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Numerical calculations have been made for the general relativistic collapse of non-rotating,
axisymmetric stars of 10Mg. The initial density of a star is about 3x10'g/cm®. As an
equation of state, we use 7 (adiabatic index)=4/3 for p<3X10" g/cm® and y—2 for p—o.
Both prolate and oblate collapse are calculated. It is suggested that Schwarzschild black holes
may be formed if U (the ratio of the initial internal energy to the initial gravitational energy)
22/3. If U<2/3, it is suggested that naked singularities may be formed for large initial
deformation of stars.

§1. Introduction

Under the cosmic censorship hypothesis? the Schwarzschild metric is known
to be unique as the ultimate space-time of the gravitational collapse of non-
rotating stars.? In fact, the other asymptotically flat static metrics have a naked
singularities, which was discussed by Zipoy® and Voorhees® for some special
class of Weyl metric.®*® However all these studies were restricted to vacuum
space-times. In a realistic situation a star collapses from a state of weak gravity
into a state of strong gravity. Only the study of such a dynamical process can
give us the final state of non-spherical, and non-rotating stars.

For spherically symmetric cases, Yodzis et al.” showed a possibility of
existence of a naked singularity. For non-rotating, axisymmetric cases, Naka-
mura et al.® suggested that a naked singularity may appear in a prolate collapse
if initial quadrupole moment is large enough. However in the above two cases,
pressure is zero or ineffective for p— 0. In this paper, we calculate collapse of
non-rotating stars of 10Mg with a realistic equation of state. In § 2, the initial
conditions and the coordinate conditions are shown. In § 3, numerical results are
shown. In § 4, we give some discussions.

§2. Basic equations

We adopt the cylindrical coordinates (R, Z, #). We assume the system is
axially symmetric and is plane symmetric about Z =0 plane. In the non-rotating
cases, the [(2+1)+1]-formalism of the Einstein equations® is equivalent to the (3
+1)-formalism.’® Since a full set of the Einstein equations for the present case



Geneval Relativistic Collapse of Non-Rotating, Axisymmetric Stars 1397

can be easily given from the previous paper'” (Paper 1), dropping the terms
related to rotation, we do not write them here. Units of mass, length and time
are taken as

M=10Ms, L=GM/c? and T=GM/>. (1)

The basic flow of the numerical calculations and the basic ideas of the finite
difference method are found by Nakamura et al."® and in Paper L

1) Initial conditions

We assume there is no poloidal motion at £=0. The initial 3-space metric is
assumed to be conformally flat,

7ij:¢4(7ij)ﬂat y (2)

where ¢ is the conformal factor. ¢ is determined by the Hamiltonian constraint

equation,
%

(Ar1at)¢:—27l'(PH¢6)/¢ , (3)

where ey is the energy density measured by the observer whose four velocity is
the normal vector of f=const hypersurface. As px, we use the form,

R? Z") (4)

o ¢“=—1—exp(———
. (27)*2a%h 24 20°
and
aZb=(1.5)%.
The method of solving Eq. (3) under the condition of Eq. (4) is given in Ref. 12).
As an equation of state, we use

p»=1/3p¢ for p=p*=3x10" g/cm®=0.05 in our units ,

=(p—p*)€+%p*s for p>p*, (5)
where p, o and € are pressure, proper mass density and internal energy per unit
mass, respectively. Equation (5) will mimic the equation of state given by Lamb
et al.'® For p=p*, the trapped leptons play a major role in the pressure. For
o >p*, nuclear force is taken into account by the first term on the r.h.s. of Eq. (5).
The sound velocity approaches the light velocity for o — ©°, which is the causality
limit.'¥ The initial distribution of ¢ is taken as

e=Kp'?, (6)

where K is a constant.
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Now « and K determine the initial conditions uniquely.

use U defined by

T. Nakamura and H. Sato

U= Emt/,Egrav',

Instead of K, we

(7)

where FEine and Egrav are the initial internal energy and the initial gravitational
energy, respectively (see Paper I).

2)  Coordinate conditions

The shift vector is taken to be zero.
with the normal line to the #=constant hypersurface.
the maximal slicing condition is used in almost all models.

Therefore the coordinate line agrees
As for the lapse function,
Some of the models

have been recalculated by using the hypergeometric slicing condition defined in

Paper 1.

L4

§3. Numerical results

In all the numerical calculations the number of grids is 28 X28. The coor-

dinate of the outermost grid point is (25, 25).
of each model are shown.
horizon using the method given by Sasaki et al.'®
apparent horizon is identified or not for each model in the U-a plane.
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Fig. 1. The initial parameters of each model in

the U-a plane.

Circles mean that apparent

horizons are identified. Crosses mean that

they are not.

In Table I, the initial parameters

For each model, we have tried to identify an apparent

In Fig. 1, we show whether the
In this
figure, the circles mean that the apparent
horizon is identified and crosses not
identified. In the following, we shall
describe some details of four typical
models; two prolate and two oblate
cases. The name of the model is given
in Table L.

(i) Model PR2

In this model, the initial internal
energy is close to the virial value. At
the beginning, a thin envelope expands
toward the lateral direction. In the
central region, the collapse occurs in a
rather spherically symmetric way. In
the region where Z=~4 and R<2, the
matter collapses almost vertically as
seen in Fig. 2(a). The thin envelope
continues to expand. In the center,
the collapse proceeds (Fig. 2(b)). At
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Table I. The initial parameters of each model. PR and OB imply the
prolate and the oblate initial density distribution, respectively. In the
fourth column, Max means the maximal slicing and Hyper means the
hypergeometric slicing defined in Paper L.

Model Name U a Time Slice ﬁ%??zrggg
S 0.93 15 Max YES
PR1 0.95 1.3 Max YES
PR2 1.08 1.0 Max YES
OBl 0.94 1.7 Max YES
OB2 0.99 2.0 Max YES
PR3 2.2 0.5 Max NO
0B3 1.7 4.0 Max NO
PR4 0.67 1.3 Max YES
PR5 0.72 1.1 Max YES
PR6 0.76 1.0 Max YES
OB4 0.67 1.7 Max YES
OB5 0.70 2.0 Max YES
PR7 0.36 1.3 Max YES
PR3 0.37 1.2 Max YES
PRY 0.40 1.0 Max NO
PR10 0.40 1.0 Hyper NO
OB6 0.35 1.7 Max ' YES
OB7 0.35 1.8 Max YES
OB38 . 0.37 2.0 Max NO
OB9 0.37 2.0 Hyper NO
PRI11 0. 1.3 Max YES
PR12 0. 1.2 Max NO
PR13 0. 1.0 Max NO
OB10 0. 1.7 Max YES
OBI11 0. 1.8 Max NO
OB12 0. 2.0 Max NO

t=14.3, the collapse along the lateral direction is decelerated and the matter
falls almost vertically in the central region (Fig. 2(c)). Finally, the matter
distribution becomes almost spherically symmetric in our coordinates and an
apparent horizon is formed (Fig. 2(d)).

(ii) Model PRY

The initial density distribution of this model is the same as that of Model PR2.
As the initial internal energy is 0.37 times that of Model PR2, we do not see
any expansion of a thin envelope (Fig. 3(a)) contrary to Fig. 2(a). The collapse
along the lateral direction is not decelerated (Fig. 3(b)). At #=14.3, the matter
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Fig. 2. Contour lines of Qs for PR2. The space integral of @» becomes the total rest
mass (Mz), that is, 27/%/5 Qs RdARdZ = Ms. The precise definition of @» can be
found in Paper I. Each line corresponds to Qs =QMAX-10""2for =1, 2, ---, 11.
QMAX is shown in the figure. Arrows show the space component of the four
velocity of the fluid. The maximum of the velocity is shown in the figure as
VELMAX. In Fig. 2(d), the dashed line shows the apparent horizon.

falls mainly along the lateral direction (Fig. 3(c)), which is completely contrary
to Fig. 2(c). Finally, the matter distribution becomes rod-like (Fig. 3(d)). The
apparent horizon has not been identified up to the final stage of the computation
by using the maximal slicing. Then, we have recalculated this model by using
the hypergeometric slicing defined in Paper I. Even in this case of Model PR10,
the apparent horizon has not been identified.
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Fig. 3. Contour lines of @s for PR9. The notations are the same as those
in Figs. 2(a)~(d).

(iii) Model OB2

In this model, the initial internal energy is close to the virial value. At the
beginning, a thin envelope expands. At the center, the collapse is almost spheri-
cally symmetric. In the region where R>=2 and Z < 1.5, the matter falls along the
lateral direction (Fig. 4(a)). The thin envelope continues to expand, but, in the
central region, the matter collapses almost along the lateral direction (Fig. 4(b)
and (c)). Finally, the matter distribution becomes slightly prolate and the
apparent horizon is formed (Fig. 4(d)).
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Fig. 4. Contour lines of Qs for OB2.

(iv) Model OB8

The initial internal energy of this model is 0.37 times that of Model OB2.
The thin envelope does not expand because of small pressure force (Fig. 5(a)).
The matter falls both in Z- and R-direction (Figs. 5(b) and (c)). Finally the
density distribution becomes disk-like. 1In this model the apparent horizon has
not been identified. Even in Model OB9, which is calculated by using the hyper-
geometric slicing, the apparent horizons has not been identified.

For zero internal energy models, the features are the same as those of PR9
and OB8. For the models PR13 and PR12, the matter distribution becomes rod-
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Fig. 5. Contour lines of Qs for OB8.

like and for the models OB11 and OB12, it does disk-like. For the models PR11
and OB10, although the density distribution is deformed in our coordinates, the
apparent horizons are formed. For the other nonzero internal energy models,
their features are in between the models discussed above and the spherical model

If the initial internal energy is too large, as in the models PR3 and OB3, a

star expands and the apparent horizon is not formed. As these models are not
interesting, we shall not comment further.

§4. Concluding remarks and discussion

As seen from Fig. 1 and the results given in § 3, the density distribution
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becomes almost spherically symmetric in our coordinates in the final stage if U
22/3 and the apparent horizon is formed even if the distribution is strongly
deformed at the beginning. In all the models with U =2/3, we have found that
nothing peculiar occurs outside the apparent horizon. If we recall that the
singularity of the Schwarzschild black hole is hidden by the event horizon, our
numerical results suggest that the Schwarzschild black holes may be formed for
the collapse of a non-rotating and axisymmetric star if U =2/3.

If U<2/3, our results show that the initial deformation of the density
distribution is amplified to rod-like or disk-like distribution and the apparent
horizon is not formed. If we recall the structure of the Weyl metric which does
not have the event horizon, but has the rod-like or the disk-like naked singu-
larities, the above models with U <2/3 may evolve to one of Weyl’s solutions.
However such a low U model may not be realistic. A star should have evolved
in a quasistatic manner until the instability to the collapse sets in. Therefore, its
internal energy at the beginning of the collapse may be close to the virial value,
that is, U =1 in our equation of state.

One of the present authors (T.N.) calculated the general relativistic collapse
of rotating stars of 10Mg.'"” The present authors have calculated the general
relativistic collapse of rotating supermassive stars.'® From these results, we
suggested that the Kerr black holes may be formed for wide ranges of the initial
conditions provided that the initial density and angular velocity decreases uni-
formly with radius.'” If we note the Schwarzschild metric is the special case of
the Kerr metric, the present numerical results and the previous numerical re-
sults!” enforce the following prediction: In the general relativistic collapse of
axially symmetric stars, the Kerr black holes may be formed for wide ranges
of the plausible initial conditions.

The authors would like to thank Professor C. Hayashi for his continuous
encouragement. This work was supported by the Scientific Research Fund of the
Ministry of Education, Science and Culture (564123). One of the authors (T.N.)
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