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Numerical calculations have been made for the formation process of axisymmetric, rotating
black holes of 10M@. The initial density of a star is about 3X 10" g/ cm®. Numerical results
are classified mainly by ¢ which corresponds to lal/M in a Kerr black hole. For ¢<0.3, the
effect of rotation to the gravitational collapse is only to make the shape of matter oblate. For
0.3< ¢<0.95, although the distribution of matter is disk-like, a ring-like peak of proper density
appears. This ring is inside the apparent horizon, which is always formed in the case ¢ <0.95.
For ¢=0.95, no apparent horizon is formed. The distribution of matter shows a central disk
plus an expanding ring. It is found that electromagnetic-like field in the [(2+1)+ 1]-formalism
plays an important role in a formation of a rotating black hole. Local conservation of angular
momentum is checked. Accuracy of constraint equations is also shown to see the truncation
error in the numerical calculations.

§1. Introduction

Stationary solutions to Einstein’s vacuum field equations have been studied
very well. On the assumption that all singularities in space-time are hidden
behind the non-singular event horizon, the Israel-Carter? theorem tells us that
solutions form discrete continuous families each depending on, at most, two
parameters. Robinson® proved that the Kerr family with ||< M is the unique one
of the Israel-Carter theorem. On the other hand if the above assumption is not
adopted many other stationary solutions” have been obtained.

In the realistic gravitational collapse a star collapses from the region of slow
motion and weak gravity to that of fast motion and strong gravity. The struc-
ture of the latter region will depend on the initial conditions. Therefore neither
the assumption on this structure nor the special stationary solution but the
dynamical process does determine the ultimate fate of the gravitational collapse.
For a spherically symmetric case, Yodzis et al.” showed a possibility of the
existence of a naked singularity. For a non-spherical case, Nakamura et al.®
suggested that a naked singularity may appear in a prolate collapse if the initial
quadrupole moment is large enough. These results tell us that naked singularity
may appear in the realistic collapse of a star under a certain initial condition.

To know the dynamical process of collapse of a star, it is necessary to inte-
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grate the Einstein equations as an initial value problem by using a realistic equa-
tion of state. This problem will not be solved analytically because solutions will not
be expressed by analytic functions. Only numerical relativity will give us the an-
swer to this problem. In this paper we present numerically generated black holes
with rotation. In § 2, the basic equations of the problem are given. In § 3, initial
conditions and coordinate conditions are shown. In § 4, results of the numerical
calculations are shown. In §5, some discussions will be made.

§ 2. Basic equations
We adopt a [(2+1)+1]-formalism” of the Einstein equations. In this for-
malism the Einstein equations become
GoHap= —2axas+ nais+ 7ena, (2-1)
Goxas — 7 xasic= [P Ras+xxas]—2axa xcs

—ayas+ (Xacnils+xsenfa) — aA " Ajs + aKoxan

*'iaf [GCASDBECED_ HAB(ECEC - B¢2 )]

2
*SHQ[SAB'F%HAB(QH_Scc*/rzg):l, (2:2)
GoA*UAaAA:*aAKJ, (23)

O K — 710 Ke = aK (Ko +x)— H*®(0aa )(0p2) A7}

—a® 4 i el EEY - B

—A4za(pn— S +A72F), (2-4)
K= 2 pas+PR=21"® 4 A—ZxK.ﬂJr%(EAE"wLB,pZH— 16701 | (2-5)
A (Axa® s — AT (WA Ky’ — aA(X+K¢¢):87T]A\%B¢'ECAEC, (2+6)

Oo(A2VH EY)= (9 (XPE" s+ e nfsencA® EP )W H
+/ﬁe/‘383(a/123¢)*167ra/15ﬁ/ﬁ, (2’7)
ao(Bm/ﬁ/l’l):GA(WA/FBM")—F8A(afEBeBA\/ﬁ/i") (2-8)

and

(APE*)a=167], . (2:9)
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In Egs. (2-1) to (2-9), @4, ||, ®R and ® R.s are Laplacian, covariant differentia-
tion, scalar curvature and Ricci tensor with respect to Haz, respectively. The
derivation of Egs. (2:1) to (2-9) and the definition of various quantities appeared
are shown in the Appendix. Note that Egs. (2:7) to (2+9) strongly resemble the
Maxwell equations. We assume the perfect fluid for 7.,

Tw=p(1+e+ plo)upur+ pgu , (2-10)

where p, € and p are proper mass density, internal energy per gram and pressure,
respectively. According to Maeda et al.,” the hydrodynamics equations can be
written by using Ja, Js and pr. In this paper we use different expressions of the
hydrodynamics equations from those in Ref. 7).

i) Energy equation
dol @’V H Ao )+ 0al au®/H AU ep)
=—p[dolau’V H A)+ ol ar’VH AU*)]. (2-11)
ii) Euler equations
Oo(AVH + Ja)+ ds{ UPAVH Ja)
=—aAVH (Oap+(p+pou)(daa)a™")

+Qﬂm(ﬁ “-py)[%(aAHBc) VEVEt ™! Vcaﬂ?c]

+aAVH A7 JolEat€ac(2Bs VE— A7 2054+ V?*)]. (2-12)

iii) Conservation of angular momentum
0(AVH Jo)+ 3 UAVH J4)=0. (2-13)
iv) Conservation of baryon number
do(au’ H Ao)+ s( UPau’VH 20)=0 . (2-14)
v) Equation of state
p=0(p, €). (2-15)

vi) Normalization of four-velocity

ar®=1/V1-VEVs—V*V, , (2-16)
where
VE=(p+tou)'J?, VP=(p+ou)"Js

and
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Ut=aV*—p™

The basic flow of the numerical calculation is the same as that adopted by
Nakamura et al.®¥ We adopt cylindrical coordinates R, Z and ¢. We assume
that the system has reflection symmetry about the Z=0 plane. In this case the
reqularity conditions and the reflection symmetry enable us to use the following
hasic variables instead of the original variables appeared in Egs. (2:1) to (2:16):

BEA/R, dE(VHRR“B)/RZ, CEHRz/(RZ),

F=VH 2z, ke =" — Ky )/ R, ke’ =xi’/ (RZ),

KFA=x7, e"=E*IR*, e*=E’/(RZ), bs=Bs/(R*Z),

Ff=p"R, #*=9%/Z, Q=au’BV/Hp, h=1l+e+plo,

Qx=BvH J&/ Qs+/R , Q:=BVH J:/Qs/Z,

Q=BVH Jo/ Qs/R*,  au’=BvH (ou+)/h/Qs,

VE=VERIR, Vi=V?z, Uf=aVF—7% U?=aVi— 7% (2-17)
By this choice of the basic variables, we do not need to worry about a cusp or a
bump of the variables which occurs in Wilson’s code?” because the regularity
conditions are automatically satisfied. To write down the basic equations by
using our variables is rather tedious but straightforward.

A method of finite difference is the same as that in Ref. 8). We use x and

y instead of R and Z where x=R? and y=Z7%. Dynamical equations appeared in
Egs. (2+1) to (2+16) can be written in the form

00 Q=2x0x(QW ") +230,( QW*)+ S,
Wr=#Ror UF and W?*=7%or U?, (2-18)
where S is the source term for ). The finite difference is taken as

QUt+ 4t x,yv)=Q(¢t, x,y)+4tS
+ 4 ¢[donor cell type finite difference for 5.( QW?*) and a,( QW ?)].

For the evolution equations of space-time geometry, Friedrichs-Lax type viscosity
terms are added to Eq. (2:18). As we can see later, these viscosity terms are not
so large that their effect to the numerical solution is small. For the conservation
laws such as Egs. (2°13) and (2-14), a different finite difference is taken.
Equations (2-13) and (2-14) can be written as

a_Q_ii 2 FTR i.~2 = .
8I+RBRRU Q+aZZ U°Q—=0. (2-19)
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If either R or Z is zero, for example, if R is zero, Eq. (2-19) can be written as
0Q TR wa_ TZy— .
2 +2U0°Q+ aZZUQ 0. (2-20)
We apply the donor cell type difference only to the third term of Eq. (2-20).

§ 3. Initial conditions and coordinate conditions

1) Initial conditions

We use the following initial condition:
on=(278) - exp(—(x+y)/2/2%)/¢°,
Q¥=Q" =0,  Jo=pu-Lo exp(—x/2/2%)x,
c=a=0, B=F=¢*, K/=kf=ki=k’=0,
bs=0, ef=—4/¢* W and e*=—4/p"-HW . (3-1)
As this condition is the same as that in Ref. 8), ¢ and W are determined by
4(0xp + x0xxp )+ 2y + 4305y
=—27(oud®)p " — p°x(x(0x W )2+ (W )*) (3:2)
and
(8+24x(0x¢) ") 0x W +4x0xx W
T(2+24y(0sp) ¢ ") Oy W +4y0s W =87 ] *x . (3-3)
A method of solving Eqgs. (3-2) and (3-3) is given in Ref. 8). As an equation of

state, we use

1/3 { <p*=3x10" 3
_{ / 30e or o<p 9/ cm®, (3-4)

Wpo—p*e+1/30%c for p>p*.
Equation (3-4) means that for o <o* pressure is determined by degenerate leptons.
For ¢ > p™* nuclear force is taken into account by the first term of the expression
of p. Units of mass, length and time are taken as
M=10Mes=2x10*"g,
L=GM/c*=15%x10°m, (3-5)
T=GM/*=5%X10""sec .

Initial distribution of € is taken as

e=Ko'". (3-6)
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Using Egs. (2-16), (3-4) and (3+6), we can determine the initial proper density by
solving the following equation:

o= 0u(1—pu/ (on+ p) 2> exp( — x/2%)x/$*)/ (1+¢)

iteratively. Each model is characterized by three parameters, A4, 2o and K. In
all the calculated models A is 1.5. Instead of £ and K, we define more con-
venient parameters {J, J and ¢ as follows. The gravitational mass of the system
(M¢) is determined by the asymptotic form of the conformal factor ¢ as

p=1+Ms/2/r for r—oo. (3-7)

The total baryonic mass (Mz) is defined by
Mo=2x [ [ Qv RdRdZ . (3-8)
We define the total rotational energy (Erot) and the total internal energy (Fint) by

Emt:mz[:fowc;)b(au“—1)-1@de2 (3+9)
and

EintZZE_[:/O-wa((duo)(6+p/p)*j)/,0/a/u°)'RdeZ. (3-10)

We define the gravitational energy ( Egrav) by
Egrav =Ms+ Erot+ Eint — Mc .

U and J are defined by
U= FEint /Egrav and ] = Erot/Egrav .

q is defined by

q={total angular momentum)/Mg* .

i) Coordinate conditions

7” is taken to be zero. Therefore the coordinate line agrees with the normal
line of #—constant hypersurface. As for @, the maximal slicing condition is well
known, that is, a is determined by®

(B)A 0[:[47[(.0H+Smm)+Kinij]aESmax(R, Z)CZ . (3'11)

In this paper, we use a different time slice which agrees well with the maximal
slicing in the case of spherically symmetric gravitational collapse.
a is determined by
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712‘—0,%72;,%(1: Vo sech®(dv)a , (3-12)

where V4 and d are free parameters. Namely, ¥4 and Smax(R, Z) in Eq. (3-11)

are replaced by (1/#*)(d/dr)»*(d/dr) and Vesech®(dr), respectively.
The boundary conditions of Eq. (3:12) are

da -
dr 720“0

and
@=1+const/7 for y— oo,
Then the solution of Eq. (3-12) becomes
a=[AF(7,8,1, )+ B(F*(7,8,1, )+ F(7,68,1, w)n w)l/r, (3-13)
where
u=e [ (1+e7297), y+6=1, 78 = Vo/d?,

& I y+n)(S+u)l(e) u*
F(r.8, e 0)= B=FoNP(8) (et n) nl"

F*(7,8, ¢, u)=0,F+0:F+20.F ,
A=(F*(7,6,1,1/2)=F(7,6,1,1/2)In 2)/F(y,8,1,1/2)/ 2/d
and

B=-1/2/d.

We want to call this slicing the hypergeometric slicing.
To determine the two parameters 14, and 4 we use the maximal slicing

condition (Eq. (3-11)) in this paper. Vo and d are determined by

d=C/DXIn2
and
) Vo=CXd,
where
C=1 Smux(R, 0)dR+ [ Smax(0, 2)dZ]/ 2
and

D= [fowsmax(R, o)RdR+f0°°smax(o, Z2)2dZ1) 2.
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This is one of the methods of determining Vo and d. As there are two free
parameters which express the depth and the range of the potential for a Schrid-
inger type equation (Eq. (3:12)), the hypergeometric slicing will enable us to
control the collapse as we like.

§4. Numerical results

Initial parameters of each model are shown in Table I. Since each model
is characterized mainly by the value of ¢, we use ¢ as a name of each model.
Before showing the numerical results of each model, we discuss local conservation
of angular momentum and accuracy of the numerical calculations. In Newtonian
2D collapse, many authors'® have calculated the isothermal collapse under the
condition that the initial density distribution is uniform and the initial angular
velocity is constant. But their results are different. Some pepople say that a
ring is formed. The other people say that no ring is formed. The reason for this
difference is the artificial transfer of angular momentum in an Eulerian method.
In Kamiya’s calculation'” no ring is formed. As he used a Lagrangian method,
angular momentum is locally conserved. Norman et al.!® carefully treated
angular momentum transfer in an Eulerian method. They found that if there is
little artificial transfer of angular momentum no ring is formed and the collapse
is a runaway yielding central disk-like regions of increasing mass density and
flatness. The above experience in Newtonian 2D collapse tells us that we must
carefully treat the angular momentum conservation in the general relativistic 2D
code, too. We define M(/) as the mass of a star with specific angular momentum

Table I. Initial conditions and main results of all the calculated models. Ms, M¢, U, J and g are
total baryon mass, gravitational mass, the ratio of total internal energy to gravitational energy, the
ratio of total rotational energy to gravitational energy and total angular momentum divided by Mc?,
respectively. Units are shown in the text.

Name of Model | M32 M48 M56 Mo64 M80 M86 M95 M109 | M137

Ms 0.977 0.969 0.963 0.957 0.941 0.931 0.921 0.897 0.833
M 0.882 0.884 0.886 0.886 0.890 0.892 0.894 0.899 0.911
U 0.20 0.20 0.20 0.20 0.21 0.21 0.22 0.23 0.25
J 0.05 0.12 0.17 0.22 0.36 0.45 0.55 0.79 1.56
q 0.32 0.48 0.56 0.64 0.80 0.86 0.95 1.09 1.37
Apparent YES YES YES YES YES YES NO NO NO
Horizon?
Ring of @,? NO NO NO NO NO YES YES YES YES
Its Location _ _ _ _ _ 3.3
(R= ) (weak) 3.3 3.3 4.6
Ring of p? NO YES YES YES YES YES YES YES YES
Its Location . 0.8 1.2
(R= ) (weak) | (weak) 24 2.4 2.8 2.8 3.3 3.9

Mini(r?e“;“"f‘)/ﬁ o8| 14 2.0 2.4 2.4 2.8 2.8 2.8 3.3
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less than or equal to /,
M(Z):Zﬁ/ng’bR’AR'-AZ', (4-1)

where
I'=Q' R (4-2)

From Egs. (2-13), (2-14) and (2-17), we can see easily M(/) should be time
independent if the angular momentum is conserved locally. M(/) is shown for
M64 in Fig. 1. Open circles show M(/) at =0 and lozenges show M(/) at {=12.4
when an apparent horizon™ is already formed. We can see the local conservation
of angular momentum is quite well.

In Ref. 8) accuracy of a constraint equation (A.C.Eq.) is defined by

R.H.S. of the constraint equation

ACEq.=|1— : - . .
d L.H.S. of the constraint equation (4-3)
IOO%T
099900009
o
o
ML) °© pfo
u]
1 6 o
® ot 6,4
o t=0 & o o © o9
o =12. AL s}
t =12.4 08 A ada
& A 9 L
S s ¢
107 O A a
<§> 1%
8 g °
® .
o ® - Hamiltonian
() o O -Momentum
o© . (R)
& ° A —Momentum
10 @ ¥4)
o8 0.1% a-Angular
o o® Momentum
(o) °
X
0 ° o
[ Horizon
| L L hd ) 4 ;
16 10" 1 0 5 10 5 ¢
Fig. 1. The specific angular momentum spect- Fig. 2. Accuracy of constraint equations (A. C.
rum for M64. The quantity M(/) is the Eq.) at the center for M64. An arrow shows
total mass in the star with specific angular the time when an apparent horizon is form-
momentum less than or equal to /=R*Q. ed. We can see A. C. Eq.’s are 20% or so at
Open circles are M(/) at t=0. Lozenges are that time.

M(!l) at {=12.4 when an apparent horizon is
already formed.

*) A method of determining an apparent horizon is the same as that in Ref. 11).
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A.C.Eq. should be zero if we can solve the basic equations exactly. In numerical
calculation, A.C.Eq. tells us the effect of the truncation error and the viscosity
terms to the true solution quantitatively. A.C.Eq.’s for M64 are shown in Fig. 2.
For simplicity the time variation of A.C.Eq.’s at the center is shown. We can see
the accuracy of momentum constraint equations (Eq. (2:6)) is worse than that of
the Hamiltonian (Eq. {(2-5)) and the angular momentum constraint equations {(Eq.
(2-9)). As xas is determined by the second and the first derivative of the metric
tensor, the accuracy of the momentum constraint equations is essentially that of
the third derivative of the metric tensors. On the other hand the accuracy of the
Hamiltonian constraint equation is essentially that of the second derivative of the
metric tensors and the accuracy of the angular momentum constraint equation is
essentially that of the first derivative of E*. Figure 2 shows A. C. Eq.’s are 20%
or so at the time when an apparent horizon is formed. Therefore it can be said
that the accuracy of our numerical calculation is good enough.

The numerical results are summarized as follows. For slowly rotating
models, for example M32, the distribution of 0 and ¢» becomes oblate shape as the
collapse proceeds. An apparent horizon is formed and matter is swallowed into
the black hole completely. In this case the effect of rotation is only to deform the
matter distribution. For rather rapidly rotating models, for example M80, the
shape of @, is disk-like (Fig. 3 (a)) but there appears a ring-like peak of ¢ which
is inside the apparent horizon (Fig. 3 (b)). At this peak E4E" is very large (Fig.
3 (b)) and vH takes a minimum value (Table I). The reason for this behavior
can be interpreted as the general relativistic effect of rotation. Taking a trace
of Eq. (2:2), we have

0.452£-01

TIME=1.20E+01 TIME=1.20£+0l
ME=120 0.859£-01

14 N4 R
Y
i>r-—|) >’ < 2% &
1 2 3 4 5 6 t R
Fig. 3. (a) Contour lines of Qs for M80 at f (b) Contour lines of proper density (o) for
=12.0. Each line corresponds to Qs =( Qs )max M80 at £=12.0. Each line corresponds to o
.10 where ( Qs )max=4.52-107% for n=1, 2, = Pmax*107"? where pmax=8.59-107% for n=1,
-, 11.  Arrows show vectors (J4/Qs). The 2, -+, 11.  The apparent horizon is shown by

apparent horizon is shown by the dashed line. the dashed line. Arrows show vectors E”.
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aox:%aEAEA-Fother terms . (4-4)

Multiplying H*? both sides of Eq. (2-1), we obtain for 7*=0
do(In vH )=—ax . (4-5)
We write Eq. (2-9) again
0/(AVHE*)=167Q,R*Q . (4-6)

We already knew that the angular momentum density behaves like “charge
density” for E#. The distribution of s is disk-like (Fig. 3 (a)). So the distribu-
tion of “charge density” becomes ring-like as Jy is zero at R=0 and R=o0. This
“charge density” makes a ring-like peak of E“E4 (see Eq. (4-6)). From Eq. (4-4),
we can see x increases with the increase of £E#E.. The increase of x means the
decrease of vH (see Eq. (4:5)). Finally the decrease of v H makes E*Ea4 large.
Therefore this cycle makes E*Es and x larger and v H smaller. A ring-like
minimum of +v'H makes a ring-like peak of o although Qs is disk-like. This ring
will develop to a ring-like singularity but the numerical calculation i1s stopped by
the Courant condition. For rapidly rotating models, for example, M95, no ap-
parent horizon is formed. (See Table 1.) @» shows a central disk plus a slowly
expanding ring. (Fig. 4(a).) p shows a ring-like peak with the maximum of E*E,.
(Fig. 4 (b).) In this case this ring-like peak may develop to a naked singularity by
the same mechanism as in rather rapidly rotating models. For very rapidly
rotating models, for example M 137, ©Q» shows a central disk plus a fast expanding
ring. (Fig. 5(a).) o shows a weak ring-like peak but E*E. shows a ring-like

L2260 TIME =1.22E+01
TIMESLZ2E201 o1 e 010SE: 09

VAR NS - - — — Z

m

4

TR R = —~— —~
R IR R NN R N ~ ~ ~

~

VARV Y Y Y v N > "> < -~ ~
~

-~

AAAAAA A A A 4

ilissssas AN fatin - =
1 2 3 4 5 6 R 5 R
Fig. 4. (a) Contour lines of Qs for M9 at / (b) Contour lines of proper density (o) for
=12.2. Each line corresponds to Q& = ( Qs )max M95 at r=12.2. Each line corresponds to p
-107"2 where ( Qo)max=2.77-107% for n=1, 2, = pmax* 1077”7 where Omax=1.05-10"" for n=1,

-+, 10. Arrows show vectors ( Ja/Qs). 2, -+, 12. Arrows show vectors E”.
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TIME =1.506+01
TIME=1.50£+01 o 0.843E-02 "
0.155E-01 Z] A aTA A AT A a B
Z LR AALE L T T U U W Y Y ~ e Y T T
[T < ~— 4_%

R e — 0
1 2 3 4 5 5 R
Fig. 5. (a) Contour lines of @, for M137 at ¢ (b)  Contour lines of proper density (o) for
=15.0. Each line corresponds to @ = Qs )max M137 at t=15.0. Each line corresponds to o
107" where (Qs)max=1.55-10"% for n=1, 2, = omax* 107" where pmax=8.43-10"° for n=1,
-+ 10.  Arrows show vectors ( Ja/Qs). 2, -, 9. Arrows show vectors E”.

peak. In this case the numerical calculation does not proceed further as «
becomes very small even in the ring region.

§5. Discussion and concluding remarks

As far as the numerical calculations in this paper are concerned, an important
conclusion is that if g is larger than about unity an apparent horizon is not formed.
The Kerr black hole with ¢=1 corresponds to the maximum Kerr solution.
Coincidence of this number with 0.95 in the numerical calculation is surprising. It
can be said at least that the numerically generated rotating black holes for ¢ <0.95
in this paper look like the Kerr black holes in a sense that they have apparent
horizons and no naked singularities although it is very difficult to prove that they
are exactly the Kerr black holes. For some models with ¢ = 0.95, it is suggested
that a naked singularity may appear.

As we saw in §4, E* plays an important role in the general relativistic
collapse of a rotating star. The interpretation of the effects of £ to the collapse
given in §4 is only the beginning of the true understanding of these electro-
magnetic like fields in the [(2+ 1)+ 1]-formalism of the Einstein equations. It is
expected that if we use a different initial distribution of angular momentum from
Eq. (3-1) the structure of black holes will be different from Fig. 3. For example,
if “charge density” ( Js) has two or three peaks, ¢ may have two or three ring-like
peaks.

Next we will mention the choice of the time slicing. We have recalculated
M48 with the maximal slicing condition. In this case, an apparent horizon is not
formed. The reason is that the proper time of the co-moving observer stops
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increasing too soon. Therefore the maximal slicing is not good to know the
structure of rotating black holes. However the hypergeometric slicing is not the
best one, either. In M80, « is about 0.5 or so at the ring of 0. Therefore not @
but the Courant condition stops the numerical calculation. For M137, @ becomes
too small even at the ring because the expansion velocity is too large. (See Eq.
(3-13).) Better time slicing which stops the proper time of the normal line observer
at the ring position is needed to know the structure of singularities of rotating
black holes and naked singularities which may appear for ¢ =0.95.
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Appendix

In this appendix, we derive Egs. (2:1) to (2+9). 1f we apply Geroch’s formal-
ism'? to an axially symmetric system, we obtain

(B)Ryy: (2/14)71 [a),uwy_hllvaa)p]'{kﬁilDuDuA

+87(T g ol T2+ A7), (A1)
ATIDP DA = —(2A") P we — 4r (AT — %), (A-2)
D[pwy]:87f/16,uu,agp s (A.S)
D"[/_1*3a)p]:0, (A-4)
where
AP=Eul", (A-5)
h#u:guu*A_zgﬂEu , (A-6)
G)HZE#W)GSDV'OEU» (A-7)
5#140:&7150‘5#1400‘ , (A-8)

and &, 7*, D* and ¥ R.. reperesent a rotational Killing vector, four-dimensional
covariant differentiation, three-dimensional covariant differentiation and three-
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dimensional Ricci tensor, respectively. </, . and 9 .. are defined by
T =Twé"s",
gﬂ — hﬂ#éu Tyy
and
T oo = ho" " Tuv

where Ty is energy-momentum tensor of matter. Next we define a projection
tensor® as

Hab:hab+7lanb, (A9)

where 7. 1s a unit normal vector of f=constant hypersurface. We define «
(lapse function) and 7* (shift vector) as

ds®= hasdx®dx® = — a®dt*+ Has(dx*+ 5 dt)(dx®+ n2dt).

xap appeared in Eq. (2-1) is the extrinsic curvature with respect to Hag. Further-
more we define various quantities appeared in Egs. (2:1) to (2-9) as

x=x.", AKY = —n"0.4 ,
E'= e HwpA %, Be=naw®A?,
€as=n €cas , on=mnans I,
Jo=—nad %, H=det(Has),
Ji=— naH, T | SA= HAT
and
Sus= HaaHpS .

If we carry out projection of all the tensors appeared in Eqgs. (A-1) to (A-8),
we obtain Egs. (2-1) to (2-9).
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