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Combining Geroch’s and the ADM formalisms, we give a new formalism for treating
the dynamical problems of space-time having a rotational Killing vector. We have found
that the basic equations for a rotating system strongly resemble the Einstein and the Maxwell

equations for a non-rotating system.

The numerical approach to the relativ-
istic gravitational collapse has been studied
by several authors.’»® However, none of
them have succeeded in calculating the
collapse of a rotating star though Naka-
mura, Maeda, Miyama and Sasaki! suc-
ceeded in constructing the initial data.
For a non-rotating star, Nakamura, Mae-
da, Miyama and Sasaki® have calculated
the formation of black holes. But if one
tries to develop their code to a rotating
case, one thinks that the basic equations
will be terribly complicated. In this short
note, we give a new formalism in which
the basic equations are simpler and which
has some nice features.

In the axially symmetric space-time,
there is a rotational Killing vector. This
implies we can divide out the Killing
direction using Geroch’s three-dimensional
formalism for space-time with one Killing
vector.” Applying this formalism to an
axially symmetric system, we get the 3-

>

dimensional “Einstein” equations with

respect to h,, plus some new equations
for 2 and o,, that is,

@R,
=22 ow,0,—h,,0w0,]+27D,D,1
+87 [T = U/ 2k, (T, + 4 —Zg)]’(l)

A-1DeD = — (214 “wtw,

—4r (AT =I5, (2)
D,w,3=872¢e,,,T°, 3
De[2-%w,]=0, @

where
AE=¢ &4, (5)
hy=9,—1%,5,, (6)
0, =& 08"V 059, )

eﬂup:A _1508;“}9(7 >

and ¢4, F#, D# and ®R,, represent a
rotational Killing vector, the 4-dimensional
covariant differentiation, the 3-dimensional
covariant differentiation and the 3-dimen-
sional Ricci tensor, respectively.® <, <,
and 7 ,, are defined as

I=T,£4,
ge= hou&y T/U

and
T po=ho hsT,, .

We now reduce Egs. (1)~(4) to the
canonical Hamiltonian form applying the
ADM formalism.”> We first define a new
projection tensor™®

* Small Latin indices refer to the range 0,
1, 2, and capital Latin indices to the range 1, 2.
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Hb = hab 4 pand, 8

where 7, is a unit normal vector of hyper-

surface ¢=constant. Carrying out the

projection of all the tensors appeared in
Egs. (1)~(4) by using n, and H,,, we
obtain
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where « and 7, are defined by
ds*=hgydxtda? = —a?de* - H
X (dxA+ 54de) (dxP+9Pde),

and x4z are the extrinsic curvatures with
respect to H,p, and

r=x4A, £=—n"0 L,
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Q4,=Hw,, Qy=n,0%

Eap=N€qp ,

or=nmI ", Jy=—nT°,

JA= —n H,AT, S4— [],AT
and

SAB:HAaHBbgab-
In Egs. (9)~(12), @4, 1], ®R and PR,z
are the Laplacian, the covariant differen-
tiation, the scalar curvature and the Ricci
tensor with respect to H,z, respectively.
Equations (9) and (10) are the constraint
equations and the evolution equations of
two-dimensional space metric, reduced
from the 3-dimensional “Einstein” equa-
tions. Equations (11) and (12) resemble
the Maxwell equations if we consider
(1/2)¢, as the vector potential, that is, if
we define the “electromagnetic” field as

B,=82,/2, BA=¢430 41 ,
E,=gd and E4=¢4°0 /21 .

¢

Using these “electromagnetic” fields, we

have the hydrodynamics equations as fol-
lows :

(i) the energy equation
05 (AvH o) +05(UPA~/H ppy)
=—0g(ahvVHpVE)
+adVHp(+ A1)
+AVH (p+om) {—agV?+ VAVE 15}
+ A VH 23 (A 2E,V,+2E5VE), (13)
(ii) the conservation of angular momentum
00(AVHI ) +05(UBAVHI ) =0, (14)
(iii) the Euler equation
00 (ANHJI ;) +05(UBLVHJ )
=—aAVH [0,p+ (p+0m)a4]
+advVH (p+01) [(1/2) (04Hze)
X VEVOa=tV;0 19°]

* The method of deriving the hydrody-
namics equations is the same as Ref. 1).
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+adVH I ,[2E s+ €40
X (2471B,VC—1-1B°V))] (15)
and
(iv) the equation of continuity

(1) o fen 52

(16)
where
H=det(H,p), az=0zIna,
VE= (p+om) 5, V= (p+0m) "y,
VE=V,zVE41-2V,2 and Ut=aVA—y4

p and n are the pressure and the proper
number density of matter, respectively.

We can see that the “electromagnetic”
Joule’s heat-like and the
Lorentz force-like terms into the hydrody-
namics equations. Note that the angular
momentum density behaves like charge
both in Egs. (12) and (14).

We want to call the present new for-
malism the [(241)-+1]-dimensional re-
presentation of the Einstein equations.
On the other hand the ADM formalism
is called the (8+1)-dimensional represen-
tation of the Einstein equations. Compar-
ing these two for a rotating system, we
find that the [(2+41) +1]-dimensional for-
malism has the following merits:

(1) Since the ¢-component of the shift

fields give
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vector does not appear in the basic equa-
tions, we do not need to consider the co-
ordinate condition about ¢-component.
(2) Inthe (3+1)-dimensional formalism,
for a rotating case we should treat g4,
and §4; whose behaviours are unknown.
In the [(2+1) +1]-dimensional formalism,
new variables which are needed for a
rotating case can be considered the elec-
tromagnetic fields. So we can under-
stand their behaviours easily. These facts
will enable us to utilize our code for a
non-rotating collapse almost as it is.
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