fpdR. ■

The following theorem is shown in [30, Theorem 1.2], which is one of the main results of [30].

Theorem 6.8 (Dao–Takahashi). By the assignments X 7→ Φ(X ) and f 7→ Ψ(f) ∩ modR, the resolving
subcategories of modR contained in fpdR bijectively correspond to the grade-consistent functions on SpecR.

Remark 6.9. Proposition 6.7 says that Theorem 6.8 is regarded as the restriction of Theorem 5.9 to modR.

7. Classification of certain preaisles of K(R)

In this section, we consider classifying certain preaisles of the triangulated category K(R). We begin with
recalling the definitions of preaisles and several related notions.

Definition 7.1. [2, §1.1][16, §1.3][40, §1.1] Let T be a triangulated category. A preaisle (resp. precoaisle) of
T is by definition a subcategory of T closed under extensions and positive (resp. negative) shifts. A preaisle
(resp. precoaisle) X of T is called an aisle (resp. a coaisle) if the inclusion functor X ↪→ T has a right (resp.
left) adjoint. For an aisle X and a coaisle Y of T , the pair (X ,Y[1]) is called a t-structure of T .

Denote by (−)∗ the R-dual functor HomR(−, R). The assignment P 7→ P ∗ gives a duality of K(R), which

sends an exact triangle A
f−→ B

g−→ C
h−→ A[1] to the exact triangle C∗ g∗−→ B∗ f∗

−→ A∗ h∗[1]−−−→ C∗[1]. For a
subcategory X of K(R), we denote by X ∗ the subcategory of K(R) consisting of complexes of the form X∗

with X ∈ X . The following lemma is straightforward from the definitions of preaisles and precoaisles.

Lemma 7.2. The assignment X 7→ X ∗ produces a one-to-one correspondence{
preaisles of K(R) containing R

and closed under direct summands

}
∼=

{
precoaisles of K(R) containing R
and closed under direct summands

}
.

Remark 7.3. In [32] a preaisle closed under direct summands is called a thick preaisle.

Let us recall the definition of a certain fundamental filtration of subsets of SpecR.

Definition 7.4. A filtration by supports or sp-filtration of SpecR is by definition an order-reversing map
φ : Z → 2SpecR such that for each i ∈ Z the subset φ(i) of SpecR is specialization-closed.

Here we need to introduce some notation.

F(φ)(p) = sup{j ∈ Z | p ∈ φ(j)}+ 1 for a map φ : Z → 2SpecR and p ∈ SpecR,
P(f)(i) = {p ∈ SpecR | f(p) > i} for a map f : SpecR→ Z ∪ {±∞} and i ∈ Z,
E(f) = {X ∈ K(R) | pdX∗

p ⩽ f(p) for all p ∈ SpecR} for a map f : SpecR→ Z ∪ {±∞},
Q(X )(p) = sup{pdX∗

p | X ∈ X} for a subcategory X of K(R) and p ∈ SpecR.

Now we can state and prove the main result of this section, which classifies certain preaisles of K(R).

Theorem 7.5. There are one-to-one correspondences{
preaisles of K(R) containing R

and closed under direct summands

}
Q //

{
order-preserving maps
SpecR→ N ∪ {∞}

}
P //

E
oo

{
sp-filtrations φ of SpecR
with φ(−1) = SpecR

}
.

F
oo

Proof. Note that the resolving subcategories of K(R) are precisely the precoaisles of K(R) that contain R and
are closed under direct summands. Thus, it immediately follows from Lemma 7.2 and Theorem 5.9 that the
maps (Q,E) appearing in the assertion are mutually inverse bijections. If φ is an sp-filtration of SpecR with
φ(−1) = SpecR, then F(φ)(p) = sup{i ∈ Z | p ∈ φ(i)} + 1 ⩾ (−1) + 1 = 0 for each prime ideal p of R, and
hence F(φ) is regarded as a map from SpecR to N ∪ {∞}. If f : SpecR → N ∪ {∞} is an order-preserving
map, then P(f)(−1) = {p ∈ SpecR | f(p) ⩾ 0} = SpecR. Thus, it follows from [59, Proposition 4.3] that
the maps (P,F) appearing in the assertion are mutually inverse bijections. Now the proof is completed. ■
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Remark 7.6. Theorem 7.5 can also be proved by using the techniques of the unbounded derived category
D(ModR) of all R-modules. We present the argument by an anonymous reader and Tsutomu Nakamura. Let
A be the set of preaisles of K(R) closed under direct summands, B the set of aisles of compactly generated
t-structures of D(ModR), and C the set of sp-filtrations of SpecR. Then, combining [46, Proposition 1.9(ii)]
with [39, Theorem A.7] implies that the map f : A → B is bijective, which sends each X ∈ A to the aisle
of D(ModR) generated by X . In [2, Theorem 3.11] it is proved that the map g : B → C is bijective, which
sends each Y ∈ B to the map φ : Z → 2SpecR given by φ(n) = {p ∈ SpecR | (R/p)[−n] ∈ Y} for each n ∈ Z.

To compare the above theorem with classification of aisles of D(R), we need to recall some notions.

Definition 7.7. (1) A map f : SpecR → Z ∪ {±∞} is called a t-function on SpecR if for each inclusion
p ⊆ q in SpecR there are inequalities f(p) ⩽ f(q) ⩽ f(p) + ht q/p.

(2) An sp-filtration φ is said to satisfy the weak Cousin condition provided that for all integers i and for all
saturated inclusions p ⊊ q in SpecR, if q belongs to φ(i), then p belongs to φ(i− 1).

(3) We say that R is CM-excellent if R is universally catenary, the formal fibers of the localizations of R are
Cohen–Macaulay, and the Cohen–Macaulay locus of each finitely generated R-algebra is Zariski-open.

Takahashi [59, Theorem 5.5] proved the following, which yields a complete classification of the t-structures
of D(R) when R is a CM-excellent ring of finite Krull dimension. We use the following notation:

H(f) = {X ∈ D(R) | H⩾f(p)(Xp) = 0 for all p ∈ SpecR} for a map f : SpecR→ Z ∪ {±∞},
R(X )(p) = sup{i ∈ Z | (R/p)[−i] ∈ X}+ 1 for a subcategory X of D(R) and p ∈ SpecR.

Theorem 7.8 (Takahashi). When R is CM-excellent and dimR <∞, there are one-to-one correspondences{
aisles

of D(R)

}
R //

{
t-functions
on SpecR

}
P //

H
oo

{
sp-filtrations of SpecR

satisfying the weak Cousin condition

}
.

F
oo

In the proposition below, we record a relationship between Theorem 7.5 and the restriction of Theorem
7.8 to K(R). Note that the intersection of the set of order-preserving maps from SpecR to N∪ {∞} and the
set of t-functions on SpecR consists of the t-functions whose images are contained in N ∪ {∞}.

Proposition 7.9. Let R be a CM-excellent ring of finite Krull dimension. Let f be a t-function on SpecR
whose image is contained in N ∪ {∞}. Then there is an equality E(f)[1] = H(f) ∩ K(R).

Proof. We claim that if R is local, X ∈ K(R) and n ∈ Z, then pdX∗ ⩽ n if and only if H>n(X) = 0. In fact,
letting k be the residue field of R, we have that pdX∗ = supRHomR(X

∗, k), that RHomR(X
∗, k) ∼= X⊗L

R k
and that sup(X ⊗L

R k) = supX by [25, (A.5.7.3), (A.4.24) and (A.6.3.2)], respectively.
Let X be an object of K(R). Using the above claim, we see that X ∈ E(f)[1] if and only if X[−1] ∈ E(f),

if and only if pd(X[−1])∗p ⩽ f(p) for all p ∈ SpecR, if and only if pdX∗
p ⩽ f(p)− 1 for all p ∈ SpecR, if and

only if H⩾f(p)(Xp) = 0, if and only if X ∈ H(f). It follows that E(f)[1] = H(f) ∩ K(R). ■
Question 7.10. Let R be a CM-excellent ring of finite Krull dimension. Is there any relationship between
Theorem 7.5 and the restriction of Theorem 7.8 to K(R), other than the one shown in Proposition 7.9?

Remark 7.11. In view of what we have stated so far, it is quite natural to ask if the aisles of K(R) can be
classified. If R is regular, then K(R) coincides with D(R), and Theorem 7.8 gives an answer. In case R is
singular, it is known that K(R) possesses only trivial aisles under mild assumptions: Smith [50, Theorems 1.2
and 1.3] proved that if R has finite Krull dimension, then K(R) has no bounded t-structure, and if moreover R
is irreducible, then 0 and K(R) are the only aisles of K(R). The former statement has recently been extended
to schemes by Neeman [47, Theorem 0.1], which resolves a conjecture of Antieau, Gepner and Heller [5].

8. Separating the resolving subcategories of D(R)

In this section, for a complete intersection R we separate the resolving subcategories of D(R) into the
resolving subcategories contained in K(R) and the resolving subcategories contained in C(R). For this, we
need several preparations. We start by recalling the definition of the cosyzygies of a finitely generated module.

Definition 8.1. Let M be a finitely generated R-module and n ⩾ 1 an integer. We denote by Ω−n
R M the

nth cosyzygy of M . This is defined inductively as follows. Let Ω−1
R M be the cokernel of a homomorphism

f :M → P such that P is a finitely generated projective R-module and the map HomR(f,R) : HomR(P,R) →
HomR(M,R) is surjective. For n ⩾ 2 we set Ω−n

R M = Ω−1
R (Ω

−(n−1)
R M). The nth cosyzygy of M is uniquely

determined by M and n up to projective summands. For details, see [53, Sections 2 and 7] for instance.
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Next we recall the definition of a certain numerical invariant for complexes.

Definition 8.2. The (large) restricted flat dimension RfdRX of an R-complex X ∈ D(R) is defined by

RfdRX = supp∈SpecR{depthRp − depthXp}.

One has inequalities − infX ⩽ RfdRX < ∞; see [12, Theorem 1.1] and [27, Proposition (2.2) and Theorem
(2.4)]. Also, note that if R is Cohen–Macaulay, thenX is maximal Cohen–Macaulay if and only if RfdRX ⩽ 0.

For a complex X ∈ D(R), we denote by GdimRX the Gorenstein dimension (G-dimension for short) of
X. Recall that a totally reflexive module is defined to be a finitely generated module of G-dimension at
most zero. For the details of G-dimension and totally reflexive modules, we refer the reader to [25]. In the
following lemma, we make a list of properties of G-dimension we need to use later. Assertions (2) and (3) of
the lemma correspond to assertions (1) and (3) of Proposition 2.13 concerning projective dimension.

Lemma 8.3. (1) Let Y, Z ∈ D(R). If pdR Y <∞ and GdimR Z ⩽ 0, then ExtiR(Z, Y ) = 0 for all i > supY .
(2) For every X ∈ D(R) and every n ∈ Z the equality GdimR(X[n]) = GdimRX + n holds.
(3) Let X → Y → Z ⇝ be an exact triangle in D(R). One then has GdimRX ⩽ sup{GdimR Y,GdimR Z−1},

GdimR Y ⩽ sup{GdimRX,GdimR Z} and GdimR Z ⩽ sup{GdimRX + 1,GdimR Y }.
(4) An object X ∈ D(R) is isomorphic to a totally reflexive module if and only if GdimRX ⩽ 0 and supX ⩽ 0.
(5) Suppose that the ring R is Gorenstein. Then every complex X of D(R) satisfies GdimRX = RfdRX <∞.

In particular, X is a maximal Cohen–Macaulay R-complex if and only if one has GdimRX ⩽ 0.

Proof. In what follows, [25, (2.3.8)] is our fundamental tool. Also, we set (−)⋆ = RHomR(−, R), and for
each complex C ∈ D(R) such that C⋆ ∈ D(R), let fC : C → C⋆⋆ stand for the natural morphism.

(1) If R is local, then supRHom(Z, Y ) ⩽ GdimZ + supY ⩽ supY by [25, (2.4.1)], and the assertion is
deduced. Suppose R is nonlocal, and fix p ∈ SpecR. Then pdRp

Yp <∞, Zp ∈ D(Rp), and GdimRp
Zp ⩽ 0 by

[25, (2.3.11)]. The assertion in the local case shows ExtiRp
(Zp, Yp) = 0 for all i > supYp. As supYp ⩽ supY ,

we have ExtiR(Z, Y )p = ExtiRp
(Zp, Yp) = 0 for all i > supY . Therefore, ExtiR(Z, Y ) = 0 for all i > supY .

(2) The assertion is straightforward (from the definition of G-dimension or [25, (2.3.8)]).
(3) We have only to verify Gdim Y ⩽ sup{GdimX,GdimZ}, because once it is done, applying it to

the exact triangles Y → Z → X[1] ⇝ and Z[−1] → X → Y ⇝ and using (2) will give the inequalities
GdimZ ⩽ sup{GdimY,GdimX + 1} and GdimX ⩽ sup{GdimZ − 1,GdimY }. The inequality is obvious
if either GdimX or GdimZ is infinite. We may assume GdimX and GdimZ are both finite. Then X⋆, Z⋆

belong to D(R), and fX , fZ are isomorphisms. The induced exact triangle Z⋆ → Y ⋆ → X⋆ ⇝ (in the derived
category of left-bounded R-complexes) shows that Y ⋆ is in D(R). There is a commutative diagram

X //

fX��

Y //

fY��

Z //

fZ��

X[1]

fX [1]��
X⋆⋆ // Y ⋆⋆ // Z⋆⋆ // X⋆⋆[1]

of exact triangles in D(R). Since fX and fZ are isomorphisms, so is fY . We conclude that Gdim Y is finite,
and get GdimY = supRHom(Y,R) = supY ⋆ ⩽ sup{supX⋆, supZ⋆} = sup{GdimX,GdimZ}.

(4) The “only if” part is obvious. By [25, (2.3.3)] there is an inequality GdimX ⩾ − infX. Suppose that
GdimX ⩽ 0 and supX ⩽ 0. We then have supX ⩽ 0 ⩽ −GdimX ⩽ infX, which implies supX = infX = 0
or X ∼= 0 in D(R). Hence, X is isomorphic in D(R) to a totally reflexive module. Thus the “if” part follows.

(5) The second assertion follows from the first and the fact that for a Cohen–Macaulay ring R one has
X ∈ C(R) if and only if RfdRX ⩽ 0. To show the first assertion, put r = RfdRX. Fix p ∈ SpecR. As
Rp is a Gorenstein local ring, GdimRp

Xp = depthRp − depthXp ⩽ r; see [25, (2.3.13) and (2.3.14)]. Hence

ExtiR(X,R)p = ExtiRp
(Xp, Rp) = 0 for all i > r. Therefore, ExtiR(X,R) = 0 for all i > r. We see that (fX)p =

fXp
is an isomorphism for all p ∈ SpecR, so that fX is an isomorphism (see [25, (A.4.5) and (A.8.4.1)]).

Hence GdimRX = supX⋆ ⩽ r. If GdimRX ⩽ r− 1, then depthRp − depthXp = GdimRp
Xp ⩽ r− 1 for all

p ∈ SpecR by [25, (2.3.11) and (2.3.13)], and RfdRX ⩽ r − 1, a contradiction. Thus GdimRX = r. ■

In the lemma below we study the structure of a resolving subcategory of a certain form. The idea of the
proof comes from the proof of [30, Lemma 7.2].

Lemma 8.4. Let Y and Z be resolving subcategories of D(R). Let X be the subcategory of D(R) consisting
of comlexes X which fits into an exact triangle Z → X ⊕X ′ → Y ⇝ in D(R) with Z ∈ Z and Y ∈ Y.

(1) There is an inclusion X ⊆ resD(R)(Y ∪ Z) of subcategories of D(R).
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(2) The subcategory X coincides with the subcategory of D(R) consisting of objects X which fits into an exact
triangle Z → X ⊕X ′ → Y ⇝ in D(R) with Z ∈ Z, Y ∈ Y and supY ⩽ 0.

(3) Suppose that pdR Y <∞ for each Y ∈ Y and GdimR Z ⩽ 0 for each Z ∈ Z. Then X = resD(R)(Y ∪ Z).

Proof. (1) Let Z → X⊕X ′ → Y ⇝ be an exact triangle in D(R) such that Z ∈ Z and Y ∈ Y . As res(Y ∪Z)
contains Z and Y, the objects Z, Y are in res(Y ∪ Z). The triangle implies that X belongs to res(Y ∪ Z).

(2) Let Z → X ⊕X ′ → Y ⇝ be an exact triangle with Z ∈ Z and Y ∈ Y . Remark 4.2(2) gives an exact
triangle P → Y → Y ′ ⇝ with P ∈ ER and supY ′ ⩽ 0. The octahedral axiom yields a commutative diagram

X ⊕X ′ // Y //

� �
Z[1] //

��
(X ⊕X ′)[1]

X ⊕X ′ //

��
Y ′ // Z ′[1] //

��
(X ⊕X ′)[1]

��
Y //

��
Y ′ //

� �
P [1] // Y [1]

��
Z[1] // Z ′[1] // P [1] // Z[2]

of exact triangles, and the bottom row induces an exact triangle Z → Z ′ → P ⇝. As Z and P are in Z, so
is Z ′. An exact triangle Z ′ → X ⊕X ′ → Y ′ ⇝ is induced from the second row. Now the assertion follows.

(3) The inclusion (⊆) is shown in (1). We prove the opposite inclusion (⊇). For Y ∈ Y and Z ∈ Z there
are exact triangles 0 → Y ⊕ 0 → Y ⇝ and Z → Z ⊕ 0 → 0⇝. This shows that Y ∪Z ⊆ X . We will be done
once we prove that X is a resolving subcategory of D(R). As R belongs to Y (and Z), it belongs to X .

Let X be an object of X , and let W be a direct summand of X in D(R). Then there is an exact triangle
Z → X⊕X ′ → Y ⇝ in D(R) such that Z ∈ Z and Y ∈ Y , and also X =W ⊕V for some V ∈ D(R). Setting
W ′ = V ⊕X ′, we have an exact triangle Z →W ⊕W ′ → Y ⇝. Hence X is closed under direct summands.

Every exact triangle Z → X ⊕ X ′ → Y ⇝ with Z ∈ Z and Y ∈ Y induces an exact triangle Z[−1] →
X[−1]⊕X ′[−1] → Y [−1]⇝, and we have Z[−1] ∈ Z and Y [−1] ∈ Y . Thus X is closed under negative shifts.

It remains to prove that X is closed under extensions. Let L
f−→M

g−→ N ⇝ be an exact triangle in D(R)
with L,N ∈ X . Then there exist exact triangles Z1 → L⊕ L′ → Y1 ⇝ and Z2 → N ⊕N ′ → Y2 ⇝ in D(R)
such that Z1, Z2 ∈ Z and Y1, Y2 ∈ Y . In view of (2), we may assume that sup Y1 ⩽ 0. The octahedral axiom
yields the following two commutative diagrams of exact triangles in D(R).

Z1
// L⊕ L′ //(

f 0
0 1

)
��

Y1 //

��

Z1[1]

Z1
//

��

M ⊕ L′
( p q )

// A
r

//

h��

Z1[1]

��
L⊕ L′

(
f 0
0 1

)
//

��

M ⊕ L′ ( g 0 ) //

��

N // (L⊕ L′)[1]

��
Y1 // A

h // N
k // Y1[1]

A⊕N ′
(h 0
0 1 ) // N ⊕N ′ ( k 0 ) //

��

Y1[1] //

��

(A⊕N ′)[1]

A⊕N ′ //

��

Y2 // B[1] //

��

(A⊕N ′)[1]

��
N ⊕N ′ //

��

Y2 //

��

Z2[1] // (N ⊕N ′)[1]

��
Y1[1] // B[1] // Z2[1]

δ[1] // Y1[2]

The bottom row of the right diagram induces an exact triangle σ : Y1 → B → Z2
δ−→ Y1[1] in D(R). We

have δ ∈ HomD(R)(Z2, Y1[1]) ∼= Ext1R(Z2, Y1) = 0 by Lemma 8.3(1). Hence σ splits (see [45, Corollary 1.2.7]),
which gives an isomorphism B ∼= Y1 ⊕Z2. An exact triangle Y1 ⊕Z2 → A⊕N ′ → Y2 ⇝ is induced from the
second row of the right diagram. Applying the octahedral axiom again, we obtain commutative diagrams

Z2

( 01 ) // Y1 ⊕ Z2
( 1 0 ) //

��
Y1 ///o/o/o/o
��

Z2
//

��
A⊕N ′ // Y ///o/o/o/o/o

��
Y1 ⊕ Z2

//
��

A⊕N ′ //
��

Y2 ///o/o/o/o

Y1 // Y // Y2 ///o/o/o/o

M ⊕ L′ ⊕N ′

(
p q 0
0 0 1

)
// A⊕N ′ ( r 0 ) //

��
Z1[1] ///o/o/o/o

��
M ⊕ L′ ⊕N ′ //

��
Y // Z[1] ///o/o/o/o/o

��
A⊕N ′ //

��
Y //

��
Z2[1] ///o/o/o/o

Z1[1] // Z[1] // Z2[1] ///o/o/o/o

of exact triangles. We obtain exact triangles Y1 → Y → Y2 ⇝ and Z1 → Z → Z2 ⇝, which imply Y ∈ Y and
Z ∈ Z. We also have an exact triangle Z →M ⊕ L′ ⊕N ′ → Y ⇝, which shows that M belongs to X . ■

In the following lemma, we investigate syzygies and cosyzygies for complexes.

Lemma 8.5. Let X be an object of D(R). Then the following two statements hold true.
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(1) There exists an exact triangle Y → E → X ⇝ in D(R) such that E ∈ ER, supE ⩽ sup{supX, 0} and
supY ⩽ 0. If supX ⩽ 0, then E is isomorphic in D(R) to a projective R-module.

(2) Suppose that GdimRX ⩽ 0. Then there exists an exact triangle X → P → Y ⇝ in D(R) such that P is
a projective R-module and GdimR Y ⩽ 0.

Proof. (1) Put u = sup{supX, 0}. Thanks to [25, (A.3.2)], we can choose a complex F = (· · · → Fu−1 →
Fu → 0) of finitely generated projective R-modules which is isomorphic to X in D(R). (In the case supX < 0,
we can put F i = 0 for all integers i such that supX + 1 ⩽ i ⩽ 0 = u.) As u ⩾ 0, we can take the truncation
E = (0 → F 0 → · · · → Fu → 0) of F . We have supE ⩽ u, and E ∈ ER by Proposition 2.13(6). Taking the
truncation X ′ = (· · · → F−2 → F−1 → 0) of F , we get an exact triangle E → X → X ′ ⇝ in D(R). Setting
Y = X ′[−1], we get an exact triangle Y → E → X ⇝ in D(R), and it holds that sup Y ⩽ 0.

Suppose that supX ⩽ 0. Then u = sup{supX, 0} = 0. Therefore, we have E = (0 → F 0 → 0), which is
isomorphic in D(R) to the finitely generated projective R-module F 0.

(2) In view of Remark 4.2(2), we can take an exact triangle X → X ′ → E ⇝ in D(R) such that supX ′ ⩽ 0
and E ∈ ER. It is observed from Lemma 8.3(3) and [25, (2.3.10)] that GdimX ′ ⩽ 0. By Lemma 8.3(4), we may
assume that X ′ is a totally reflexive R-module. Hence, there is an exact sequence 0 → X ′ → P → Ω−1X ′ → 0
in modR such that P is projective, which induces an exact triangle X ′ → P → Ω−1X ′ ⇝ in D(R). By the
octahedral axiom, we obtain a commutative diagram

X // X ′ //

��
E //

��
X[1]

X //

��
P // Y //

��
X[1]
��

X ′ //

��
P //

��
Ω−1X ′ // X ′[1]

��
E // Y // Ω−1X ′ // E[1]

of exact triangles in D(R). Using Lemma 8.3(3) and [25, (2.3.10)] again, we see from the bottom row that
GdimY ⩽ 0. Thus the second row in the above diagram is such an exact triangle as in the assertion. ■

To show our next proposition, we need to prepare one more lemma.

Lemma 8.6. Let Z → X ⊕W → Y ⇝ be an exact triangle in D(R). Then there exists an exact triangle
Z → X ′ ⊕W → Y ′ ⇝ in D(R) such that resD(R)X = resD(R)X

′, resD(R) Y = resD(R) Y
′ and supX ′ ⩽ 0.

Proof. By Remark 4.2(2), there exists an exact triangle X
a−→ X ′ b−→ E ⇝ in D(R) such that supX ′ ⩽ 0 and

E ∈ ER. Note then that resX = resX ′. The octahedral axiom gives rise to a commutative diagram

Z // X ⊕W //

��
Y //

��
Z[1]

Z //

��
X ′ ⊕W // Y ′ //

��
Z[1]
��

X ⊕W
( a 0
0 1 ) //

��
X ′ ⊕W

( b 0 ) //

��
E // (X ⊕W )[1]

��
Y // Y ′ // E // Y [1]

of exact triangles in D(R). From the bottom row in the commutative diagram we observe that resY = resY ′.
Thus the second row in the commutative diagram is an exact triangle as in the assertion of the lemma. ■

We denote by G(R) the subcategory of D(R) consisting of objectsX satisfying the inequality GdimRX ⩽ 0.
We can now prove the proposition below, which includes a derived category version of [30, Proposition 7.3].

Proposition 8.7. Let Y and Z be resolving subcategories of D(R) such that Y ⊆ K(R) and Z ⊆ G(R). Then:

Y = resD(R)(Y ∪ Z) ∩ K(R), Z = resD(R)(Y ∪ Z) ∩ G(R).

Proof. Let us begin with the first equality. The inclusion (⊆) is clear. To show (⊇), pickX ∈ res(Y∪Z)∩K(R).
According to Lemma 8.4(3), there is an exact triangle Z → X ⊕W → Y ⇝ in D(R) with Z ∈ Z and Y ∈ Y .
What we want to show is that X is in Y. For this purpose, thanks to Lemma 8.6, we may assume supX ⩽ 0.
Lemma 8.5(2) yields an exact triangle Z → P → V ⇝ in D(R) such that P is a projective module and
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GdimV ⩽ 0. The octahedral axiom gives the following commutative diagrams of exact triangles in D(R).

Y [−1] // Z //

��

X ⊕W //

( f g )��

Y

Y [−1] //

��

P // Y ′ //

��

Y

��
Z //

��

P //

��

V // Z[1]

��
X ⊕W

( f g ) // Y ′ // V // X[1]

W
( 01 ) // X ⊕W

( 1 0 ) //

( f g )��

X //

l��

W [1]

W //

��

Y ′ h // U //

��

W [1]

��
X ⊕W

( f g ) //

��

Y ′ //

��

V // (X ⊕W )[1]

��
X

l // U // V
δ // X[1]

From the exact triangle P → Y ′ → Y ⇝ we see that Y ′ is in Y. The equality h(f g) = l(1 0) implies l = hf .
Also, by Lemma 8.3(1) we have δ ∈ HomD(R)(V,X[1]) = Ext1R(V,X) = 0. There are commutative diagrams

X
l // U //

∼= ( st )��

V
0 // X[1]

X
( 10 ) // X ⊕ V

( 0 1 ) // V // X[1]

X
f // Y ′ k //

∼=
(
sh
k

)
��

C // X[1]

X
( 10 ) // X ⊕ C

( 0 1 ) // C // X[1]

of exact triangles in D(R). Indeed, we get the left diagram by [45, Proof of Corollary 1.2.7], while the equality(
1
0

)
=

(
s
t

)
l coming from the commutativity of the left diagram shows 1 = sl = shf , so that the right diagram

is obtained by [45, Remark 1.2.9]. The isomorphism X ⊕ C ∼= Y ′ shows that X belongs to Y, as desired.
Next, we prove the second equality (the proof has the same stream as that of the first equality, but there

are actually various different places). It is evident that (⊆) holds. To prove (⊇), let X be an object in the
subcategory res(Y ∪Z)∩G(R). By Lemma 8.4(2)(3), there is an exact triangle Z → X⊕W → Y ⇝ in D(R)
with Z ∈ Z, Y ∈ Y and supY ⩽ 0. We want to show that X belongs to Z. Using Lemma 8.5(1), we get an
exact triangle Y ′ → P → Y ⇝ in D(R) such that P is a projective module and sup Y ′ ⩽ 0. Note then that
Y ′ is in Y. The octahedral axiom gives the following commutative diagrams of exact triangles in D(R).

X ⊕W // Y //

��

Z[1] //

��

(X ⊕W )[1]

X ⊕W
( f g ) //

��

Y ′[1] // Z ′[1] //

��

(X ⊕W )[1]

��
Y //

��

Y ′[1] //

��

P [1] // Y [1]

��
Z[1] // Z ′[1] // P [1] // Z[2]

X
( 10 ) // X ⊕W

( 0 1 ) //

( f g )��

W //

��

X[1]

X
f //

( 10 )��

Y ′[1] // V
h //

k��

X[1]

( 10 )��
X ⊕W

( f g ) //

��

Y ′[1] //

��

Z ′[1]
( pq ) // X[1]⊕W [1]

��
W // V

k // Z ′[1] // W [1]

The induced exact triangle Z → Z ′ → P ⇝ shows that the object Z ′ belongs to Z. Lemma 8.3(1) implies
f ∈ HomD(R)(X,Y

′[1]) = Ext1R(X,Y
′) = 0. By [45, Proof of Corollary 1.2.7] there is a commutative diagram

X // Y ′[1]
( 10 ) // Y ′[1]⊕X[1]

( 0 1 ) //

( s t ) ∼=��

X[1]

X
0 // Y ′[1] // V

h // X[1]

of exact triangles in D(R), which gives ht = 1. The equality
(
p
q

)
k =

(
1
0

)
h implies h = pk. Hence pkt = 1, and

it follows from [45, Lemma 1.2.8] that X[1] is isomorphic in D(R) to a direct summand of Z ′[1]. This implies
that X is isomorphic in D(R) to a direct summand of Z ′. Since Z ′ belongs to Z, so does X. ■

Recall that R is said to be locally a complete intersection if the local ring Rp is a complete intersection
for each prime ideal p of R. We simply say that R is a complete intersection if it is locally a complete
intersection. The exact triangle appearing in the third assertion of the following proposition is regarded as a
derived category version of a finite projective hull in the sense of Auslander and Buchweitz [7].

Proposition 8.8. Let R be a complete intersection. Then the following statements hold true.

(1) Let M be a maximal Cohen–Macaulay R-module. Then the cosyzygy Ω−1
R M belongs to resmodRM .

(2) For every maximal Cohen–Macaulay complex X ∈ D(R), there exists an exact triangle X → P → Y ⇝
in D(R) such that P is a projective module and Y belongs to the resolving closure resD(R)X.

(3) Each X ∈ D(R) admits an exact triangle X → P → Y ⇝ with P ∈ K(R) and Y ∈ (resD(R)X) ∩ C(R).
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Proof. (1) Fix a prime ideal p of R. Then Mp is a maximal Cohen–Macaulay Rp-module. In modRp we have

(Ω−1
R M)p ≈ Ω−1

Rp
(Mp) ∈ resmodRp

Mp ⊆ addmodRp
(resmodRM)p.

Here, by A ≈ B we mean A ∼= B up to free summands. The containment and the inclusion follow from [28,
Theorem 4.15] and [30, Lemma 3.2(1)], respectively. By [30, Proposition 3.3], we get Ω−1

R M ∈ resmodRM .
(2) By Remark 4.2(2) there exists an exact triangle X → X ′ → E ⇝ in D(R) such that supX ′ ⩽ 0 and

E ∈ ER. As X belongs to C(R), so does X ′ by Proposition 4.9(2). By Lemma 8.3(4)(5), we may assume that
X ′ is a totally reflexive module. There is an exact sequence 0 → X ′ → P → Ω−1X ′ → 0 in modR with P
projective, and Ω−1X ′ belongs to resmodRX

′ by (1). The octahedral axiom gives a commutative diagram

X // X ′ //

��
E //

��
X[1]

X //

��
P // Y //

��
X[1]
��

X ′ //

��
P //

��
Ω−1X ′ // X ′[1]

��
E // Y // Ω−1X ′ // E[1]

of exact triangles in D(R). It is seen from the bottom row that Y belongs to resD(R)X
′, which coincides with

resD(R)X (by the first row). Thus, the second row provides such an exact triangle as we want.
(3) We may assume that supX ⩽ 0. In fact, by Remark 4.2(2) there exists an exact triangle X → X ′ →

E ⇝ in D(R) such that supX ′ ⩽ 0 and E ∈ ER. Suppose that we have got an exact triangle X ′ → P → C ⇝
in D(R) such that P ∈ K(R) and C ∈ (resX ′) ∩ C(R). Then we have C ∈ (resX) ∩ C(R) as resX ′ = resX.
The octahedral axiom gives rise to the following commutative diagram of exact triangles in D(R).

X // X ′ //

��
E //

��
X[1]

X //

��
P // Y //

��
X[1]
��

X ′ //

��
P //

��
C // X ′[1]

��
E // Y // C // E[1]

The bottom row in the above diagram shows that Y belongs to (resX) ∩ C(R) by Proposition 4.9(2). Con-
sequently, the second row in the above diagram is such an exact triangle as in the assertion.

Since the ring R is a complete intersection, it is Gorenstein. By Lemma 8.3(5), the number n := GdimRX
is finite. We use induction on n. Let n ⩽ 0. Then X is a maximal Cohen–Macaulay complex; see Lemma
8.3(5). Thus the assertion follows from (2); note that resX = (resX) ∩ C(R). Let n > 0. Since supX ⩽ 0,
by Lemma 8.5(1) there is an exact triangle Y → P → X ⇝ in D(R) such that P is a projective module and
supY ⩽ 0. Note then that Y ∈ resX, so that resY ⊆ resX. As n− 1 ⩾ 0, Lemma 8.3(3) implies Gdim Y ⩽
sup{GdimP,GdimX − 1} = n − 1. The induction hypothesis yields an exact triangle Y → K → C ⇝
in D(R) such that K ∈ K(R) and C ∈ (resY ) ∩ C(R). By the octahedral axiom, we get the commutative
diagram (a) of exact triangles in D(R). The second row in (a) shows C ′ ∈ C(R) and resC ′ ⊆ resC. By (2)
there is an exact triangle C ′ → Q→ C ′′ → C ′[1] in D(R) such that Q is a projective module and C ′′ ∈ resC ′.
Applying the octahedral axiom again, we obtain the commutative diagram (b) of exact triangles in D(R).

(a) : C[−1] // Y //

��
K //

��
C

C[−1] //

��
P // C ′ //

��
C
��

Y //

��
P //

��
X // Y [1]

��
K // C ′ // X // K[1]

(b) : K // C ′ //

��
X //

��
K[1]

K //

��
Q // K ′ //

��
K[1]
��

C ′ //

��
Q //

��
C ′′ // C ′[1]

��
X // K ′ // C ′′ // X[1]

The second row in (b) shows K ′ is in K(R). We have C ′′ ∈ resC ′ ⊆ resC ⊆ (resY )∩ C(R) ⊆ (resX)∩ C(R).
Consequently, the bottom row in (b) provides such an exact triangle as in the assertion. ■

We record here a direct consequence of the second assertion of the above proposition.

Corollary 8.9. Let R be a complete intersection. Let X ∈ D(R) be a maximal Cohen–Macaulay complex.
Then X belongs to the resolving closure resD(R)(X[−i]) for every nonnegative integer i.
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Proof. Proposition 8.8(2) gives rise to an exact triangle X → P → Y ⇝ in D(R) such that P is a projective
module and Y ∈ resX. An exact triangle Y [−1] → X → P ⇝ is induced, which shows thatX is in res(Y [−1]).
Proposition 2.8(2a) implies Y [−1] ∈ (resX)[−1] ⊆ res(X[−1]). Hence X ∈ res(X[−1]). If X ∈ res(X[−j])
for an integer j, then X[−1] ∈ (res(X[−j]))[−1] ⊆ res(X[−j][−1]) = res(X[−j − 1]) by Proposition 2.8(2a)
again, and we get X ∈ res(X[−1]) ⊆ res(X[−j−1]). It follows that X belongs to res(X[−i]) for all i ⩾ 0. ■

Now we have reached the stage to achieve the main purpose of this section; we shall state and prove the
following theorem, which is viewed as a derived category version of [30, Theorem 7.4].

Theorem 8.10. Suppose that R is a complete intersection. Then there are mutually inverse bijections{
resolving subcategories

of D(R)

}
ϕ //

{
resolving subcategories

of D(R) contained in K(R)

}
×
{

resolving subcategories
of D(R) contained in C(R)

}
,

ψ
oo

where the maps φ, ψ are given by φ(X ) = (X ∩ K(R),X ∩ C(R)) and ψ(Y,Z) = resD(R)(Y ∪ Z).

Proof. Clearly, the maps φ, ψ are well-defined. Lemma 8.3(5) implies G(R) = C(R). Proposition 8.7 says
φψ = id. Let X be a resolving subcategory of D(R). Then ψφ(X ) = res((X ∩ K(R)) ∪ (X ∩ C(R))) is clearly
contained in X . Let X be any object in X . It follows from Proposition 8.8(3) that there is an exact triangle
X → P → Y ⇝ in D(R) such that P ∈ K(R) and Y ∈ (resX) ∩ C(R) ⊆ X ∩ C(R). We see that P is in
X ∩K(R), so that X is in res((X ∩K(R))∪(X ∩C(R))). Thus X belongs to ψφ(X ), and we obtain ψφ = id. ■

9. Classification of resolving subcategories and certain preaisles of D(R)

The main goal of this section is to give a complete classification of resolving subcategories of D(R) and
preaisles of D(R) containing R and closed under direct summands, in the case where R belongs to a certain
class of complete intersection rings. First of all, applying the main result of the previous section, we prove
the following theorem. The bijections given in the theorem say that classifying the resolving subcategories of
maximal Cohen–Macaulay complexes is equivalent to classifying the thick subcategories containing R. The
equality given in the theorem is a derived category version of [28, Corollary 4.16].

Theorem 9.1. Let R be a complete intersection. There are mutually inverse bijections and an equality{
thick subcategories

of D(R) containing R

}
(−)∩C(R) //

{
resolving subcategories

of D(R) contained in C(R)

}
=

{
thick subcategories

of C(R) containing R

}
.

thickD(R)(−)
oo

Proof. We start by proving the equality, using the bijections. By Proposition 4.11(1), it suffices to show that
each resolving subcategory X of D(R) contained in C(R) is a thick subcategory of C(R), and for this it is
enough to verify that for each exact triangle A→ B → C ⇝ in D(R) with A,B,C ∈ C(R), if A and B belong
to X , then so does C. By the first assertion of the theorem we have X = (thickD(R) X )∩C(R). Hence A and
B are in thickD(R) X , and so is C. It follows that C belongs to (thickD(R) X ) ∩ C(R) = X , and we are done.

We proceed with showing the bijections. Clearly, the two maps are well-defined. Fix a thick subcategory
X of D(R) containing R and a resolving subcategory Z of D(R) contained in C(R). Then X is a resolving
subcategory of D(R), so that Theorem 8.10 shows X = ψφ(X ) = res((X ∩ K(R)) ∪ (X ∩ C(R))). Since X is
thick and contains R, it contains K(R) = thickR; see Proposition 2.10(3). Hence X ∩ K(R) = K(R), and

X = res(K(R) ∪ (X ∩ C(R))) ⊆ thick(K(R) ∪ (X ∩ C(R))) = thick(X ∩ C(R)) ⊆ X .
Therefore, X = thick(X ∩ C(R)). On the other hand, applying Theorem 8.10 again, we have

(K(R),Z) = φψ(K(R),Z) = (res(K(R) ∪ Z) ∩ K(R), res(K(R) ∪ Z) ∩ C(R)),

which gives us the equality Z = res(K(R) ∪ Z) ∩ C(R).
We claim that res(K(R)∪Z) is a thick subcategory of D(R). Indeed, it suffices to verify that res(K(R)∪Z)

is closed under positive shifts. Using Proposition 2.8(2b), we get equalities

(9.1.1) (res(K(R) ∪ Z))[1] = res((K(R) ∪ Z)[1] ∪ {R[1]}) = res((K(R) ∪ Z)[1]) = res(K(R) ∪ Z[1]).

Pick Z ∈ Z. Then Z is maximal Cohen–Macaulay, and Corollary 8.9 implies Z ∈ res(Z[−1]). We obtain

Z[1] ∈ (res(Z[−1]))[1] = res{Z,R[1]} ⊆ res(K(R) ∪ Z),

where for the equality we apply Proposition 2.8(2b) again. It follows that Z[1] is contained in res(K(R)∪Z),
which and (9.1.1) yield that (res(K(R) ∪ Z))[1] is contained in res(K(R) ∪ Z). Thus the claim follows.

The above claim guarantees that res(K(R) ∪ Z) = thick(K(R) ∪ Z) = thickZ, and we obtain an equality
Z = (thickZ)∩C(R). Now we conclude that the two maps in the assertion are mutually inverse bijections. ■



CLASSIFYING PREAISLES OF DERIVED CATEGORIES OF COMPLETE INTERSECTIONS 27

Denote by S(R) the singularity category Dsg(R) of R, that is, the Verdier quotient of D(R) by K(R). The
following lemma enables us to obtain a classification of preaisles in the next theorem.

Lemma 9.2. (1) There is a natural one-to-one correspondence{
thick subcategories

of S(R)

}
∼=

{
thick subcategories

of D(R) containing R

}
.

(2) Suppose that R is Gorenstein. Assigning to each subcategory X of D(R) the subcategory RHomR(X , R) of
D(R) consisting of objects of the form RHomR(X,R) with X ∈ X , one gets a one-to-one correspondence preaisles of D(R)

containing R and closed
under direct summands

 ∼=

 precoaisles of D(R)
containing R and closed
under direct summands

 =

 resolving
subcategories

of D(R)

.
Proof. (1) The assertion comes from a general fact on Verdier quotients; see [62, Chapitre II, Proposition
2.3.1], [58, Lemma 3.1] and [60, Lemma 10.5].

(2) The equality follows by definition. As R is Gorenstein, for each C ∈ D(R) the complex RHom(C,R) is
bounded, so that it is in D(R); see [25, (2.3.8)] and Lemma 8.3(5). Thus, the contravariant exact (additive)
functor RHom(−, R) gives a duality of D(R). Since RHom(R,R) = R, we can easily get the bijection. ■

Combining Theorems 5.9, 8.10, 9.1 and Lemma 9.2, we obtain the theorem below. Thanks to this theorem,
to classify the resolving subcategories of D(R) we have only to classify the thick subcategories of S(R).

Theorem 9.3. Let R be a complete intersection. Then there are one-to-one correspondences preaisles of D(R)
containing R and closed
under direct summands

 ∼=

 resolving
subcategories

of D(R)

 ∼=

 order-preserving
maps from SpecR

to N ∪ {∞}

×

 thick
subcategories

of S(R)

.
We need to recall the definition of a hypersurface, related notions and basic properties.

Definition 9.4. (1) Let R be a local ring. We denote by codimR and codepthR the codimension and the
codepth of R, respectively, that is to say, codimR = edimR− dimR and codepthR = edimR− depthR.

(2) For a local ring R, the following three conditions are equivalent; see [9, §5.1].
(a) There is an inequality codepthR ⩽ 1. (b) The local ring R is Cohen–Macaulay and codimR ⩽ 1.
(c) The completion of R is isomorphic to the residue ring of a regular local ring by a single element.
When one of these equivalent conditions holds, the local ring R is called a hypersurface. By [9, Corollary
7.4.6], if a local ring R is a hypersurface, then so is the local ring Rp for every prime ideal p of R.

(3) We say that R is locally a hypersurface if the localization Rp is a hypersurface local ring for every prime
ideal p of R. In what follows, we simply call R a hypersurface if it is locally a hypersurface.

To state theorems of Stevenson, Dao and Takahashi, and ours, we establish the following setup.

Setup 9.5. Let (R, V ) be a pair that satisfies either of the following two conditions.

(1) R is a hypersurface and V = SingR.
(2) R = S/(a) where S is a regular ring of finite Krull dimension and a = a1, . . . , ac is an S-regular sequence,

and V = Sing Y = {y ∈ Y | OY,y is not regular} where X = Pc−1
S = Proj(S[x1, . . . , xc]) and Y is the

zero subscheme of a1x1 + · · ·+ acxc ∈ Γ(X,OX(1)).

Remark 9.6. In view of [23, Theorem 2.10], [51, Corollary 7.9 and the beginning of Section 10], Setup 9.5(2)
is equivalent to the following condition.

(2’) R = S/(a) where S is a regular ring of finite Krull dimension and a = a1, . . . , ac is an S-regular sequence,
and V = Sing Y where Y = ProjG and G = S[x1, . . . , xc]/(f) is the generic hypersurface, that is, the
homogeneous S-algebra (deg(s) = 0 for s ∈ S and deg(xi) = 1 for i = 1, . . . , c) defined as the quotient
ring of the polynomial ring over S in c variables x1, . . . , xc by the polynomial f = a1x1 + · · ·+ acxc.

The following is the theorem of Stevenson [51]. Its assertion for Setup 9.5(1) is shown in [51, Theorem
6.13], whose local case is [58, Theorem 3.13(1)]. Its assertion for Setup 9.5(2) is shown in [51, Theorem 8.8].
The first one-to-one correspondence in the theorem is the one given in Lemma 9.2(1).

Theorem 9.7 (Stevenson). Let (R, V ) be as in Setup 9.5. Then there is a one-to-one correspondence{
thick subcategories

of S(R)

}
∼=

{
thick subcategories

of D(R) containing R

}
(a)∼=

{
specialization-closed

subsets of V

}
.
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We obtain the following bijections by applying Theorems 9.3 and 9.7.

Corollary 9.8. Let (R, V ) be as in Setup 9.5. Then there are one-to-one correspondences preaisles of D(R)
containing R and closed
under direct summands

 ∼=

 resolving
subcategories

of D(R)

 (b)∼=

 order-preserving
maps from SpecR

to N ∪ {∞}

×
{
specialization-closed

subsets of V

}
.

Remark 9.9. By Proposition 4.11(1), thick subcategories of D(R) containing R are resolving subcategories
of D(R). Restricting the bijection (b) in Corollary 9.8 to the thick subcategories of D(R) containing R, one
recovers the bijection (a) in Theorem 9.7. In fact, let X be a thick subcategory of D(R) containing R. Then X
contains thickD(R)R = K(R) by Proposition 2.10(3). Hence X∩K(R) = K(R), and supX∈X∩K(R){pdXp} = ∞
for each prime ideal p of R. Note that this actually holds for X := K(R). Define the map ξ : SpecR→ N∪{∞}
by ξ(p) = ∞ for every p ∈ SpecR. It is observed along the way to get Corollary 9.8 that the bijection (b) in
Corollary 9.8 restricts to the bijection below, which can be identified with the bijection (a) in Theorem 9.7.

{thick subcategories of D(R) containing R} ∼= {ξ} × {specialization-closed subsets of V }.
It may be interesting to consider the following quetion which is similar to Question 7.10.

Question 9.10. Let R be as in Corollary 9.8. Hence R is Cohen–Macaulay, so it is CM-excellent. Assume
that R has finite Krull dimension. Then, the aisles of D(R) containing R and closed under direct summands
are classified by both Theorem 7.8 and Corollary 9.8. Are these two classifications (essentially) the same?

We close the section by giving, in the case of a hypersurface, an explicit description in terms of NE-loci of
the restriction of the one-to-one correspondence (b) in Corollary 9.8 to the resolving subcategories of maximal
Cohen–Macaulay complexes. For a subcategory C of D(R), denote by IPD(C) the set of prime ideals p of R
with pdRp

Xp = ∞ for some X ∈ C. For a set Φ of prime ideals of R, denote by IPD−1(Φ) the subcategory

of D(R) consisting of complexes X such that every prime ideal p of R with pdRp
Xp = ∞ belongs to Φ.

Proposition 9.11. Let R be a hypersurface. One then has the following mutually inverse bijections.{
resolving subcategories of D(R)

contained in C(R)

}
NE(−) //

{
specialization-closed subsets

of SingR

}
NE−1

C (−)

oo

Proof. Fix a resolving subcategory X of D(R) contained in C(R), and a specialization-closed subset W of
SingR. By Proposition 2.13(2) and [60, Remark 10.2(8)], we get IPD(thickD(R) X ) = NE(X ) and IPD−1(W )∩
C(R) = NE−1

C (W ). The assertion follows by combining this with Theorem 9.1 and [58, Theorem 3.13(1)]. ■
Remark 9.12. Another way in the case where R is a hypersurface to deduce the equality given in Theorem
9.1 is obtained by the combination of Propositions 9.11 and 4.11.

10. Restricting the classification of resolving subcategories of D(R)

In this section, restricting the classification theorem of resolving subcategories of D(R) obtained in the
previous section, we consider the resolving subcategories of modR. We begin with establishing a lemma.

Lemma 10.1. Let R be a complete intersection. Let X be a resolving subcategory of modR.

(1) Let p be a prime ideal of R. One has the equality supX∈X {depthRp−depthXp} = supY ∈X∩fpdR{pdYp}.
(2) There is an equality thickD(R) X = thickD(R)(X ∩ CM(R)) of thick closures in D(R).

Proof. (1) The inequality (⩾) holds by the Auslander–Buchsbaum formula. To show the opposite inequality
(⩽), put t = supX∈X {depthRp−depthXp}. Then t = depthRp−depthXp for someX ∈ X . Set n = RfdRX.
We see that ΩnX is a maximal Cohen–Macaulay R-module. By [30, Proof of Theorem 7.4] there is an exact
sequence 0 → X → L→ D → 0 in modR such that L has finite projective dimension and D = Ω−n−1ΩnX is
maximal Cohen–Macaulay. Applying Proposition 8.8(1) to ΩnX ∈ X , we getD ∈ X , and hence L ∈ X∩fpdR.
As Dp is a maximal Cohen–Macaulay Rp-module, we have depthDp ⩾ ht p. The depth lemma implies

depthXp ⩾ inf{depthLp, depthDp + 1} ⩾ inf{depthLp, ht p+ 1} = depthLp.

Hence pdLp = depthRp−depthLp ⩾ depthRp−depthXp = t. We obtain supY ∈X∩fpdR{pdYp} ⩾ pdLp ⩾ t.
(2) It suffices to show that X is contained in thickD(R)(X ∩ CM(R)). Fix an R-module X ∈ X , and put

n = RfdRX. Since R is Gorenstein, there is an exact sequence 0 → P → Ω−nΩnX → X → 0 in modR such
that P has finite projective dimension; see [6, (2.21) and (4.22)]. The R-module ΩnX is maximal Cohen–
Macaulay. Proposition 8.8(1) implies Ω−nΩnX ∈ resmodR(Ω

nX) ⊆ X . Hence Ω−nΩnX is in X ∩CM(R). As
P ∈ thickD(R)R and R ∈ X ∩ CM(R), both P and Ω−nΩnX are in thickD(R)(X ∩ CM(R)), and so is X. ■
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Using the above lemma and results in the previous sections, we can show that for each resolving subcategory
of modR, taking the resolving closure in D(R) commutes with taking the restriction to K(R) and C(R).

Proposition 10.2. Suppose that R is a complete intersection. Let X be a resolving subcategory of modR.

(1) There are equalities resD(R)(X ∩ K(R)) = resD(R)(X ∩ fpdR) = (resD(R) X ) ∩ K(R).
(2) There are equalities resD(R)(X ∩ C(R)) = resD(R)(X ∩ CM(R)) = (resD(R) X ) ∩ C(R).

Proof. The first equalities in the two assertions hold since X ∩K(R) = X ∩ fpdR and X ∩C(R) = X ∩CM(R).
In what follows, we show the second equalities.

(1) Since K(R) is a resolving subcategory of D(R) by Proposition 2.10(3), we see that both resD(R)(X ∩
fpdR) and (resD(R) X ) ∩ K(R) are resolving subcategories of D(R) contained in K(R). Put

a = supX∈resD(R)(X∩fpdR){pdXp}, b = supX∈(resD(R) X )∩K(R){pdXp}, c = supX∈X∩fpdR{pdXp}.

By Theorem 5.9, it is enough to verify that a = b. Since X ∩ fpdR ⊆ resD(R)(X ∩ fpdR) ⊆ (resD(R) X )∩K(R),
we have c ⩽ a ⩽ b. Thus it suffices to show that b ⩽ c, which can be shown as follows.

b
(i)
= supX∈(resD(R) X )∩K(R){depthRp − depthXp}

(ii)

⩽ supX∈resD(R) X {depthRp − depthXp}
(iii)
= supX∈X {depthRp − depthXp}

(iv)
= c.

Here, (i) and (iv) follow from Proposition 2.13(2) and Lemma 10.1(1), respectively. The inclusion (resD(R) X )∩
K(R) ⊆ resD(R) X implies (ii). As for (iii), the inequality (⩾) holds since X is contained in resD(R) X . It is
observed from Proposition 2.13(2)(3) that the subcategory Y of D(R) consisting of objects Y such that

depthRp − depthYp ⩽ supX∈X {depthRp − depthXp}

is resolving and contains X . Therefore, the subcategory Y contains resD(R) X . Thus (⩽) follows.
(2) Note that both resD(R)(X∩CM(R)) and (resD(R) X )∩C(R) are resolving subcategories of D(R) contained

in C(R); see Proposition 4.9(2). By virtue of Theorem 9.1, it is enough to show that thickD(R)(resD(R)(X ∩
CM(R))) coincides with thickD(R)((resD(R) X ) ∩ C(R)). We have

thickD(R)(resD(R)(X ∩ CM(R))) = thickD(R)(X ∩ CM(R)) = thickD(R) X = thickD(R)(resD(R) X )
⊇ thickD(R)((resD(R) X ) ∩ C(R)) ⊇ thickD(R)(X ∩ CM(R)),

where the first and third equalities and the inclusions are clear, while the second equality follows from Lemma
10.1(2). Thus those two inclusions are equalities, and we obtain the desired equality of thick closures. ■

Now we can state and prove the following proposition, where CM(R) denotes the stable category of CM(R)
(the definition of a thick subcategory of CM(R) is given in Section 4). This proposition particularly says that,
over a complete intersection, the resolving subcategories of maximal Cohen–Macaulay modules bijectively
and naturally correspond to the resolving subcategories of maximal Cohen–Macaulay complexes.

Proposition 10.3. Let R be a complete intersection. Then there are natural one-to-one correspondencesresolving subcategories
of modR

contained in CM(R)

 =

thick subcategories
of CM(R)

containing R

 ∼=
{
thick subcategories

of CM(R)

}
∼=

{
thick subcategories

of S(R)

}

∼=

thick subcategories
of D(R)

containing R

 ∼=

thick subcategories
of C(R)

containing R

 =

resolving subcategories
of D(R)

contained in C(R)

.
In particular, one has the following one-to-one correspondence.{

resolving subcategories
of modR contained in CM(R)

}
resD(R)(−)

//
{

resolving subcategories
of D(R) contained in C(R)

}
.

(−)∩CM(R)
oo

Proof. We start by showing the first assertion. The first equality can be obtained by [28, Corollary 4.16],
where the ring is assumed to be local, but the argument works if we replace [28, Theorem 4.15(1)] used there
with Proposition 8.8(1). The first bijection follows from [55, Proposition 6.2], where the ring is again assumed
to be local but it is not used. Since R is Gorenstein, the assignment M 7→M gives a triangle equivalence

η : CM(R) = GP(R)
∼=−→ S(R),
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where GP(R) denotes the stable category of the category GP(R) of totally reflexive R-modules; see [14, 1.3].
The second bijection in the assertion is induced from the equivalence η. The third bijection is given in Lemma
9.2(1). The last bijection and the last equality follow from Theorem 9.1.

From now on, we give a proof of the last assertion of the proposition. There is a commutative diagram

CM(R)
inc / /

ε��

D(R)

π��
CM(R)

η // S(R)

where inc is the inclusion functor, η is the triangle equivalence, and ε, π are the canonical quotient functors.
Fix a resolving subcategory X of modR contained in CM(R). The resolving subcategory of D(R) contained

in C(R) that corresponds to X is π−1ηε(X )∩C(R), which coincides with π−1π(X )∩C(R). As this is a resolving
subcategory of D(R) containing X , it contains resD(R) X as well. Pick an object C ∈ π−1π(X )∩ C(R). Then
π(C) is in π(X ), and π(C) is isomorhic to π(X) for some X ∈ X . There are exact triangles σ : E → C → A⇝
and τ : E → X → B ⇝ in D(R) with A,B ∈ K(R); see [45, Proposition 2.1.35]. We see from τ that E is in
thickD(R) X , and from σ that C is in thickD(R) X . Hence π−1π(X )∩C(R) ⊆ (thickD(R) X )∩C(R) = resD(R) X ,

where the equality follows from Theorem 9.1. We now conclude that π−1π(X ) ∩ C(R) = resD(R) X .
Fix a resolving subcategory X of D(R) contained in C(R). The resolving subcategory of modR contained

in CM(R) that corresponds to X is ε−1η−1π(thickD(R) X ). Note that the equality π−1π(Y) = Y holds for
each thick subcategory Y of D(R) containing R. We get the following equalities of subcategories of CM(R).

ε−1η−1π(thickD(R) X ) = π−1π(thickD(R) X ) ∩ CM(R) = (thickD(R) X ) ∩ CM(R)
= (thickD(R) X ) ∩ C(R) ∩ CM(R) = X ∩ CM(R).

Here, the last equality follows from Theorem 9.1.
Now we obtain the mutually inverse bijections in the last assertion of the proposition. ■

Proposition 10.3 says that when R is a complete intersection, the equality X = resD(R)(X ∩CM(R)) holds
for every resolving subcategory X of D(R) contained in C(R). This equality holds in a more general setting.

Proposition 10.4. The equality X = resD(R)(X ∩ GP(R)) holds for every resolving subcategory X of D(R)
contained in G(R). In particular, if the ring R is Gorenstein, then the equality X = resD(R)(X ∩ CM(R))
holds for every resolving subcategory X of D(R) contained in C(R).

Proof. The last assertion follows from the first and Lemma 8.3(5). To show the first assertion, let X be a
resolving subcategory of D(R) contained in G(R). It clearly holds that X contains resD(R)(X ∩GP(R)). Pick
any X ∈ X . Remark 4.2(2) gives an exact triangle X → Y → E ⇝ in D(R) with supY ⩽ 0 and E ∈ ER. By
Lemma 8.3(3)(4) there exists a totally reflexive R-module T such that Y ∼= T in D(R). Since Y is in X , we
have T ∈ X ∩ GP(R). Hence Y is in resD(R)(X ∩ GP(R)), and so is X. Thus the first assertion follows. ■

In view of Propositions 10.3 and 10.4, it is quite natural to ask the following question. Proposition 10.3
guarantees that the question has an affirmative answer in the case where R is a complete intersection.

Question 10.5. Suppose that the ring R is Gorenstein. Let X be a resolving subcategory of modR contained
in CM(R). Then, does the equality X = (resD(R) X ) ∩ CM(R) hold?

To show our next result, we establish a lemma on projective dimension.

Lemma 10.6. Let X be a resolving subcategory of modR contained in fpdR. Let Y be an object in resD(R) X ,
and let p be a prime ideal of R. Then one has the inequality pdRp

Yp ⩽ pdRp
Xp for some object X ∈ X .

Proof. Let Z be the subcategory of D(R) consisting of complexes Z such that pdZp ⩽ pdXp for some X ∈ X .
Clearly, X is contained in Z, and in particular, R is in Z. If Z is an object in Z and W is a direct summand
of Z, then pdWp ⩽ pdZp ⩽ pdXp for some X ∈ X by Proposition 2.13(4), and hence W is also in Z. Let
A → B → C ⇝ be an exact triangle in D(R) with C ∈ Z. Then pdCp ⩽ pdXp for some X ∈ X . If pdAp

(resp. pdBp) is at most pdX ′
p for some X ′ ∈ X , then pdBp (resp. pdAp) is at most sup{pdAp, pdCp}

(resp. sup{pdBp, pdCp − 1}) by Proposition 2.13(3), which is at most pdX ′′
p where X ′′ = X ⊕X ′ ∈ X by

Proposition 2.13(4). Hence A ∈ Z if and only if B ∈ Z. Thus, Z is a resolving subcategory of D(R) containing
X . Then Z contains resD(R) X , and we get Y ∈ Z. We conclude pd Yp ⩽ pdXp for some X ∈ X . ■

Now we find out a close relationship of each resolving subcategory of modR with its resolving closure in
D(R) when R is a complete intersection. In the proof we use the map Φ which was defined in Definition 5.7.
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Proposition 10.7. Let X be a resolving subcategory of modR. Suppose either that X is contained in fpdR
or that R is a complete intersection. Then the equality X = (resD(R) X ) ∩modR holds true.

Proof. We set up three steps, and in each step we prove the equality given in the proposition.
(1) Assume that X is contained in fpdR. Then X is contained in K(R), and so is resD(R) X by Proposition

2.10(3). Proposition 2.10(4) says that (resD(R) X ) ∩modR is a resolving subcategory of modR contained in
fpdR. There are inclusions X ⊆ resD(R) X ∩ modR ⊆ resD(R) X , which induce the inequalities Φ(X )(p) ⩽
Φ((resD(R) X ) ∩modR)(p) ⩽ Φ(resD(R) X )(p) for each prime ideal p of R. Lemma 10.6 yields that

Φ(resD(R) X )(p) = supY ∈resD(R) X {pdYp} ⩽ supX∈X {pdXp} = Φ(X )(p),

and therefore the equalities Φ(X )(p) = Φ((resD(R) X ) ∩ modR)(p) = Φ(resD(R) X )(p) hold. This shows that
Φ(X ) coincides with Φ((resD(R) X ) ∩modR). By Theorem 6.8, we obtain X = (resD(R) X ) ∩modR.

(2) Assume that X is contained in CM(R) and that R is a complete intersection. Proposition 10.3 implies
X = (resD(R) X ) ∩ CM(R). As C(R) is a resolving subcategory of D(R) by Proposition 4.9(2), it contains
resD(R) X . We obtain X = (resD(R) X ) ∩ CM(R) = (resD(R) X ) ∩ C(R) ∩modR = (resD(R) X ) ∩modR.

(3) Suppose that R is a complete intersection. Put Y = (resD(R) X ) ∩ modR. We want to prove X = Y.
By [30, Theorem 7.4], it suffices to show X ∩ fpdR = Y ∩ fpdR and X ∩ CM(R) = Y ∩ CM(R). We have

Y ∩ fpdR = (resD(R) X ) ∩ fpdR = (resD(R) X ) ∩ K(R) ∩modR
= resD(R)(X ∩ fpdR) ∩modR = X ∩ fpdR,

where the fourth and third equalities follow by (1) and Proposition 10.2(1), respectively. Similarly, we have

Y ∩ CM(R) = (resD(R) X ) ∩ CM(R) = (resD(R) X ) ∩ C(R) ∩modR
= resD(R)(X ∩ CM(R)) ∩modR = X ∩ CM(R),

where the fourth and third equalities follow from (2) and Proposition 10.2(2), respectively. ■

Let f : A→ B and g : B → A be maps. We call (f, g) a section-retraction pair (resp. bijection pair) if gf
is an identity map (resp. gf, fg are identity maps). In this case, we denote it by f a g (resp. f ∼ g). Now
we can state and prove the following theorem, which describes a natural relationship between the resolving
subcategories of D(R) and the resolving subcategories of modR in the case where R is a complete intersection.

Theorem 10.8. Let R be a complete intersection. Then there is a diagram resolving
subcategories

of D(R)

 ≀

((−)∩K(R),(−)∩C(R)) //

⊣ (−)∩modR

��

 resolving
subcategories of D(R)
contained in K(R)

×

 resolving
subcategories of D(R)
contained in C(R)


⊣ ((−)∩modR)×((−)∩modR)

��

resD(R)(−∪··· )
oo

 resolving
subcategories
of modR

 ≀

((−)∩fpdR,(−)∩CM(R))//

resD(R)(−)

OO

 resolving
subcategories of modR
contained in fpdR

×

 resolving
subcategories of modR
contained in CM(R)

.
resD(R)(−)×resD(R)(−)

OO

resmodR(−∪··· )
oo

The pairs of top (resp. bottom) horizontal arrows are bijection pairs given in Theorem 8.10 (resp. [30,
Theorem 7.4]). The pairs of vertical arrows are section-retraction pairs. The diagram with vertical arrows
from the bottom (resp. top) to the top (resp. bottom) is commutative.

Proof. It follows from Proposition 10.7 that the pairs of maps (resD(R)(−), (−) ∩ modR) and (resD(R)(−) ×
resD(R)(−), ((−) ∩modR)× ((−) ∩modR) are section-retraction pairs. Also, it holds that

((−) ∩ K(R), (−) ∩ C(R)) ◦ resD(R)(−) = (resD(R)(−)× resD(R)(−)) ◦ ((−) ∩ fpdR, (−) ∩ CM(R)),
((−) ∩ fpdR, (−) ∩ CM(R)) ◦ ((−) ∩modR) = (((−) ∩modR)× ((−) ∩modR)) ◦ ((−) ∩ K(R), (−) ∩ C(R)).

Indeed, the first equality follows from Proposition 10.2, while it is straightforward to verify the second. ■

Remark 10.9. The section-retraction pair (resD(R)(−), (−) ∩ modR) in Theorem 10.8 is never a bijection
pair. Indeed, if so, then resD(R)(X ∩modR) = X for every resolving subcategory X of D(R). However, this
equality does not hold even for X = D(R), because in this case we have the following equalities

resD(R)(X ∩modR) = resD(R)(modR) = {X ∈ D(R) | H<0X = 0}

by Proposition 2.15, which is strictly contained in X = D(R).
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The corollary below is an immediate consequence of Theorem 10.8, Corollary 9.8 and [30, Theorem 1.5].
This corollary says that the classification of resolving subcategories of modR due to Dao and Takahashi [30]
is a restriction of our classification of resolving subcategories of D(R).

Corollary 10.10. Let (R, V ) be as in Setup 9.5. Then there is a commutative diagram{
resolving subcategories

of D(R)

}
oo ∼=
(α)

//
{

order-preserving maps
from SpecR to N ∪ {∞}

}
×
{
specialization-closed

subsets of V

}

{
resolving subcategories

of modR

}
oo ∼=

(β)
//

resD(R)(−)

OO

{
grade-consistent

functions on SpecR

}
×

{
specialization-closed

subsets of V

}
,

inc×id

OO

where the bijections (α) and (β) are the ones given in Corollary 9.8 and [30, Theorem 1.5], respectively.

Finally, we give a proof of our main result stated in the Introduction.

Proof of Theorem 1.4. The assertion follows from Corollaries 9.8, 10.10, Proposition 10.7 and Remark 9.9. ■

Acknowlegments. The author thanks Hiroki Matsui, Tsutomu Nakamura and an anonymous reader for giving
him useful and helpful comments.
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