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One of the important problems in general relativity is to clarify the dynamical nature of
space-times. In this article two aspects of dynamical space-times are treated. In Part I
general relativistic collapse of axially symmetric rotating stars is discussed. Many numer-
ical results on collapse of rotating massive stars, supermassive stars, deformed stars, stars
withmagneticfieldsandneutronstarsare presented. A numerical method for three dimensional
problems is also discussed with numerical results on time evolution of pure gravitational
waves. In Parts II and III perturbation of black holes is treated. A new formalism, which
is suitable when there are perturbation sources such as particles, is given. Many numer-
ical results on gravitational waves induced by a particle or particles orbiting around a
spherically symmetric system and an axially symmetric black hole are presented.
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Introduction and Summary

1. Numerical velativity in Kyoto

More than ten years have passed since the birth of numerical relativity in 1976.
Here the birth means the work by Smarr (1977) for two black hole collision as it was
the first numerically generated non-spherical space-times with asymptotic flatness.
In Kyoto, the study of numerical relativity was started in 1977 by Nakamura, Maeda,
Miyama and Sasaki. Since then ten years have passed. We feel it is worth while to
present a review paper of activity on the numerical relativity and the study of
gravitational radiation in our Kyoto group. This is one of the motivation of this
article. We do not intend to give a complete review of this field in this article.
Therefore even if certain work on numerical relativity and the gravitational radiation
is not referred in this article, we do not assert that they are of little importance.

In Table I, we show the development of the study of numerical relativity in Kyoto
from 1977 to the end of 1986. The first subject we attacked was the free evolution of
the collapse of spherically symmetric stars [Nakamura, Maeda, Miyama and Sasaki
(1980)]. In this first study we tried to find the numerical methods which can be easily
extended to axially symmetric cases. As a result, we found the importance of the
numerical treatment of the regularity conditions at the origin, which led us to use the
regularized variables ensuring the regularity automatically. This is also extended to
axially symmetric cases. We also solved in the same paper the initial value equa-
tions for a given density and an angular momentum distribution by using York’s
method which is reviewed by York (1982).

One of the important findings which led us to succeed in constructing an axially
symmetric rotating code was the ((2+1)+1)-formalism of the Einstein equations
[Maeda, Sasaki, Nakamura and Miyama (1980)]. In the formalism, we first use
Geroch’s formalism (1971) for space-time with a Killing vector. We divide out a
rotational direction to obtain “three dimensional Einstein equations” for an orbit
space of the Killing vector. To this space with signature (—+ +), we split time by
using a similar method to that in the (3+1)-formalism. In the ((2+1)+1)-formalism
the effect of rotation can be considered as that of electromagnetic-like fields, which is
similar to the Kaluza-Klein theory. Angular momentum behaves like electric charge
and there exist Lorentz force like terms in the hydrodynamics equations. The
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subject of Part I §1 is the (3+1)-formalism and the ((2+1)+i)-forma1ism of the
Einstein equations.

In numerical relativity it is often necessary to determine whether black holes are
formed or not from numerical results. To this purpose the best way is to determine

Table I. Numerical relativity in Kyoto.

2.D Rotating Ini- 2D Pure Gravity
tial Data Waves
1980 NMMS 1981 Miyama
((2+1)+1)-formalism - Apparent Horizon in
1980 MSNM . “1(@+D+D
& 1980 SMMN
#1 2D Simulation of Rotating
Collapse in ((2+1)+1)
#2 Non-rotating Collapse
#3 Collapse with Magnetic
Fields
1981-1983 Nakamura and Sato
Phase Cancellation Formalism for Perturbation of black
Effects of GW holes
1981 Nakamura and , 1981-1982
Sasaki Sasaki and Nakamura
Phase Cancellation Gravitational Waves from a Parti-
Effects in N Particles System cle falling into black holes
1981 Nakamura and Oohara \ 1982-1984 Nakamura, Oohara and
/ Kojima
NEEDS
FOR 3D
3D Initial Data for Pure GW Method for determining 3D
1984 Nakamura Apparent Horizon
1984-1985 Kojima, Oohara
and Nakamura
N
Newtonian 3D 3D Time Evolution of
Hydrodynamics Pure GW
1984- Miyama 1985- Nakamura
et al.
\ 4

3D CAR (Computer Aided Relativity)
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event horizons. However it is difficult to determine them except for spherically
symmetric cases [Shapiro and Teukolsky (1979, 1980)]. This is because we must
determine them with the global structure of space-time for which we require a lot of
memories and computing time. On the other hand apparent horizons can be deter-
mined if we know the structure of space-time for a given time. Therefore we usually
determine apparent horizons instead of event horizons. In 1D (spherically
symmetric) case an apparent horizon can be determined by solving a transcendental
equation [Nakamura, Maeda, Miyama and Sasaki (1980)]. For 2D (axially
symmetric) case it is determined by solving a second order non-linear differential
equation in the ((2+1)+1)-formalism of the Einstein equations [Sasaki, Maeda,
Nakamura and Miyama (1980)]. For 3D case, that is, a general case, it can be
determined by using spherical harmonics expansion [Nakamura, Kojima and Oohara
(1984, 1985)]. The review of methods for determining apparent horizons is the subject
of Part I § 2.

In numerical relativity, general relativistic collapse of evolved massive stars and
their final structures are one of the most important problems. Relevant questions in
this problem are:

1) What is the final structure of the space-time after the collapse of rotating stars?

2) What kind of information can we extract from the gravitational radiation

emitted during the collapse? By observing gravitational waves in future what
kind of physics in strong gravity can we know?

Concerning the first question numerical relativity seems to have an answer for 2D
cases. Let us define a non-dimensional angular momentum ¢ by ¢=c¢J/M*G where J
and M are the total angular momentum of the system and the gravitational mass,
respectively. ¢ corresponds to a/M in a Kerr black hole. Numerical simulations
show that there is a critical value of ¢(=g¢.) for each series of model. If ¢ is smaller
than g¢c, a black hole is formed (i.e., the formation of an apparent horizon), while if ¢
is greater than ¢, a black hole is not formed but an expanding ring or an expanding
disk is formed depending an the initial conditions. Kyoto group [Nakamura (1981,
1983); Nakamura and Sato (1981a, 1981b)] as well as Stark and Piran (1985, 1986)
performed five series of numerical simulations and they found that ¢g. ranges from 0.8
to 1.2. This result suggests to us that ¢. is almost independent of equation of states,
initial rotation laws, initial density distribution, codes, coordinate conditions and
numerical methods. If we consider the numerical relativity as an experiment, an
experimental value of g is 1.0£0.2. This suggests to us that the cosmic censorship
hypothesis is relevant under plausible initial conditions.

If ¢ is greater than unity, final results depend on the initial conditions strongly.
For example in general relativistic collapse of accreting neutron stars with rotation
[Nakamura (1983)], depending on rotation laws, oblate shape, disk like or ring like
‘neutron stars are formed instead of black holes for ¢=1. Shapes of these stars
suggest to us that they are unstable for fragmentation because, for example, a thin
disk with an aspect ratio greater than 27 is known to be unstable. As early type stars
which are responsible for the formation of neutron stars and black holes are rotating

-fast, the value of ¢ of collapsing cores is expected to be greater than unity [de Felice
(1986)]. For comparison we note that even for the sun which is a slow rotator, ¢ is
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0.18 and for the millisecond pulsar [Backer et al. (1982)], ¢ is 0.23. Therefore the
general relativistic collapse with ¢=1 will not be a rare event. In reality the
observations of neutrinos from SN1987A [Hirata et al. (1987); Bionta et al. (1987)]
suggest that there is evidence for rotating collapse [Nakamura and Fukugita (1987)].
The subject of Part I § 3 is axially symmetric rotating collapse.

Nakamura and Sato (1982) also calculated 2D collapse of non-rotating deformed
stars. They used the equation of state in which the sound velocity approaches the
light velocity in the limit of infinite density of the matter. This means they used the
hardest equation of state. At #=0 they put some oblate like or prolate like deforma-
tion to stars. They found only when the deformation is large and the initial internal
energy is small, apparent horizons are not identified but bar like or disk like singular-
ities which resemble Weyl metrics [Weyl (1917); Zipoy (1966); Vorhess (1970)] are
seen. Another interesting series of simulations has been performed by Nakamura
(1984) which is published in Japanese proceedings of the workshop. He considered
the collapse of non-rotating supermassive stars with poloidal magnetic fields. He
found that unless the initial magnetic field is too large, apparent horizons are formed.
This is the subject of Part I § 4.

One of the important conclusions in Part I is that numerical simulations tell us
that under the plausible initial conditions in realistic astrophysical situations, Kerr
black holes are usually formed instead of naked singularities.

2. Phase cancellation effects

In 1981 Nakamura and Sasaki (1981) found the phase cancellation effects of
gravitational waves. They considered the gravitational radiation emitted from a
deformed dust shell falling into a Schwarzschild black hole. The energy of radiation
as a function of deformation first increases, has a maximum and then decreases.
This is due to the phase cancellation of the waves emitted from different elements of
the shell in the case that the time lag of the collapse of different elements is much
larger than the period of the quasi-normal mode of the black hole. This implies that
when we estimate the amount of gravitational waves emitted during the collapse of
stars in numerical relativity, we must pay more attention to the artificial dispersion
in the phase than to the artificial dissipation of wave amplitudes. The study of this
effect has been developed by Shapiro’s group [Haugan, Shapiro and Wasserman
(1982); Shapiro and Wasserman (1982)] and the wave pattern from a thick dust shell
was used to check Stark’s code [Stark and Piran (1985)].

There is, however, another type of phase cancellation effects which is simpler
than the above one but seems to be more important [Nakamura and Oohara (1983)].
Let us examine the gravitational radiation emitted by N particles each mass #/N in
a circular orbit of the same radius around a Schwarzschild black hole. They found
the luminosity decreases exponentially as a function of N. In the limit of N— oo, the
luminosity vanishes, which shows that a stationary rotating ring does not emit
gravitational radiation at all. This is another kind of phase cancellation effect and
makes axially symmetric collapse a poor emitter of gravitational radiation, which
seems to be consistent with the results of fully relativistic numerical calculations
[Smarr (1977); Stark and Piran (1985)]. The phase cancellation effect is the subject
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of Part II § 2.

3. Perturbation of spherically symmetric space-times and gravitational waves

The phase cancellation effects tell us that much gravitational radiation will be
emitted when 3D process such as fragmentation occurs. To treat such a 3D process
as collisions of neutron stars and black holes as well as fragmentation, 3D numerical
relativity is needed in which no symmery of the system is assumed. As the first step
of 3D numerical relativity, 3D time evolution of pure gravitational waves will be
discussed in Part I § 5.

In 2D cases, however, the perturbation calculations are also important as well as
the full non-linear calculations. For example, the estimate of the gravitational
radiation emitted from a test particle falling into a black hole was necessary to
construct numerical codes as well as to analyze numerical results. This is one of the
reasons why we began to study perturbation calculations concerning the gravitational
radiation for more general cases.

Davis, Ruffini, Press and Price (1971) started this kind of a study by calculating
the gravitational radiation from a particle falling with zero orbital angular
momentum into a Schwarzschild black hole using Zerilli’s formalism of the perturba-
tion of the black hole with external sources. In Zerilli’s formalism the perturbation
of the metric is treated and one has two kinds of equations with different parity. The
odd parity equation is usually called the Regge-Wheeler equation while the even
parity one is called Zerilli’s equation. When one considers the gravitational waves
emitted by a test particle with more general orbits around a black hole, the source
terms in the Regge-Wheeler and the Zerilli equations become terribly complicated.
On the other hand if one treats the perturbation of the Newman-Penrose quantities
one obtains the Bardeen-Press-Teukolsky (BPT) equation in which both even and odd
parity modes are treated at the same time as a complex quantity known as ¢a.
Detweiler and Szedinits (1979) calculated the energy of the gravitational waves from
a particle with non-zero orbital angular momentum plunging into a Schwarzschild
black hole by using the BPT equation. However they encountered two kinds of
difficulties in the numerical calculations. One is that the potential of the BPT
equation is long ranged. The other is that the source term of the BPT equation is -
diverging like 7>° for » >0, To overcome these difficulties they expressed ¢ as the
integration form and performed the integration by parts many times. The subjects of
Part II § 2 are the Regge-Wheeler-Zerilli equation and the Bardeen-Press- Teukolsky
(BPT) equation.

If one wants to calculate the waves from a scattered particle, the prescription
given by Detweiler and Szedenits seems to be awfully complicated because we have
also apparent divergence of the integral at a periastron. To overcome this difficulty
Sasaki and Nakamura (1981) noticed the transformation given by Chandrasekhar and
Detweiler (1975) by which the sourceless BPT equation is transformed to the Regge-
Wheeler equation without source terms. They performed the same transformation
when the source terms exist. They obtained the generalized Regge-Wheeler equation
with convergent source terms. This new equation is different from the original
Regge-Wheeler equation with source terms because the generalized one treats both
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odd and even parity modes while the original one treats only an odd parity mode.
This transformation as well as a new transformation by which the BPT equation is
transformed to the generalized Zerilli equation is discussed in Part II § 3.

In Part I § 4 we will discuss quasi-normal modes of the Schwarzschild black hole
because it is a very important concept in analyzing the gravitational waves from
black holes. In Part II §5 we will show numerical results of the energy, linear
momentum and angular momentum of the gravitational radiation from a particle of
mass ¢ with an orbital angular momentum ¢ plunging or scattered by a Schwarzs-
child black hole of mass M (> p).

Plunging case (L-<4) This case has been already studied by Detweiler and Szedenits
(1979) by using the BPT equation. The energy spectrum agrees with that obtained by
them for w<0.8 (We use the units of c=G=M=1). We have calculated the
multipole up to /=6. We found that the energy radiated by each multipole has the
maximum at the frequency corresponding to the quasi-normal mode and the total
energy AE, obeys AE,;=aexp(—bl) where a increases and b decreases with the
increase of L.. The energy from »=0 can be considered as that from a rotating ring
(axisymmetric) of mass ¢ plunging into a black hole and is 5 to 10° times smaller than
the energy from all m. This suggests to us that the 2D collapse is not a strong emitter
of the gravitational waves due to the phase cancellation effects. Moreover the
energy from a ring decreases with the increase of L. for L.<3. A rotating ring
plunging into a black hole always emits less gravitational waves than a single
particle. This shows that the rotation is not always effective for the enhancement of
gravitational radiation and suggests to us that the collapse of a rotating axisymmetric
star may be a weak emitter. Results of a full nonlinear simulation by Stark and
Piran (1985) seem to support this conjecture.

Scatteved case (L>>4) It is found that contrary to plunging case the quasi-normal
mode is not excited even when the periastron approaches the limiting value 4. This
is due to the fact that the peak of the energy spectrum locates at twice the angular
velocity at the periastron (#”<0.04) which is much smaller than the maximum of the
Regge-Wheeler potential (0.14). The quasi-normal mode is not excited at all and the
energy becomes small. For example energy for L.=4.1 is 0.1244* which is about a
fifth of that for L-=3.9 (plunging case).

One of the important results in Part II is the dominance of the quasi-normal mode
(QNM) of a black hole in the energy spectra when the particle is plunging into a black
hole. QNM is the very characteristic of the black hole and if we can identify it from
the observational data of gravitational waves, we can measure the mass of the black
hole from the real part of QNM. However when the particle is scattered by the black
hole, the QNM is not excited unless the particle has an enough initial velocity at »
=00, We will give in §5.4 the condition on the excitation of QNM in general.
Gravitational waves also carry a linear momentum and an angular momentum. We
will also discuss astrophysical implications of our perturbation calculations of
gravitational waves from black holes.
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Perturbations of sphevically symmetric stavs There is QNM also for a neutron star.
In the formation process of neutron stars, it may be important as in black hole cases.
In Part II § 7 we will study gravitational waves emitted by a particle moving in a
circular orbit around a stellar model. In this case the generalized Regge-Wheeler
equation is not an adequate one because inside the star Ricci tensor is not zero. We
adopt the metric perturbation equations in the Regge-Wheeler gauge which are solved
both inside and outside of the star. Both solutions are matched at the surface of the
star. We found that a resonant oscillation is excited when the frequency of the
gravitational waves produced by the particle coincides with QNM of the star. The
amplitude of the wave at the resonance exhibits a sharp peak depending on the
equation of state. So we can expect the QNM of neutron stars is an indicator of the
equation of state of the high density matter.

4. Gravitational radiation from a Kerr black hole

. In Part III we discuss perturbation of a Kerr black hole. In this case we do not
have metric perturbation equations. Gravitational perturbation of a Kerr black hole
is governed by the Teukolsky equation and its derivation is given in §§ 1~5 together
with Newman-Penrose and Geroch-Held-Penrose formalisms. In the Teukolsky
equation, however, there are two difficulties which prevent us from studying numer-
ically the radiation from a particle falling into a Kerr black hole. Two difficulties
are:

1) A potential has a long range term.

2) Source terms have a diverging term like »*° for » —co.

To overcome these two difficulties Sasaki and Nakamura (1982) found a new
transformation from the Teukolsky equation and obtained a new equation with the
short range potential and the convergent source terms. The new equation becomes
the generalized Regge-Wheeler equation in the limit of 2—0. Thus the transforma-
tion is the generalization of the transformation by Chandrasekhar and Detweiler for
a Schwarzschild case. The details of the derivation of the new equation are shown
in §§ 7~9. '

In Part III § 10 we will show numerical results of the energy, linear momentum
and angular momentum of the gravitational radiation from a particle of mass ¢ with
an orbital angular momentum xL: plunging or scattered by a Kerr black hole of mass
M(>p) and angular momentum Ma.

L-.=0 case The energy from a particle falling along the symmetry axis changes from
0.0105.*(a=0) to 0.01704*(2a=0.99). However the energy from a particle falling in the
equatorial plane does 0.0105/*(a=0) to 0.0445.(a=0.99). In the former case, only the
axisymmetric mode (#=0) exists while in the latter case all » modes exist because
of the dragging of the inertial frame. As shown by Detweiler (1978) as well as Leaver
(1986), the real and imaginary part of the quasi-normal mode of the Kerr black hole
depends on m and a. |Im(wres)| is the smallest for m=/ and the largest for m=—/.
For a given / and m, |Im{wres)| is a decreasing function of a. |Im (wres)| for m=0
depends on a very weakly. The energy spectrum has a peak at Real (wres). The
wave pattern has different three parts; 1) a precursor, 2) a sharp burst and 3) a ringing
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tail. As m=+0 mode exists for a particle plunging in the equatorial plane, the wave
pattern of the latter case for ¢=0.99 has a long ringing tail which yields more energy.

Plunging case with L.+0 In this case the sign of L. has a meaning contrary to the
Schwarzschild black hole. We call a particle with positive and negative L. as a
corotating and counterrotating one, respectively. For the same value of L:, a
corotating particle emits more energy than a counterrotating one. This can be
interpreted by the dependence of Im(wres) on m. Oohara and Nakamura (1983) have
shown for a Schwarzschild black hole case that for large L-.=>0 the contribution to the
energy from m=/ mode is the largest because the radiation is emitted mainly along
the velocity vector of the particle like the usual synclotron radiation. For a=+0, the
IIm(wres)| for m=1 is the smallest. Thus the m=1/ dominance is exaggerated due to
the enhancement of the radiation by the ringing tail. However in the counterrotating
case the situation is completely different. For ¢=0, m=—/ mode is the largest but
for a=+0, the |Im(wres)| for m=/ is also the largest. So the enhancement by the
ringing tail is the smallest, which yields the almost same contribution from different
/. The wave pattern in this case becomes rather complicated due to many contribu-
tions from different 7 while that for a corotating particle is rather simple. If we use
ldggléZﬁ as a criterion for the validity of our approximation where Ag5 means the
difference between ¢ of the particle at the horizon and ¢ at the infinity in‘the ingoing
Kerr coordinate, the maximum energy radiated becomes 1.54% with ¢=0.99 and L-
=2.

Scatterved cases The particle is at rest at infinity and its orbital plane is perpendicular
to the spin axis of the black hole. It is found that contrary to the Schwarzschild case
quasi-normal modes of the black hole can be excited by the particle which corotates
with the spin axis of the black hole and has sufficiently small orbital angular
momentum. A scattered particle excites the quasi-normal mode under the condition
that twice the angular velocity at the periastron is-greater than the real part of the
frequency of the quasi-normal mode.

5. Conclusion

In Table II, we show the list of energy emitted by a particle around the black hole
for various cases. The first column shows @ and L. which characterize each case.
The second column is the energy emitted by a test particle of mass x. In the third
column, the expected efficiency of the emission of gravitational waves is shown by
extrapolating the mass of the test particle # to M. We can see in axially symmetric
cases denoted as 2D, the efficiency is at most 0.1% which is surprisingly similar to the
value derived by full non-linear simulations [Smarr (1977); Stark and Piran (1985)],
while in 3D cases it can be up to 109%. From this table, it is clear that the 3D
processes should be necessary for a strong emitter of gravitational radiation. In fact
as shown by Miyama, Nagasawa and Nakamura (1986), in 3D processes such as
fragmentation, the efficiency of emission of gravitational radiation increases at least
by a factor 10 although they used Landau-Lifshitz formula to estimate the energy. It
is now desirable to construct a 3D code to estimate the energy from such a process.
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Table II.
efficiency
case AE[ (/M) pc* expected dimension Ref.
AE[E(u—~ M)
a= 0.0105 0.065% 2D Davis, Ruffini, Press & Price (1971)
L.=0
a=0 0.5 3.1% 3aD Detweiler & Szedenits (1979)
L.=39 ’ Oohara & Nakamura (1983)
(d¢p=2r)
a=0.99 0.0175 0.1% 2D Nakamura & Sasaki (1982)
Lz:
infall along
Z axis
a=0.99 0.0445 0.28% 3D Kojima & Nakamura (1983)
Lz:()
infall in
equatorial
plane
a=0.99 15 9.4% 3D Kojima & Nakamura (1984)
L:=2
(4¢=2x)

Fortunately the recent speed of super computers is fast enough to construct such a
code. As the first step of 3D code in numerical relativity, we will discuss the time
evolution of pure gravitational radiation in Part I § 5. There one can see the details
of the method of solving the initial value equations, the basic equations and the
numerical results.

One of the important results in Part I § 5 is that it is possible to trace the time
evolution of a localized wave packet accurately. We can estimate the energy flux for
low amplitude case within an error of a few per cent. This opens the possibility of
constructing a fully general relativistic code in which we can simulate any problems
in numerical relativity.
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Part 1

General Relativistic Collapse of Axially Symmetric Stars and
3D Time Evolution of Pure Gravitational Waves

§1. (8+1)-formalism and ((2+1)+1)-formalism

There are many methods of solving Einstein equations as an initial value prob-
lem. They are the characteristic initial value method, the Regge calculus and the
(3+1)-formalism. Although there has been much progress in the characteristic
methods [Isaacson, Welling and Winicour (1983, 1985); Winicour (1965); Stewart and
Friedrich (1982); Friedrich and Stewart (1983); Corkill and Stewart (1983); Stewart
(1986)] and in the Regge calculus [Piran and Williams (1985, 1986); Dubal (1986)], in
this paper we consider only the (3+1)-formalism with finite difference methods.

1.1. (3+1)-formalism of the Einstein equations

We consider a #=const space-like hypersurface 2(¢) in 4 dimensional space-
times. Let 7.,(#) be metric tensor of the 3-space X(¢) as

dlzzyijdxidrj . (11)

Now let us consider a certain point P on X (#). At P, there is a normal vector #* to
2 (t) with the normalization #n“n.=—1. We consider another space-like hypersur-
face 2(t+4t). Assume that the normal line at P intersects the upper hypersurface
S(t+A4t) at P’. Then the proper length of PP’ should be proportional to 4t in the
limit of 4¢—0 as

PP’ |=adt (1-2)

where « is called a lapse function. Next we consider a coordinate line passing
through the point P where the coordinate line is defined by a line in which the spatial
coordinates are constants. This line intersects X (¢ +4¢) at a point P”. There is no
reason to insist that the coordinate line should coincide with the normal line. So P~
is different from P’ in general. Then the vector PP isa spatial vector on X (¢ +4t)
which should be proportional to 4¢ as

(P'P")=p'4t, (1-3)

where B° is called a shift vector. From the definition of @ and £’, it is clea: that they
express four degrees of freedom of general coordinate transformation.
Now let us consider the proper distance between a point P(¢, x?) on 2(¢) and a
point Q(¢+4t, '+ dx?) on (¢ +4t). Using the Pythagoras theorem, we have
ds*=— a*dt*+ y,(dx’+ B'dt)(dx’ + p’dt)

= gudxtdx’ ©,v=0123. (1-4)
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So the four dimensional metric tensor g., and ¢’ are given by

—a*+ BB’ ; | |
gﬂu:( @t Bl 5) 1-5)
ﬂj Vi .
and
1 B
a* a*
gm/: ] S 1-6
BJ yij Blﬁj ( )
a,Z a/Z
where

Bi=yuB’ .
We next define a projection tensor /%. by
Ry = Guv + nuny
and
n.=(—a,0,0,0). ' , 1-7

Let us consider any vector field V*. Then it is easy to prove that /4. V" is perpen-
dicular to »* as

nhw VV=0. (1-8)
Thus for any tensor Tywes, B**h** "R - Tesys.. becomes a tensor on X(f).
The Einstein equations are written as

R wggﬂyze =87 T . (1-9)

where we use the units of c=G=1. Then the Einstein equations in the (3+1)-for-
malism are obtained by performing the projection of Eq. (1-9) by using »* and 2".
Multiplying #*n”, n*h*: and k*:h*;, respectively, to both sides of Eq. (1-9), we have
1) the Hamiltonian constraint equation

@R+ K*— KyK“=16701 , (1-10)
2) the momentum constraint equation

Ki,— Ki:=8x]:, (1-11)
3) the evolution of the metric tensor |

—(%KZF AP Ry + KKyy)—2aK K
— 871’a<Sz'j +%7ij(pH — Szl)> ~ 5+ B Kmi + B K+ B" Kijim (1-12)

where | denotes the covariant derivative with respect to y:; which is defined for any
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tensor 7°“+- by

T7 = T""  ahp' ) i . (1-13)
K; is the extrinsic curvature of X(#) defined by

Ki=—hiéh"nu;

————%(ﬁégjﬁm‘ﬁm)- (1-14)

K is the trace of K;; and ®R;; is the Ricci tensor of 7. ou, J: and Si; are defined by

ou=Tuwn"n", (1-15)
Ji=—Twh!n" (1-16)

and '
o= Twhh? . | (1-17)

ox and J; mean the énergy density and the momentum density measured by the normal
line observer, respectively. The original 4-dimensional ten comporent Einstein
equations are thus decomposed into four constraint equations and 6 evolution equa-
tions for Ki;.

As for T, we consider the perfect fluid as

Tw=_0+ pe+ P)uuu,+ Pgu , : (1-18)

where p, €, P and u. are the proper mass density, the internal energy per gram, the
pressure and the four velocity, respectively. The dynamical equations of the matter
are contained in the Einstein equations due to the contracted Bianchi identities as

T, U:-g—l—ﬂ—(ze,f—%aﬂe) =0 (1-19)

Let us rewrite the dynamical equation of matter by using ox, /: and S:; because in Egs.
(1-10) to (1-12), only px, J: and Si; appear for the quantities related to the matter.
For this purpose let us express 7w by os, J: and Si; as

Tyu: (h;za - n,una)(hy/?* ny%/}) Tdﬁ
= OHNpNy +]p%u+]u7lu+5aﬁhuahuﬂ . (1'20)

Multiplying Eq. (1-19) by »* and %/ with the expression of 7. in Eq. (1-20), we
obtain,
the energy equation

DT on 52 (T ouV )= — 2T P(V'+ B+ a7 PK—3% /7 T

+avy JJ" K/ (ou+P), (1-21)
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Euler equations
0J 0 oP
T;f(ﬁ]m)“*"é&ff(ﬁ]m Vh=— dﬁ“g;m“" Vy (P+ 0H>%

+ L alT e Pt o+ VI (L22)
where

Vi=a]‘|(P~+pon)—B'=u'lu’ - @)
and

y=det( 71'3') . (1-24)

We need the conservation of baryon and the equation of state to complete the system.
They are

Ti(ﬁdu"pH—a%(ﬁauop VH=0, (1-25)

au’=(P+ ou)/V(P+pu)—]J" ‘ (1-26)
and

P=P(e, o). (1-27)

The advantage of Eqgs. (1-21) to (1-27) is that by regarding « as a gravitational
potential their form strongly resembles that of the Newtonian mechanics. This is
due to the fact that the acceleration of normal line observer is proportional to the
gradient of @. This situation is similar to the one in the membrane approach of the
black hole [Thorne et al. (1986)].

There is an important relation between Eqgs. (1-21) to (1-22) and Eqs. (1:10) to
(1:12). We define a tensor A by -

AuyER;w“‘%gﬂuR_gﬂ'Tyu . (1'28)

The Einstein equations are equivalent to A, =0. The Hamiltonian constraint equa-
tion, the momentum constraint equation and the evolution equation of metric tensor,
respectively, correspond to

Ho=n"n"Au=0, | (1-29)
«=— 1" Na" Auw=0 (1-30)

and
Hep=hd'hs" Auw=0 . (1-31)

Now we assume that only the evolution equations of metric (Hw=0) and the
hydrodynamics equations (T””;UZO') hold but He#+0 and H.+0. Similar to
Eq. (1-20), we can express A as
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A#u:Huu+ %#Hu+ %qu+ %unuHﬂ . (1‘32)
From the assumption of H.=0, we have
A#y:nyHu+ ntu—f_ n;ﬂ’]/uHo . ) (1'33)
On the other hand due to the Bianchi identity and 7*.,=0, we have
A*.,=0, (1-34)
multiplying Eq. (1:34) by #»* and %*; with the expression of A, in Eq. (1-33), we have
d 5 0 ) __1 a ‘ .
( o B gt JH = =g (W HO) + aKHo (1-35)
and
d  ,. 0 > _ , op* | oa .
| (ax B2 ) Hi=aKH .+ Hi Jor + 2L F,. -~ (1+36)

Equations (1-35) and (1-36) guarantee that if Hy=0 and H,=0 at £=0, they are zero
for £>0. So if we solve the constraint equations to determine initial data at ¢ =0 and
determine the metric tensor and the matter’s density and four velocity by the evolu-
tion equations (Egs. (1:12), (1-21) to (1-27)), we can say that we completely solve the
Einstein equations (Eq. (1-9)).

1.2. ((2+ 1)+ I)-formalism for axially symmetric space-times

In an axially symmetric space-time there is a rotational Killing vector £*. We
define the norm and the twist of £*, respectively, by

AP=EuL" (1-37)
and
Q)uZEﬂupdéyéd;p . (1'38)

Geroch (1971) showed that we can divide out the Killing direction by using the tensor
Rpy=gumw—A"2E,E, similar to the projection tensor in Eq. (1-7) although &. is not
hypersurface orthogonal in general. After dividing out &. direction, %4.. becomes the
metric in 3-dimensional space-time S, where S is a quotient space by a map of the
trajectory of the Killing vector [Geroch (1971)]. The covariant derivative in S is
defined by '

DT % =hh b (T*°7) o . (1-39)
Then three dimensional Riemann tensor is related to the four dimensional one as
(S)Ryupo‘: hg{thﬁ]h{p g][(4)Rdﬂ76‘ + 2/1~2$/9; (158; 7 + ZA‘ZSJ'; déﬁ; ﬂ] . (1 * 40)

The derivative of the Killing vector is expressed by w. and A as
Eusvm g A€o’ 0"+ 207 DA (1-41)

The second derivative of &. becomes
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& o= Raovul? . - (1-42)
Using Egs. (1-40) to (1-42), we have

D)= — EuppoE’ Ra7EY (1-43)

D*(23w.)=0, (1-44)

A D DA=— (20 W’ wp— A 2R mEEY (1-45)
and

DRy =A A 000~ B0 05)+ A" DuDd+ R (1-46)

We can reexpress Eqgs. (1-43) to (1-46) using the Einstein equation as

<3)R;,¢y: (2/12)"1(6(),&&/ - hyya)pa)p) + /i_lD/.LDUA

+87( Qu =5 hl @ +17Q)) (1-47)
A D Doi= — (200w we— A (A2Q — Q)F) | (1-48)
Dipw .y =8mAemeQ’ , (1'49)
D w,) =0 | (1-50)

where
Cuo=A""E o .

@, Q. and Q.. are defined by
Q=Tw"EY,
Qu=hw&T"

and
Qﬂu - hﬂphudTpd ,

where T, is the energy momentum tensor of the matter.
Now we define a projection tensor in S as

Hao=hav+ nans , (1'51)

where #“ is a unit normal vector to #=const hypersurface 2(¢) in S. We define a
lapse function « and shift vector 7* by

ds?= hapdx®dx®= — &*dt?*+ Has(dx*+ ndt )(dx®+ 5%dt) , (1-52)

where A, B runs through 1,2. xas is defined as the extrinsic curvature of X(¢).
Projecting all the tensors in Egs. (1:47) to (1-50) by #. and Ha», we have the Einstein
equations in the ((2+1)+1)-formalism [Maeda et al. (1980)]. Before writing down the
basic equations in the ((2+1)+1)-formalism we need the definitions of various quan-
tities as
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x=xa",  AKS=—n%.,
Et=e"Hitwsd™?, Bo=n,0°1"%,
eap=n ecas , 0r=nansQ* ,
Jo=—n.Q%, H=det(Hp) ,

]A: — %aHbAQab , SA:HbAQb

SAB: HAaHBanb .

Now the basic equations are:
1) time evolution of the metric tensor

TatHAB: —2axast nanst 7814,

0
g %as ™ 7 Xasic= [ Ras+ xxas] — 2024 xcs
—ya et (xAcmC.B + XBcﬁﬁA) - C?/i_l/in AB

+aKy xan _%a’[ ecacpsE“E” —‘HAB(ECEC - B¢2>]

_87Tal|:SAB +—1“HAB(0H— SCC—;‘HZQ)} )

>
O A pAdud=— aK,?
at 77 AN — a’an ’
aif = A OK = K P (K4 ) — HA%(9aa) (35004
—a-“’A/'t-/i‘l—*lZ—a[EAEA—BwZ]

—4ra(on—Sa4+172Q)

2) Hamiltonian constraint equation

3)

XZ_XABXAB—F(Z)R:ZA_l"(Z)AA_ZXKQf_*—é“(EAEA+B¢Z)+167Tp]-1 )

linear momentum constraint equation

A ) 15— AN KS — oy + Kof) =87 n ~%B¢eCAEC ,

19

(1-53)

(1-54)

(1-55)

(1-56)

(1-57)

(1-58)
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4) “Maxwell” like equation for metric depending on rotation
DGV EY= (" (RE") s+ e nSaeocl®E)WE
+VH *%95(ai’By)—16aASAVH (1-59)
O ABoVH &)= a0 VH Bo)+ da(aEse™ VH A7), (1-60)

5) angular momentum constraint equation
(E*)a=167A], , (1-61)
6) energy equation
ool au’VH Acp)+ oa(au’VH AUep)
= — Pl o(au®VH A)+ 0a(au’VH AVH],. (1-62)
7) Euler equation |
0 AVH Ja)+ 0s(UPAVH Ja)
= —aAVH (0aP+(P+ pn)(0a)a™")

+aWH (P+ m)[%@m@ VEYC gt vcawﬂ

+aAVH A o Eat eac(2Bo V=A%V ?)] (1-63)
8) conservation of angular momentum |
WAVH Jo)+0a(U*AVH J5)=0, (1-64)
9) ' conservation of baryon number
a(au’VH 20)+ ds(UBauVH A0)=0, (1-65)
10) equation of state
P=P(p, ), (1-66)

11) normalization of four velocity

au’=1/Y1-VeVs—=V°V, , (1-67)
where

Ve=(Pton) I, VAP+ou) s
and

Ul=aVr—p*.

If we look at Eqs. (1-59) to (1-61) carefully, the general relativistic effects of
rotation can be considered as the existence of poloidal electric fields and the toroidal
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magnetic fields. The angular momentum of the matter is considered as the charge
density. The angular momentum flow corresponds to the poloidal electric current.
As the results Eqgs. (1-59) to (1-61) strongly resemble the Maxwell equations. This
situation is completely similar to the Kaluza-Klein theory. In Eq. (1-63) we see the
~ Lorentz force like term and the conservation of angular momentum (Eq. (1-64))
corresponds to charge conservation. As we will show in § 3 these electromagnetic
like fields are very useful to analyze the dynamics of rotating collapse.

§ 2. Method of determining apparent horizons

In numerical relativity it is often necessary to determine whether a black hole is
formed or not in numerically generated space-times. To this purpose the best way is
to determine an event horizon. For spherically symmetric space-times it is possible
to determine an event horizon. From the symmetry of the system a shape of the
horizon for a given time should be spherical. One can compute outgoing radial
light-ray trajectories which start from »=7; at f=14. For a given »=r,, if a light ray
which leaves »=7; at =14 goes out to infinity but one at #=#.(>ts) does not, then
the event horizon exists between #; and ¢, at » =7;. Inreality Shapiro and Teukolsky
(1980) determined event horizons for spherically symmetric collapses by using this
method. '

In spherical cases the amount of numerical data that one must keep in order to
determine an event horizon is not large. Moreover for a given ¢ and » only one
trajectory of a light-ray is enough to be determined. However for axially symmetric
or non-axially symmetric space-times the amount of data to specify the intrinsic
geometry of the space for each time ¢ is tremendously large and the memories needed
are beyond the ability of the present-day super computers. Even if we solve the
problem of the memory size we must seek many trajectories of light-rays for each
given (¢, x, v, z) because in the general space-times we do not have a special direction
like outgoing radial direction in spherically symmetric space-times.

Although the event horizon is not so useful in numerical relativity except for .
spherically symmetric space-times, an apparent horizon is useful in numerical

relativity. Let /* be an outgoing null
% for a two-surface which is spanned by a*
and 0”. Let us take another independ-
ent null vector m* so that (I*, m*, a*, b*)
becomes a null-tetrad which satisfies the

c )
relations,
l”m#:—l, lﬂau:(),
a’f‘ @ ’,
g [ﬂbu:O, aﬂbp:(), dpau:l s
f'/‘
0 m“a,=0, m"b.,=0 and b"b.=1.

(2-1)

Fig. 2-1. Small circle C on the apparent horizon
and the outgoing null /*. Let us consider a point P and a circle C
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with a small radius € on the surface. In Fig. 2-1, ¢”* and b’* are defined by
a*=ea" and b*=eb”.

Let us considef a point @ in the circle C. Now we compare the vector /“¢ which is
the vector field /* at the point € and the vector /£.o which is obtained from /*r by the
action of parallel transport along P to @ [Papapetlou (1975)]. The difference is

Olt= [ q—lF q=1".s". (2-2)
By using the null tetrad, 8/ can be expanded as |
ol*=cl*+dm"+a a"+b'b". (2:3)

Since [* is a null vector, the relation /“,./.=0 holds. Thus & should be zero from
Eq. (2:1). Now 6/* can be reexpressed by s* and t* as (see Fig. 2-1)

o1 =(as"+bt") +cl*, (2-4)

a:lp;usﬂs“ and b=/, t"s", (2+5)
where |

s*=a"cosp+ b*sing

t*=—ga"sinp+ b*coso . (2+6)
Two quantities defined by Eq. (2:5) are reexpressed as

a=Acos’¢+(B+ C)cospsing+ Dsin*¢
and

b=(D— A)cospsing— Bsin’¢+ Ccos?¢
where

A=, ,a"a” B=1[..,a"b",

C=lu;,a’b* and D=/[.,.b"b". : 2-7)

A vector 6/ “—cl * represents the rotation, the shear and the expansion of the small
circle C after a small elapse of time as

8l* —cl*=e(as”+ bt*)
=¢e(acosp— bsing)a*+ e(asing + bcos @) b*
=¢c(Acosg+ Bsing)a”+ e(Dsing+ Ccosg)b* . (2-8)

The circle C with a radius e(x*+ y*=¢®) will change its shape to an ellipse defined by

%: (1+ AdA)cosp+ BéAsing

and
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%: (14 DoA)sing+ Cdicose ,

where 04 is a small parameter along null geodesic from P. Neglecting the higher
order terms we obtain that the increase of the area is proportional to

o=A+D=1,..(a"a"+b"b"). (2-9)

The apparent horizon is defined by the outermost surface with p=0. This means that
even outgoing light rays cannot expand from the apparent horizons.

According to the theorems on black hole horizons [Hawking and Ellis (1973)], the
apparent horizon always lies inside the event horizon. Shapiro and Teukolsky (1980)
showed this is the case for numerically generated spherically symmetric space-times.
For a stationary space-time the apparent horizon coincides with the event horizon.
Thus a numerical experimental criterion for the formation of black holes can be the
existence of the apparent horizon. This has a practical meaning because contrary to
the event horizon, one does not need to know the global structures of space-time to
determine apparent horizons. So there is no problem concerning the amount of
computer memories. The only problem remained is how to determine apparent
horizons.

2.1. Spherically symmetric cases

In spherically symmetric space-times the metric is expressed in general
ds*=(—a?+ B8 dt*+ 2 8-drdt + A d*v + B?- »*(d6*+ sin®0d¢?) . (2-10)

An apparent horizon in spherically symmetric space-times is located at #» = #1or.
Then the problem is to determine the value of 7wr. In this case, we can choose /*, a*
and b” as

l"=<1/a, %—%, 0, 0> ,
a"=(0,0,1/(Br), 0)

and

b*=(0,0,0,1/(Brsinf)) . (2-11)
o is calculated as

o="1...(a"a”+ b"b")

_ 1 8Bzrzla

B%r?t ox¢
— ooy of 1 Lﬁ)z .
— 9K, +2<7 B, | (2+12)

Since K,’=K,’ in the spherically symmetric space-times, Eq. (2:12) under the max-
imal slicing condition (K" + K’ + K,*=0) becomes
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Apparent horizon

-
-

20 25 30 35 40 T

Fig. 2-2. An apparent horizon for spherically
symmetric collapse. Solid lines show the tra-
jectory of each Lagrange shell. A dashed line
shows the apparent horizon.

lK/+<1+lﬁ>=o. (2+13)

2 B or
Equation (2-13) is equivalent to Eq. (33)
in Shapiro and Teukolsky (1980).

To solve Eq. (2-12), we need only
K¢’ and B for a certain time. The solu-
tion is determined by using the interpola-
tion for Ko’ and B from discrete numer-
ical data. In Fig. 2-2 we show an appar-
ent horizon for a spherically symmetric
dust collapse under the coordinate condi-
tion of the maximal slicing and 0B/ot =0.
Solid lines show the variation of the
radius of each Lagrange shell. A dash-
ed line shows the apparent horizon.
Since the expansion is always positive at

the center, the apparent horizon appears from a finite radius (#0) as in Fig. 2-2,
although the event horizon will usually appear from the center.

2.2. Axially symmetric space-times

In axially symmetric space-times, there is a rotational Killing vector &.

Then

one of the vectors spanning the apparent horizon can be chosen as

a#:/’t—lg# ,
where
A=V ELE" .

(2-14)

Using the unit timelike normal vector of #=const spacelike hypersurface »*, we can

express the metric tensor g.. as
Juy— — npnu+5p3y+ Cl/,zay"_ bubu y

where s, is defined by

_ 1
lp= ﬁ(n#+5#) .

(2-15)

(2-16)

Then Eq. (2:9) can be written in this case as

(Kw - S#IV)(hW - SﬂSU) =0,
K,uu: - h,uahyﬁ'}’la; B

and hﬂy:gﬂu+ NpPhy ,

(2-17)

where | represents the covariant derivative with respect to /%m. K. can be
decomposed into the variables of the ((2+1)+1)-formalism of the Einstein equations

as

K#VZX#U + Aﬁla(ueu)aa)a + A_layCZUK y

(2-18)
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where
qu:HuaHuﬁKaﬂ , H#u:hﬂu—a#al/ s
Eap=N"Epapr@” , Wp= EppaplE EP 7 ¢
and
K=—n"0A=2A""KuE EY .

Using Eq. (2-18), the orthonormality relation of the tetrads and the definition of the
Killing vector, we can rewrite Eq. (2:17) as

X‘f‘A—IK_SaSﬁxaﬂ_}_ bﬁﬂbﬂSa“ﬂ_lsa/i"azo
and
x=Haux®, (2-19)

where || represents covariant derivative with respect to He. We here remark that all
the quantities appearing in Eq. (2:19) are variables in the ((2+1)+1))-formalism
[Sasaki, Maeda, Miyama and Nakamura (1980)].

To solve Eq. (2:19) we should first determine the form of #* and s”. Eight
- conditions should be satisfied by 5* and s*. They are

n#b”ZO, b#aﬂ:(), bybﬂzl,
nus” =0, sua” =0, sus“=1, sub”=0 (2-20)

and b” is tangent to the apparent horizon. We assume that the shape of the apparent
horizon is expressed by

z'=x'(r) and z*=2%1), | (2-21)

where 7 is a parameter. Using Eqgs. (2:20) and (2-21), we obtain

A B
b'=N(0, %, 0Py,

¢ c
S”ZN(O, HABéscdd%, _g¢AHA35BC%;/g¢¢>

and

dx* dx3>”2 ’ (2-22)

N= <HAB dr dr

where A, B and C run through 1 and 2. Inserting Eq. (2:22) into Eq. (2:19), we obtain
the differential equation for x*(r) as

. dx® d*x* b dx® dx® dx”(
B dr de? Bdr dr dr \

dx® dx® _ ,
dr dr =0. (2-23)

/1 1A
Fé‘lD - HCDT)

+N_1(XCD -+ ch/l_lK)
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Let us consider numerical simulations using the cylindrical coordinates (R, ¢, z).
We assume the topology of the apparent horizon is S2. We also assume inside the
apparent horizon there exists an origin £ =0 and z=0, which is usually the case if the
system has reflection symmetry about 2=0 plane. Then in general the apparent
horizon is expressed as

R=v(0)sind
and
z=7(0)cosl (2-24)

which means we adopt 8 as the parameter r. Then the first term of Eq. (2-23) is
written as

dx* &’z & <_a’L)2 2> o
VY a] dz" JF( v dez +2 a,@ +7 , ‘ \2 23)

where H is det(Haz).

For numerical simulations using the spherical polar coordinates (7, 8, ¢), we can
assume the shape of the horizon is expressed by »=#(8). In this case Eq. (2-23)
becomes

dx* d*xz® ”
€an g g —JHY dgz . (2-23)

From Egs. (2-23) and (2-23)”, for both coordinate systems adopted, Eq. (2-23) has the
form ‘

d* dr ’
where a function F' can be derived easily from Eq. (2:23). Equation (2-25) is the
second order ordinary differential equation with non-linear terms. The boundary
condition in general cases is that there is no cusp on the axis, which is expressed as

dr

g8 ——=0 for #=0 and 7. ‘(2-26)

If the system has a reflection symmetry, the boundary condition will be

dr

70 —==0 for 0=0 and /2. (2:27)

One of the methods for solving Eq. (2:25) is as follows: First we put a trial shape
r =70(0) on the right-hand side of Eq. (2-25), and we solve Eq. (2:25) by using the
interpolation for Has, 4, ¥ and xas under the boundary conditions (Eq. (2-26) or (2:27)).
Next, inserting »=7(68) thus obtained into the right-hand side of Eq. (2:25), we
determine 72(6). We repeat this procedure until the iteration converges.

The above method has in practice two problems. The first problem is that under
the boundary condition of Eq. (2:26) or (2-27), Eq. (2-25) for a given source term (the
right hand side) has no solution or no unique solution. Integrating both sides of
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Eq. (2-25) from 0 to x(or 0 to n/2), we have
b 4 /2
[[Fas=0 or [ Fas—0. (2+28)
0 0

However this relation is not guaranteed in the course of iterations or for the trial
value of F. Even if Eq. (2-28) is satisfied, we can add an arbitrary constant Co to the
solution which cannot be rejected by the boundary conditions for the given . The
solution for this difficulty is to add a certain term to both sides of Eq. (2-25) as

2y

W—FwoZr:SEFerozr, : (2-29)
where wo is a constant. The constant wo should be chosen so that the solution of
Eq. (2-29) with zero source term S under the boundary conditions does not exist. For

example if we take wo=2, then the general solution without the source term is

r=Cicos(V28+6) . (2-30)

In order that d7/df=0 at 6=0, 8, should be 0 or n. Then dr/df+0 at 6=r/2 or .
Thus C: should be zero.

The second problem is the numerical one. If one uses a simple non-linear itera-
tion procedure mentioned above, that is,

d?*vn
do?

Adrn—
do

tolra=F( L v 0, Has A 6 2e0), =123, (2:3D)
where the suffix # means the »-th iteration, then the speed of convergence is usually

too slow or the iteration diverges. One of the methods to speed up the convergence
is over relaxation or under relaxation as

)
TIME= 1. §6E+81 %-{— W27
2 . yee e o OyAX= §.125E4P1  VELMAX= 8.372E+81,
dr
8. =S< dr;)w , "new, 6, HAB, /1, K, Xcp ),
. n=1,2 3 (2:32)
and

Tnew=7"n-1+(1—79)7n-2,

where 7 is a constant.
In Fig. 2-3, we show an example of
: the apparent horizon thus obtained for
: general relativistic rotating collapse.
% Eppley (1977) and Miyama (1981) also
etermined apparent horizons for axial-
Fig. 2-3. An apparent horizon for axially ;j € . ppare .. 1 a
symmetric collapse. Solid lines show equiden- y symmetric I?ure gr-av.ltatmna Wave
sity contours. Arrows show velocity vector. problems by using a similar method for
A dashed line shows the apparent horizon. non-rotating case.
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2.3. 3D cases

In order to avoid confusion in notations we assume the apparent horizon is
spanned by «* and v* instead of ¢* and b”. In this subsection, we do not assume any
symmetries of the system, that is, the problem is to determine the apparent horizon in
the general #=const space-like hypersurface 2(¢). Then the zero expansion condi-
tion of Eq. (2-17) can be written as

(Kap = Saip)(u®u®+v%0°%) =0, (2-33)

where @, b run through 1, 2 and 3. Using the orthonormality (s.u%*=s,0%=0), we can
rewrite Eq. (2-33) as

wubu’se+ vHv°se=Kaps®s®*— K . (2-34)

As an apparent horizon is a two-surface, it can be expressed by two parameters € and
T as

x=x%e, 1), a=1,23. (2-35)
Then
_o_ 0 _,_ 0x” )
ae=ac and 7= i (2-36)

are two independent vectors tangent to the apparent horizon. In order to obtain
orthonormal basis «¢, v* and s from #“ and ¢, we first set

W' =N, (237)
where

Nu=(@"da)"" .
Then v* can be defined by

0¢=N(0°—(u®Ds)u?), ‘ (2-38)
where

No=(00a—(u0a)*)"""2.
Sa is easily defined from #? and v* by using Levi-Civita tensor asc as

Sa= Eanctd*V° . . (2-39)

Inserting Eqs. (2+36) to (2-38) into Eq. (2:34), we have[Nakamura, Kojima and Oohara
(1984)]

x® | e dx® dx‘ > ( x® | g 0x® ﬁxc)
[A< ez Tt gege )T o T,

_ >’z « 0x° 0x°
2C< k==

o se=(Kans®s"K)/ N2V, (2-40)

where
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A=0%,, B=1i%t, and C=#"7,.

Now we assume that the apparent horizon is topologically S? and adopt the
spherical polar coordinates (7, 8, ¢). In this case, the apparent horizon can be
expressed by

r=7(0, ¢). (2-41)

We can assign two parameters € and 7 to § and ¢, respectively. Then %%, v* and s*
are given by

ﬁa:<a_7’ 1, 0>;’ 5(1:(& 0 1>

ag) a¢; ’
and
Sa:ﬁNuNZJ(l, “g—g) _g_;) s (2.42)

where y=det(y4). If we insert Eq. (2-42) into Eq. (2-40), we will obtain a compli-
cated non-linear equation with respect to 6°#/d6? 8*r/d¢”, 3°7/000¢, dr/08 and or/de.

Is it possible to use the same method as in 2D cases? First we can assume the
shape of the apparent horizon »=»(8, ¢). But how can we obtain »(8, ¢) using
Eq. (2-40)? If we expand (6, ¢) as

(0, 9)=2qn(0)e™, (2-43)

we will have the simultaneous second order differential equations about g»(#). Then
the next problem arises. What are the boundary conditions for ¢»(8) at 6=0 and #?
This is not trivial because contrary to the axially symmetric cases, §=0 and 7 have
no special meanings in 3D cases.

Let us assume the apparent horizon is expressed as

f(x, y,2)=0. (2-44)

Now the function f usually has a Tayler expansion as

a, b C

=B Aetier (2:45)

where Ag’s are constants. Then the same f can be reexpanded by using the
spherical harmonics Ym(8, ¢) as

=27 fm(r?) Y0, ¢), | (2-46)

where fin is obtained from Aasc. Since the apparent horizon is defined by /=0, from
Eq. (2:46) it can be expressed as

Vzgzdzm Ym(@, ¢) , - (2’47)

where aum’s are constants. Now it is possible to express Eq. (2-40) as
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oy or 1 &
06% te 6W+ sin’8 9¢*

2
F(& Fr dr Jr

2009 09”30 dp T T Kav, I bc)’ (2-48)

where the function F' is a non-linear function about the arguments. Multiplying both
sides of Eq. (2-48) by Y#(6, ¢) and integrating over all solid angles, we obtain

Gin=— z<z+1) Sy [ YaFdR (2-49)
A method of solving Eq. (2-48) is the following: We use the integral form of
Eq. (2-49). We first set am=a' with the &% being trial values. We carry out the
integration of the r.h.s. of Eq. (2-49) and obtain ain except for /=m=0. For /=m=0,
Foo(=/ Y FdR2) can be considered as a function of ao for a given a%y with /0 and
m=+0. We determine afy as a root of Fo(aw)=0. Next, inserting a{} into the r.h.s.
of Eq. (2:49) again, we obtain af. We repeat this process until the a% converges.
In 3D cases, we also use under or over relaxation explained in 2D cases. ,
We apply the above method to four examples. Here, we consider time symmetric
and conformally flat initial data with a conformal factor ¢(», 8, ¢). In numerical
calculations am’s are computed up to /=20 with m varying from —/ to /.
(1) The Schwarzschild metric in the 1sotrop1c coordinates
The conformal factor ¢ is given by

p=1+1/27) ' (2-50)

in units of c=G=M=1. The apparent horizon is located at »=1/2. Although the
metric is spherically symmetric, we apply the above method to determine the apparent
horizon as if the metric were is nonspherical. In Fig. 2-4, we show initial guesses by

Fig. 2-4. Apparent horizon of Schwarzschild Fig. 2-5.  Shifted Schwarzschild black hole. Dash-
metric. Solid lines show initial trial shapes ed lines show unshifted Schwarzschild black
and dashed lines show the final results after the hole. Solid lines show apparent horizons of
iteration. the shifted black hole determined numerically.
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solid lines and the determined shapes of the apparent horizon by dotted lines. The
final results agree with the analytic solutions within the relative error of 107°%.
(2) Shifted Schwarzschild metric

¢ is given by
¢=1+1/(2R) (2-51)
with
R=[»*+d?*—2rd(sinfsinacos(¢p— B)+cosfcosa)]"'?,

where d, @ and B are constants. Equation (2-51) represents the Schwarzschild metric
centered at »=d, §=a and ¢=4. The numerical results with d=0.2, = —10.79 and
B8=1.26 are shown in Fig. 2-5. Solid lines show numerical results and a dashed line
shows the unshifted apparent horizon. We confirmed that numerical results agree
with analytic ones within the relative error of 107°%.
(3) Non-axially symmetric distribution of dust

Let us consider a conformal factor ¢ given by

1 r/To e 2 2 r/ry e 2
=1t [ et B [T e RS Aan Va0, 00, (2:52)

where 7, 71 and Az are constants. Using the Hamiltonian constraint equation with
zero linear momentum of the matter, the energy density ox is given by

= 1 1 —(r/70)2 \/7?7’0272 —(r/T1)? 5 } .
OH 87Z'¢5[2\/E7’028 + 712 e Re(fﬂZ:OAZmYZm(H, ¢)) . (2 53)

In Fig. 2-6, we show the apparent horizon for 7=0.1, 1=0.08, A2=0.08, A= —0.05z
and A2=0.07—0.01;. Although the deformation from the sphere is not too large in
this case (up to 1%), the shape is clearly three dimensional.
(4) Three black holes
~ ol - > Time symmetric initial value prob-
lem for systems with N-black holes was
solved by Misner (1963) and Lindquist
(1963). An apparent horizon in the case
of two black holes has been studied by
many authors [Gibbons and Schutz
(1972); Cadez (1974, 1975); Smarr, Cadez,
Dewit and Eppley (1976); Bishop (1982)].
@ AT T Here we consider the metric for three
' : : : black holes. Let a; and ¢: (i=1, 2, 3) be
the radius and the center of each black
| hole (throat), respectively. Then the

c/u

505 F
. 500,

- 485 0 : ﬂ : 2w
' P conformal factor ¢ is given by
Fig. 2-6. Apparent horizon for a deformed lump of &(7, 0, )=S[11(r, 6, ) (2-54)
dust.

and
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Fig. 2-7. Apparent horizon for three black holes. Small circles show each black hole.

S:[_*—z,]il]iz“']iny ‘ (2.55)

where 7 is the identity operator and J:
(=1, 2, 3) is the operator defined by

_ i diz(r— z')
L= |r—a—cz-| f(T;’c%+ ci> .
(2-56)

The summation X" in Eq. (2:55) extends
over all sequences {7, 72"-*7»} of length
n=1, 2--- subject to the restriction 7x+1
#+1,. Figures 2-7 and 2-8 illustrate the
apparent horizon for the metric consist-
ing of three black holes. All the radii of
black holes (throats) are the same value
a and centers are located at the vertices
of a regular triangle with the length of
sides 6.2a. In this case there can be two
kinds of horizons. One envelope all
black holes. The other coincides with
each throat. The latter always exists and is shown by small circles in Fig. 2-7. This
is because the conformal factor ¢ has the boundary condition on the z-th throat which
coincides with Eq. (2-48). On the other hand, the former does not exist if the distance
between the throats (d) is large. If d <6.2a for a regular triangle case, both kinds of
horizons exist while for d >6.2a we cannot find the horizon enveloping all black holes.

As the results of this section, it seems possible to determine apparent horizons in
general space-times and to know whether a black hole is formed or not. In reality as
will be shown in the next section, many apparent horizons are determined for
numerically generated axially symmetric space-times.
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Fig. 2-8. Birds-eye view of the apparent horizon of
three black holes.

§ 3. General relativistic collapse of axially symmetric rotating stars

Axially symmetric stationary solutions to Einstein’s vacuum field equations have
been studied well. On the assumption that all singularities in space-time are hidden
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behind the non-singular event horizon [Cosmic censorship hypothesis Penrose (1973)].
Israel (1967)-Carter (1971) theorem tells us that solutions form discrete continuous -
families, each depending on at most two parameters. Robinson (1975) proved that the
Kerr family with || < M is the unique one of the Israel-Carter theorem. On the other
hand if the above assumption on the location of singularities is not adopted, many
other stationary solutions have been found [for example, Tomimatsu and Sato (1973);
Kinnersley and Chitre (1978); Hoenselaers, Kinnersley and Xanthopoulos (1979);
Kramer and Neugebauer (1980); Yamazaki (1980)].

Roades and Ruffini (1974) as well as Chitre and Hartle (1976) showed that no
- equilibrium model of neutron stars exists if the mass is greater than 3M,. There are
several candidates of black holes of mass =10M, such as Cyg X-1, LMC X-3 and
A0620-00 [Hayakawa (1986)]. One of the strong arguments for these compact objects
being black holes is that the mass of X-ray sources is greater than 3M,. There is also
the other class of black hole candidates of mass >10°M, such as our galactic center
[Becklin (1986)] and galactic nuclei of NGC6251 and M87 [Young et al. (1978); Young
et al. (1979)]. In this case, no strong arguments for these objects being black holes
like galactic X-ray sources seem to exist except for time variability as small as
minutes. For example, there is a possibility that our galactic nucleus is a young star
cluster system [Becklin (1986)]. However there is a strong theoretical argument for
black holes. The ultimate fate of the dense stellar system proposed by Spitzer and
Saslaw (1960) as well as Spitzer and Stone (1967) will be amorphous supermassive
cloud which will eventually collapse to a black hole [Begelman and Rees (1978)].
Hoyle and Fowler (1963) considered a supermassive star as a model of quasars and
active glactic nuclei. However the binding energy of the spherically symmetric
supermassive star (=10°M,) is very small (=1M,c?) and such a star begins to collapse
by the general relativistic effect for R<3.4X10"cm. Rotation and/or magnetic fields
can stabilize the supermassive stars for a while. But after losing the angular
momentum, the magnetoids [Ozernoi and Usov (1973)] and the spinors [Morrison
(1969)] will eventually collapse. ‘

If the cosmic censorship hypothesis [Penrose (1973)] is true, all the black holes in
galactic X-ray sources, quasars and active galactic nuclei should be Kerr black holes
with a<M irrespective of initial conditions before the collapse. Let us define non-
dimensional angular momentum of the system ¢ by

GM.C>’

c? (3'1>

a=J/( M-
where M and J are the gravitational mass of the system and the total angular
momentum, respectively. ¢ corresponds to @/M in the Kerr black hole. Let us
consider a Newtonian system with size R and mass M. If the system is near the
rotational equilibrium, the equilibrium condition becomes

GM _ J?

RZ —MZRS . (3'2)

From Eq. (3-2), J is given as
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J=vGM°’R . (3-3)

Then q becomes

=R /(). (3-4)

As R>GM/c?*=15km(M/M,) for the Newtonian system, ¢ is much greater than
unity if the effect of rotation is important for the equilibrium of the system in a
Newtonian stage. In reality, the value of ¢ of massive stars (M =10M,) which are
responsible for the formation of black holes and neutron stars is much greater than
unity [de Felice (1986)]. This is because the rotational velocity of massive stars (100
=400 km/s) is on the order of escape velocity (=600km/s). The sun is a slow rotator,
that is, the rotation velocity is 1km/sec. But even for the sun the value of ¢ is 0.18
which is not so small in a general relativistic sense. The value of ¢ of usual pulsars
is very small (=£107%). But the present value of ¢ should be much smaller than that
at the formation due to the braking. In reality for a millisecond pulsar which has a
small spin down rate due to the weak magnetic fields (=10° gauss) the value of ¢ is
0.23 [Backer et al. (1982)]. This argument tells us that there is no reason to believe
the collapsing stars should have the value of ¢ smaller than unity.

Let us consider the general relativistic collapse of a core of the evolved star of
mass greater than 3M, or a supermassive star of mass greater than 10°M,. If the
system is spherically symmetric these stars become black holes definitely [May and
White (1966); Matsuda and Sato (1969)]. However if they have the angular
momentum with ¢ greater than unity, what happens? If all the systems collapse to a
single one, the angular momentum is too large for the cosmic censorship hypothesis.
One of the main subjects of this section is to answer this question.

3.1. Buasic equations and basic variables

We adopt the ((2+1)+1)-formalism of the Einstein equations shown in § 1 with
zero shift vector (»*=0). In this formalism the Einstein equations become

aOHAB: —Za’XAB , (3‘5)

Ooxxas=a(PRas~+ xxap) —2axa"xcs— ayays— @A Ayay s+ aKo® Xas

__1'"0'[€CA€DBECED - HAB(ECEC - prz)]

2
—‘871'&[5/13+éHAB(.OH_SCC_)\ZQ)} , (3'6)
A= — arK,® (3-7)

00 K" = CKKJ(KJ’ + X) — HAB(aAa)(aM)/i"l

— @40 1 =L a(BaE*— By?)—dnalon— S4' = 17Q), (3-8)

P Ay L O P91 3 9 fo—i—%(EAEA + B +16701 , (3-9)
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KR 15— 3 OaD) K = 0+ Ko ) =87 s~ B+ ccaBE° (3-10)

o(X2VH EY)=VH &*%9s(aA*B,) —167aASAVH |, (3-11)

0o(BovH A7) =0a(aEse™VH 37") (3-12)
and ’

(/iZEA) [|A=167Z'/i]¢ . (313)

We assume the perfect fluid for 7., as
Tw=(0+eo+P)uuuuy+ Pgu , (3-14)

where p, € and P are the proper mass density, the internal energy per gram and the
pressure, respectively. We use the following form of the hydrodynamics equations as
i) energy equation '

ool au’VH Ape)+ oa(au’VH ApeU*)
= — PlaauVH D)+ dalau® VHE AUM] (3-15)
ii) Euler equations

0(AVH Ja)+ 0s(AVH JaU?)

=—aAVH (0P +(P+ pn)(Ouc)a™) + aAVH (P+ OH)%aAHBC VEye©

+aAVH 27 ol Eat €ac(2Bo VE—A72e%0p2- V)], (3-16)
iii) conservation of angular momentum |
W(AVH Jo)+ 3s(AVH J,U®)=0, (3-17)
iv) conservation of baryon number
oo au’VH 20)+ ds(au’VH ApU*?)=0, (3-18)

v) equation of state
P=P(p, e), (3-19)

vi) normalization of four velocity

au’=1/V1-VsVE-V,V*, | (3-20)
where |

Vi=(P+ou)'J?, V*=(P+ou)']* (3-21)
and _

Ut=al*. (3-22)

We adopt the cylindrical coordinates (R, ¢, z). We assume the system has
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reflection symmetry about the 2=0 plane.

We first argue the regularity of the metric tensor on the axis (R=0). Let us
consider a point on the axis. It has a definite coordinate in (x, v, z2) but many
coordinates in (R =0, g=arbitrary, Z). This means there should be some relations
among metric tensor in (R, ¢, Z) coordinates to guarantee that the coordinate point
on the axis is really one point in space. To obtain these relations we perform the
transformation of the metric tensor from (R, ¢, Z) coordinates to (x, v, z) coordinates
as

2 2
Yax ™ 7RR—].%+ ?"W’%_ 27R¢% ) (3 . 23)
y? x’ xy |
Y= YRR pr T 7¢¢W+27’R¢—1§, (3-24)
2__ .2
Yy = VRR%_ 7’¢¢%+ 2 7R¢% ) (3-25)
Vrz= ?’RZ%* ?’Zw"]%% (3-26)
and
Yyz= ?’RZ%‘*‘ ?’qu% . (3 . 27)

Since 7Yrr, Y&z, Yre, Yoo and vze do not depend on ¢ from the axial symmetry, in order
that Yz, 7wy, Yzv, Yzz and 7y have definite values on the axis, that is, in order that the
values should be independent of ¢ on the axis, the following regularity condition
should be satisfied for K—0 as

e = Yoo/ R*=A*[R? (3-28)
YRR, (3-29)
TRe <R (3-30)
and
Y20 R (3-31)
From the reflection symmetry, yzz and yz, are written as
Y Z, , (3-32)
and
yooxZ for Z-0. (3-33)

From Egs. (3:28) to (3:31) and the definitions of E¥, EZ and B,, we have regularity
conditions for “electro-magnetic” like fields as

ERcR?, | (3-34)
E*x<R (3+35)
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and

ByocR?. | (336)
From the reflection symmetry, we obtain

EfecZ | (3:37)
and

Boo<xZ for Z-0. (3-38)

As for the matter variables, we have the transformation for the velocity as
Ve= Vi~ Ver (3-39)
and
Vo= Vet Vopor . (3-40)

From Eqgs. (3:39) and (3:40), V& and V, should behave as

ViR (3-41)
and

VexR?* for R-0. (3-42)
From the reflection symmetry, we have

ViexZ for Z-0. (3-43)

Now we use the following basic variables to guarantee the regularity conditions
and the reflection symmetry as

B=A/R, a=(/Hw —B)/R*, C=Hw/RIZ, F=VHx,

ki =" — K IR*, ki =xdIRIZ, K/=yx/,

e"=E*IR*, ¢’=E’/R|Z, b,=B./R*/Z, #*=3%*R,

7°=9*1Z, Qe=au’BVH p, h=1+e+Plo, au’=BVH (ou+P)/h/Qs,

Qu=BVH QbR , Q:=BJH]Q:/Z, 0=BJI J,/Q:R",

VE=VER and V?=V?Z. (3-44)
Every regularized variable defined by Eq. (3-44) is a function of R? Z? and ¢t.
Therefore we use z(=R?) and y(=Z?) as independent variables instead of R and Z.

By this choice of independent variables, the accuracy of the finite difference becomes
better because every quantity has the form

Q=Qot Quz+ QL+ (3-45)
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near the axis. If we use R as an independent variable we can guarantee only up to
R? term while in x coordinate up to R*(=xz?) term is included in the usual second order
finite difference. Moreover in R coordinate the basic equations include terms as

1 0Q .
PR (3-46)
which has an ill behavior near the axis. To write down basic equations by using
regularized variables is rather tedious but straightforward.
Basic equations for fluid dynamical quantities have the form as

00Q=220QUR) +2vo,(QU?*)+ S , (3-47)

where S is the source term for Q. We use a donor cell type finite difference for
advection terms. For the metric quantity, the basic equations have the form as

0Q: < ’Q, Q; °Q;, 9Q; 0Q;, > .
ot O\ o Gmoy vt o gy Y T)s (3-48)

where @); is an each metric variable and S; is the source term for ;. We use the 3-
point finite difference for spatial derivative except for 9Q/0xdy to Which we use 4-point
one. However the system becomes numerically unstable on the axis. So we add
Friedrichs-Lax type viscosity terms to Eq. (3-48) as

0Q: _ i 0" .

where C; and Cy are constants. Viscosity terms go to zero in the limit of 4dx, 4y and
At—0. In our numerical method we do not solve the constraint equations (Egs. (3-9),
(3-10) and (3-13)).

3.2. Imitial conditions

We adopt the conformal approach of O’'Murchardha and York (1973) to solve the
initial value equations. We assume that the initial 3-space metric is conformally flat

v =" (7i)nat . (3-50)

We also assume that the trace and the transverse-traceless part of the extrinsic
curvatures are zero. Then the extrinsic curvatures (K;;) can be expressed by a 3-
space vector (W%, W%, W?) as

K" =—§~{w’e + 420, w" — w? — 2ydyw*} , (3-51)
KZZZ%{2wZ+4y8wa —QwR — 228, (3+52)
K;o“’:%{wk — 220w — w? —2ydw?) , (3-53)

RZZZ(awa+axwz> , (3'54)

K*=2Rd.W?, (3-55)
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and
KS=2723,W°*,
where
wf=WZEF/R and w?=W?*/Z.

Then the initial value equations become
i) the Hamiltonian constraint equation,

4(0xP + X0zzP) + 20y +430py
=—21(oup®) ¢~ — P2 {x(0:W*)*+ y(3, W*)*}
— 5 B UL+ EL P+ (K + 22y (Rl V)
ii) the angular momentum constraint equations,
(842420 10:0)0: WP+ 4200 W+ (2+24vd™0,) 0y W+ 430y, W?
=8702Q,/(BVH ),
iii) the momentum constraint equation,
(16x/3) 0zt + 4 y0yyw® +(32/34+ 322471 020) Dt ®
+(2424y¢710,0) HwE +8¢ 10 pw*

o (2134 2587 000" + 8987 (Bu) 107)

+8¢7' 0xpw’ +871QrQs/(BVH )
and
420z:w% +(16/3) vOyww? + (4 + 24 20:¢) O ?
+(8+32v¢710y0) yw* + 16 dypw?

4

- —%xaxywﬂ' 4162613y butw —( :

+24x¢‘181¢>8yw’?

+16¢ 7' dypw” +87Q2Qs/(BVH ) .
The asymptotic behaviors of ¢, w®, w?, and W* for » =0 are given by
p=1+Ci/r,
We=Cu/r®,
w*=Cs/r’*— C3R*/7°/2)
and

w?=Cs[r*+ C2Z°*+R*)r*/2,

39

(3-56)

(3-57)

(3-58)

(3-59)

(3-60)
(3-61)
(3-62)

(3-63)

(3-64)
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where Ci, Cz, Cs and C. are constants. Equations (3:57) to (3-60) are coupled non-
linear elliptic type equations under the boundary conditions of Eqgs. (3:61) to (3-64).
The method of solving these equations for given ox, 2, @z and @ is as follows: First,
we assume ¢=1, w*=0, w?*=0 and W?=0. Next we consider Egs. (3:57) to (3-59) as
the linear elliptic type equations for ¢, w®, w” and W¥, respectively, and solve them
iteratively for given source terms (right-hand sides) with Robin boundary conditions,
that is,

P=Drk=0, S0,

0Cs 9Cs 0C,
oR’ 0Z’ OR

3Cs _
oZ

0.

and

Inserting thus obtained ¢, w®, w” and W? to the right-hand sides of Eqgs. (3-57) to
(3:60), we solve the elliptic equations again. We repeat this procedure until the
solutions converge. A grid point is determined by

$i+1—.7)i:1~4(1'i_37i—1), 1=1,2,-
"~ and |
yj+1-—yj:1.4(yj—yj_1) , J=12, -

The number of grids is typically (28x28). Some of the models are calculated by
using finer grids (42X 42).

3.3. Collapse of rotating stars of wmass 10M,

i) Initial conditions
We use the following initial condition :

on= (272’7’0)—3/2€Xp< —%)/gﬁﬁ

Qr=Qz=0, ]¢=0H!20€>§p<—2—‘fg’7>x,

C=a=0, B=F=¢, K=k =ki’=K/=0,

by=0, e*=—4/F0w’, ’=—4/pw’
and

x=R?, y=2%, (3-65)
Wheré 70 and £ are constants. As an equation of state, we use
%)—,05 for p< p*=3Xx10"g/cm?,
P=

(P_.O*>€+%p*6 for o> p*. (3-66)

Equation (3-66) means that for o< o* the pressure is determined by degenerate
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leptons. For p>p* the nuclear force is taken into account by the first term in the
expression of P. For p- o0, the equation of state becomes a vector meson dominant
model of the nuclear force and the velocity of sound approaches the light velocity.
So in the sense we will use the hardest equation of state. Initial distribution of the
internal energy per gram ¢ is taken as

e=Kp'", (367

where K is a constant.

The reason why we do not give ox but pou¢® as an initial condition is that if we
give pu then the equation for ¢ (Eq. (3:57)) becomes essentially the polytropic
equation with index 5 which is unstable for small perturbations since N=5 corre-
sponds to y=6/5 and the system with y<4/3 is gravitationally unstable.

Once the solution ¢ is known, p is related to o, &, P and ¢ as

o=pus(1—pu/(on+ P)Q’*exp(—x/r®)x/¢*) /(1 +e) . (3-68)

We should solve Egs. (3:66) to (3:68) to determine o for given px and ¢. This is so
even for ¢ >0 if we use an equation of state like Eq. (3-66). However if P=(I"—1)pe,
h is known directly from €. Then au® is given by

a= 1+ LD (3-69)

Inserting Eq. (3-69) to the definition of Q», we have o without solving simultaneous
equations.
Units of mass, length and time are taken as

M=10 M, =2X10%g ,
L=GM/c*=1.5%X10°cm
and
T =GM/c*=5X10"sec . (3-70)

Fach model is characterized by three parameters 7, £ and K. In all the calculated
models, 7o is taken to be 1.5. Instead of £ and K, we define more physical param-
eters U and J. The gravitational mass of the system M, is determined by the
asymptotic form of the conformal factor ¢ as

b=1+ 1;49 for 7 -0 (3-71)

The total mass of the system is given by
My=2x | ["QuRARdZ . (3-72)

Equation (3:72) shows that €, is the mass density per unit coordinate volume. We
define the total rotational energy FEr. and the total internal energy Ein at =0 by
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Eo=r [ [ Qu(au’~1)RdRdZ - (373)
and
Em=27 [ . ﬁ “Qu((ar®) e+ Plp)— Plojau®) RARAZ . (3-74)

We define the gravitational energy FEgrav by
- Egrav=Ms+ Erot+ Ent— M, . (3-75)
Then U and J are defined by
U=FEmn/Egav and J=Ero/Egrav . | (3:76)

ii) Coordinate conditions
As we take 7* to be zero, the coordinate line coincides with the normal line of
t=const hypersurface. As for @, the maximal slicing condition is given by

(3)4(1/:[477(.0H + Smm>+Kinij]aESmax(R, Z)a/ . (3‘77)

We solve the above elliptic type equation at each time level. The important charac-
teristic of the maximal slicing is the singularity avoidance nature [Smarr and Eardley
(1979); Nakamura et al. (1980)]. We shall also use another time slicing called the
hypergeometric slicing. « is determined by

%’a% 27?7;—&'(7’): Vesech®(dr)a(r) , (3-78)

where Vo and d are free parameters. The boundary conditions of Eq. (3:78) are

A (3-79)
and

a=1+const/r  for r—>oo, (3-80)
Then the solution becomes '

a={AF(7,8,1, u)+ B(F*(y, 6,1, u)+ F(7, 6,1, w)ln u)}/r , (3-81)

where
u=e ¥ /(1+e %), y+o=1, yo=Vo/d?,

_ I+ (o+n)l(e) u”
F(r, 8, 0= 2 PO (o) (e b n) nl

F*(y, 8, &, u)=0,F+ 0sF + 0. F

F*(y,6,1,1/2)= F(y, 6,1,1/2)In2)
F(y, 5,1,1/2)2d |

P

and



Part I  General Relativistic Collapse of Axially Symmetric Stars 43

B=-1/(2d) .

If Vo and d are properly chosen, the hypergeometric slicing is shown to mimic the
maximal slicing for spherically symmetric collapses. One of the methods to deter-
mine Vs and d is

d=C/DXln 2,
Vo=CXd,

c:[ [ Snex(R, 0)dR+ [ Snax(, Z)a’Z}/Z
and
D= [ [ Snax(R, 0)RAR+ [~ S0, Z)Zdz] /2.

where Smax is the source function used in the maximal slicing. To determine « in the
hypergeometric slicing, we do not need to solve the elliptic type equation. Thus there
is a possibility that it is useful even for three dimensional problems.

iii) Numerical results :

Initial parameters of each model are shown in Table III-1. Since each model is
characterized mainly by the value of ¢, we use ¢ as a name of each model. First we
show the conservation of the local angular momentum because if the angular
momentum is transferred artificially by the numerical effect, it is known that the
results will be altered even qualitatively [Norman, Wilson and Barton (1980)]. We
define the angular momentum spectrum M (/) by

M(Z)=27rl§lQbRARAZ, (3-82)

where / is the specific angular momentum of the mass element. (/) means the total
mass of the system with specific angular momentum smaller than /. As we assume
that the system is axially symmetric the angular momentum of each mass element
should be strictly conserved. This means that M (/) is time independent. Figure 3-1
shows M(/) for C64, with 42X 42 grids. Open circles show M(/) at t=0 and lozenges
do M(/) at t=12.4 when an apparent horizon is formed. We can see the local
conservation of the angular momentum is well. ;

In our method of numerical calculations, constraint equations are not solved.
Thus they can be used to see the accuracy of numerical calculations. Figure 3-2
shows the accuracy of the constraint equations at the center of C64. Since xas is
determined by the second and the first derivative of the metric tensor, the accuracy of
the momentum constraint equations is essentially that of the third derivative of the
metric tensors, which is not guaranteed in our finite difference method because we do
not use equal spacing grids [Choptuik (1986)]. Figure 3-2 shows that the accuracy is
at most 209§ or so at the time when the apparent horizon is formed. Therefore it can
be said the accuracy of the numerical calculation is rather good.

Numerical results are summarized as follows. For slowly rotating models, for
example, C32, the distribution of o and &, becomes oblate shape as the collapse
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Table III-1. Initial parameters for collapse of rotating stars of mass 10M,. ¢ is the non-dimensional
angular momentum. U and J are Eint/Egrav and Erot/Egrav, respectively, where Eini, Erot and Egrav

are defined in the text.

Model Name q U J Apparent Horizon?
C137 1.37 0.25 1.56 NO
C109 1.09 0.23 0.79 NO
C 95 0.95 0.23 0.55 NO
C 36 0.86 0.21 0.45 YES
C 80 ©0.80 0.21 0.36 YES
C 64 0.64 0.20 0.22 YES
C 56 056 - 0.20 - 017 YES
C 48 0.48 0.20 0.12 YES
C 32 0.32 0.20 0.05 YES
100
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Fig. 3-1. The specific angular momentum Horizon
spectrum for C64. The quantity M(/) is the d ' b t
0 5 10 15t

total mass in the star with specific angular
momentum less than or equal to /=R%Q.
Open circles are M(/) at t=0. Lozenges are
M(l) at t=12.4 when an apparent horizon is
already formed.

Fig. 3-2. Accuracy of constraint equations at the
center for C64. An arrow shows the time
when an apparent horizon is formed. We can
see accuracies are 20% or so at that time.

proceeds. An apparent horizon is formed and matter is swallowed into the rotating
black hole completely. In this case the effect of rotation is only to deform the matter
distribution. For rather rapidly rotating model, for example C80, the shape of @, is
disk like (Fig. 3-3(a)) but there appears a ring like peak of the proper density o
(Fig. 3-3(b)). At this peak “electric” field E4+E* is very large and vH takes the
minimum. The “electric field” E4 is created by the “charge” density /, from Eq.
(3-13). When the shape of the star becomes oblate, a ring-like peak of the “charge”
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density J, will appear because J, is zero at the origin. This peak will make a
ring-like peak of E4E*. The increase of E4E4 will cause the increase of y from the
trace of Eq. (3:6). If x increases then vH will decrease from the trace of Eq. (3+5).
Thus this ring-like peak of the proper density comes from the relativistic effects of
rotation and is expected to develop a ring-like singularity which is inside the apparent
horizon (Fig. 3-3(b)). For rather rapidly rotating model, for example C95, no appar-
ent horizon is formed. Q. shows a central disk plus an expanding ring (Fig. 3-4).
For very rapidly rotating models, for example C137, @» shows a central disk plus a
fast expanding wide ring (Fig. 3-5). In this model also, no apparent horizon is
identified.
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Fig. 3-3.(a) Contour lines of @5 for C80 at {=12.0.  Fig. 3-4. (a) Contour lines of Q, for C95 at #=12.2.
Each line corresponds to Q»=(Qs)max*10""* Each line corresponds to Q»={(Q»)max*107%2
where (Qs)max=452-10"* for ==1,2,, 11 where (Qu)max=2.77-10"% for n=1,2, -, 10.
Arrows show vector (/4/@s). The apparent Arrows show vectors (J4/@s).
horizon is shown by the dashed line. (b) Contour lines of proper density (o) for C95
(b) Contour lines of proper density (o) for at t=12.2. Each line corresponds to
C80 at t=12.0. Each line corresponds to p© 0= Pmax*107""? where Emax=1.05-10"" for n=1,
= Omax* 1072 where Omax=8.59+10"2 for n=1, 2, 2,:-,12.  Arrows show vector £

+,11. The apparent horizon is shown by the
dashed line. Arrows show vectors E*.
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(b) Contour lines of proper density (o) for C137 at #=15.0. Each line corresponds to o
= pmax*107"* where Emax=8.43-107° for n=1, 2, ---9. Arrows show vectors E*.

3.4. Collapse of rotating supermassive stars
i) Initial conditions

Let ps(#) and 7o be the density distribution of N =3 polytrope and an initial radius
of a star, respectively. We use the following initial conditions:

e 0s(7) for 7= 0s7(107%05(0))
“ 10%05(0)  for 7»=ps'(107%05(0)), (3-83)
ouCv for r=n
Je/R=]:/Z = 7 \?
,oHCVexp<——<70> +1> for »> 7 (3-84)
and
Jo=z0us2exp(— Cox/r®) , (3-85)

where Cv, £ and C, are constants which determine the initial infall velocity, the
initial central angular velocity and the rotation law, respectively. As we can see
from Eq. (3-83), there is a low density envelope outside the star. This is to make the
numerical code simple at the boundary of the star. As the total mass of this envelope
is smaller than 10729, the contribution of this envelope to the collapse in the actual
numerical calculations is negligible. As an equation of state we use

Pz—é;.os. (3+86)
We use the units of

MZMB, L:GMB/CZ and T:GMB/CB.
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Initial distribution of € is taken as

0.5" \

ROTATION
LAY B

0.14

ROTATION LAW A

R/t

T
0.3

0.9

Fig. 3-6. The rotation laws used in the numerical

calculation. The solid lines show the distribu-

tion of angular frequency (defined by £
=exp(— CoR?/n?)) for two values of Cp; Co=2
for the rotation law A and C,=10 for the
rotation law B. The dashed line shows the
density distribution of N==3 polytrope (0s(R)).

Table III-2. The initial parameters for collapse of rotating supermassive stars.

e=Kp"®. (3-87)

Now 7, Cv, £, C, and K determine the
initial conditions uniquely. In all the
calculated models, 7 is 10.5 and Cv is
chosen so that the infall velocity at
=17, becomes the free fall velocity.
Instead of & and K, we use J and U
defined in Eqgs. (3:72) to (3:76).

As the rotation laws, we use two
Co’s as

a) Rotation law A; Co=2,

b) Rotation law B; C,==10.
In Fig. 3-6 we show the two rotation
laws (solid lines) and es(R) (a dashed
line). We can see that in the rotation
law A, the angular velocity (£2) drops
considerably only at a very low density
region.
ii) Numerical results

In Table III-2 the initial parameters
of each model are shown. Since the
models are characterized mainly by ¢
and the rotation law, we use them as a

The name of each model

comes from the value of ¢ and the rotation law. For example, A146 means the collapse of rotating

supermassive star with ¢=1.46 and the rotation law A.

In the flifth column £ shows the central

angular velocity and p in the sixth column is the ratio of the centrifugal force to the gravitational force

at the center.

In the seventh column whether an apparent horizon is formed or not is shown.

Model Name q U J 2 b Apparent Horizon?
Al146 1.46 0.94 0.77 0.32 0.76 NO
Al122 1.22 0.86 0.51 0.27 0.50 NO
Al05 1.05 0.84 0.37 0.23 0.36 YES
A 93 0.93 0.82 0.29 0.20 0.29 YES
A 75 0.75 0.82 0.19 0.16 0.18 YES
A 50 0.50 0.81 0.08 0.11 0.08 YES
B143 1.43 1.01 1.20 0.76 4.22 NO
B121 1.21 0.88 0.76 0.63 2.86 NO
B104 1.04 0.84 0.54 0.54 2.08 NO
B 92 0.92 0.82 0.42 0.48 1.60 YES
B 74 0.74 0.81 0.27 0.38 1.03 YES
B 51 0.51 0.81 0.12 0.25 0.45 YES
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name of each model also in this subsection.
of the rotating supermassive star with ¢=1.46 and the rotation law A.

For example, A146 means the collapse
In the sixth

column of Table III-2 the ratio of the centrifugal force to the gravitational force at the
center (p) is shown. All the calculated models have almost the same internal energy,

TIME= 2 87E-81

z QLAX= B.162E~01 VELMfX= ©.387E+089
=<

/ P4

Time =1.86£ + 01
Z QMAX=0.125E£+01 VELMAX=0.372E + (1

trve v o4 1

(b)

Fig. 3-7. (a) Contour lines of Q» at #=0.287 for
A50. The space integral of @, becomes Ms,
that is, 27/%e/3QsRdRdZ =Ms. The precise
definition of @» can be found in the text. Each
line corresponds to Q,=@QMAX 1072 for »
=1,2,--,11. @MAX is shown in the figure.
Arrows show the vector (J&/Qs, J2/Qs). The
maximum of this vector is shown in the figure
as VELMAX.

(b) The contour lines of &, for A50 at £=18.6.
The notations are the same as in Fig. 3-7(a).
The dashed line shows the apparent horizon.

though it is slightly different because
on¢® is given to construct the initial
data. The number of grids is 28X 28.
The coordinate of the outermost grid
point is (25, 25).
1) Rotation law A

In this rotation law, the centrifugal
force has a maximum value at R=0.3579
where 0s(R) is less than 0.10s(0) (see
Fig. 3-6). This means if the mass shed-
ding occurs, it will occur from the outer
part of the star. In the following, we
show the details of the numerical results
of the three typical models.
* Model A50

In this model, the rotation is very
slow. At ¢=0, J is 0.08 and the
centrifugal force at the center is only 8%
of the gravitational force (see Table
1I1-2). At £=0.287, the matter distribu-
tion is almost spherical and the velocity
pattern shows the spherical collapse
(Fig. 3-7(a)). This feature is kept
through the entire time up to when the
apparent horizon is formed (Fig. 3-7(b))
although the matter distribution
becomes slightly oblate by the effect of
rotation. All the matter will be swall-
owed into the slowly rotating black hole.
* Model A105

In this model, the star is rather rap-
idly rotating. At #=11.5 (Fig. 3-8(a)),
the matter falls vertically for R=2.
The collapse in the equatorial plane is
considerably suppressed by the effect of
rotation. For 24<R=<7.7, the outflow
velocity reaches up to 0.3c. This
outflow is the mass shedding which we
expected before. Finally, the oblate
shape core is formed in the central
region and an apparent horizon is for-



Part I  General Relativistic Collapse of Axially Symmetric Stars 49

med outside this core (Fig. 3-8(b)). The outer envelope expands along the lateral
direction with relativistic velocity. On the Z=1 plane the outgoing velocity is 0.34
and 0.70 and the lapse function is 0.82 and 0.88 at R=5.5 and 9.1, respectively. If we
consider (1—a) as the gravitational potential, we can expect that some part of this
envelope will return to the central black hole and the other part will expand to
infinity. Thus the ultimate fate of the collapsing supermassive star in this model is
completely different from that in Model A50.

* Model A146

This model is a rapidly rotating case, that is, /=0.77 and p is 0.76. At {=5.76,
the matter in the central part falls almost vertically. For 2= R=6.5, we can see a
strong outflow with the velocity up to 0.5 (Fig. 3-9(a)). At #=18.8, the central core
bounces and a shock wave is formed. Near the equatorial plane the outflow extends
up to R=9. The outer thin envelope falls vertically to this outflow and the shock
front is formed (Fig. 3-9(b)). At £=23.2, we can see a strong jet along the rotational
axis. The central core has almost stopped moving and the rather dense envelope
expands both in the lateral direction and in the Z-direction (Fig. 3-9(c)). Finally the

TINE= 1. 156401 strong jet reaches Z=9 (Fig. 3-9(d)).

SRTRR RV Gl Vet e T The kinetic and the internal energy of
this jet are 2x107° and 1.5X107® in our
units, respectively. The total mass of
the jet is 5X%107% Thus the mean
kinetic energy per gram of this jet
becomes 0.4 (3.6x10* ergs/g). The
energy consideration similar to that in
A105 shows that this jet will expand to
infinity. The total mass and the an-
gular momentum of the relaxed core are
0.21 and 4X107% respectively. As the
core has a rather small value of ¢(<1.0),
it may recollapse eventually and a black
hole may be formed after all.

Let us compare the above results
with those in the previous subsection.
In the previous subsection, for slowly
rotating cases, the density distribution
becomes disk-like and the ring-like sin-
gularity appears. However in the pres-
ent cases of the rotation law A, the
density distribution becomes oblate.

®» ' This difference seems to come from the

Fig. 3-8. (a) The contour lines of Qs for A105 at ¢  initial density distribution and the equa-
=11.5. The notations are the same as in Fig. tion of state. As the polytrope with
3-7(a). N=3 is more centrally condensed type

(b) The contour lines of @ for Al05 at = than the exponential distribution in the

17.(2. ) The notations are the same as in Fig. previous subsection, the disk will be
3-7(b).
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Fig. 3-9. (a)~(d) The contour lines of Q» for Al46 at various time. The notations are the same as
in Fig. 3-7(a).

hardly formed unless the centrifugal force is strong enough in the central region. In
the previous subsection the equation of state is very hard for p=3x10"g/cm’ that is,
in the limit of o - oo the sound velocity becomes the light velocity. Since the equation
of state in this subsection is very soft, the gravity is stronger than the pressure force
and the centrifugal force in the lateral direction for slowly rotating cases.

In Fig. 3-10, we show the “electric fields” in the ((2+1)+1)-formalism for A105.
The strength of the “electric fields” (|E**) does not show a ring-like peak. As the
density distribution is not disk-like, the “charge density” (angular momentum density)
in the ((2+1)+1)-formalism does not have a ring-like peak contrary to the model C80
(see Fig. 3-3(b)). ‘
Rotation law B

In this rotation law, the centrifugal force is more effective for small R (see Fig.
3-6). This means that if the mass shedding occurs, it will occur from the central
region. In the following, we show the details of the numerical results of the three
typical models.
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Arrows show the “electric fields” (E*) in the
((2+1)+1)-formalism. The maximum of E*
is shown in the figure as VELMAX.

* Model B51

In Fig. 3-11 we show the density contours and the flow pattern at #=21.6.
Although A50 and B51 have almost the same angular momentum, we can see that the
central core is deformed rather strongly in B51. Of course, this is due to a rapidly
rotating core because of the strong differential rotation of the rotation law B.
* Model B92

In this model, the centrifugal force near the center is greater than the
gravitational force at =0 because pis 1.6. This fact causes the outflow of the matter
~from a small R region. As the rotation is very slow for large R, the matter in the
outer part falls almost spherically (Fig. 3-12(a)). At ¢#=11.5, the inflow in the Z-
direction and the outflow in the lateral direction form a disk in the central region
(Fig. 3-12(b)). At #=17.3, the outgoing velocity of the disk is considerably decelerat-
ed. The outer envelope falls into this disk vertically and forms the almost steady
shock. For large R, a very thin envelope expands in the lateral direction (Fig.
3-12(c)). In this model, we have tried to identify an apparent horizon, but in vain. We
have recalculated this model using the hypergeometric slicing in which the lapse
function is spherically symmetric. In this slicing, an apparent horizon is identified.
The reason for this difference is that if one uses the maximal slicing as a time slice,
the proper time of the co-moving observer, whose four velocity is that of the matter,
stops increasing too soon after the density distribution becomes disk-like, this is the
main reason why we did not use the maximal slicing in the previous subsection.
* Model B143

In this model, we can see the outflow for small R even at rather early time
(Fig. 3-13(a)). At t=11.6, an expanding disk is clearly formed (Fig. 3-13(b)). At ¢
=17.5, the expansion velocity of the disk is decelerated in the central part and it is
fastest at the edge of the disk (Fig. 3-13(c)). At #=20.8, the central part of the disk
is almost stopped. The outer thin envelope falls into the disk continuously and forms
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the almost steady shock front. As the expansion velocity is very large in this model,
all the matter except the central part will go away from the system. In this model,
no jet is formed contrary to the model A146 (Fig. 3-9(d)).

3.5. Collapse of accreting neutvon stars with rotation

In this subsection we consider the formation of rapidly rotating neutron stars
instead of the formation of black holes like in §§ 3.3 and 3.4. It is well known that
there is a maximum mass of spherically symmetric neutron stars for a given equation
of state. If the mass of the star is greater than the maximum mass, then collapse
starts and a black hole will be formed finally. However if the collapsing core has the
value of ¢ near unity, what happens? In order to study this problem, we use a simple
model of the collapse. Let us assume that a proto-neutron star of mass 1.09M, is
formed but the outer envelope of massive stars is not ejected. This is the case if the
reflected shock waves are weakened by heavy elements. Then the envelope will fall
back onto the proto-neutron star. As the mass of the envelope we assume 0.81M,.
Although this model is very crude, it will mimic the realistic situation qualitatively
and it may be possible to study the effect of rotation and general relativity for this
problem.

Units of mass, length and time are

M=1aM., L= ana 7= | (3-88)

As an equation of state, we adopt
Kp*?® for p<p*=3x 101“g/‘cm3
| -3
e for p> p* (3-89)

and

e=3Kpo/(p*)**, ' | (3-90)
where |

K=27G(1AM, /472018 | @

In the above equation of state the maximum mass of a neutron star is 1.4M,. We
consider a non-rotating neutron star of gravitational mass 1.09M, and central density
10°g/cm®. Then we put an envelope of gravitational mass 0.81M, so that the total
gravitational mass of the system becomes 1.9M.. To this system we add the rotation
and the infall velocity. o
on¢® is given by using the density distribution and the neutron star model in
Fig. 3-14. Jr, Jz and J, are given by ’

JelR=Jz/Z=puCy o (3-92)

and
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Fig. 3-15._ The contour lines of @» for D07. The
dashed line shows an apparent horizon.
Jo=x0u82exp(— Cox/ro?), (3-93)

where Cv, £ and C, are constants and 7o is the radius of the proto-neutron star. Cy
is chosen so that the velocity at » =7 becomes the free fall velocity. We use three
kinds of the rotation law, D, E and F shown in Fig. 3-14. We use again the rotation
law and value of ¢ as a name of a model.

Figure 3-15(a) shows the almost initial state for the model D07 (g=0.07). In this
model, the effect of rotation is not important. Because the total mass of the system
is 1.9M, which is greater than the maximum mass in the present equation of state
(1.4M,), a black hole is formed eventually as shown in Fig. 3-15(b).

In Fig. 3-16 we show the final stage of the model D97. We can see an oblate shape
core with almost constant density distribution. In this model we tried to identify an
apparent horizon but it was not found. In Fig. 3-17 we show the final stage of the
model E97 in which we can see a disk shape core with constant density. In Fig. 3-18,
we show the model F93 with a ring. We could not identify an apparent horizon for
these models, either. Thus we can say D97, E97 and F93 are rapidly rotating neutron
stars. This is not strange because Wilson (1973) showed that the rotational enhance-
ment of the maximum mass of the neutron star can be up to 1.5 for ¢=1. However
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3.6. Conclusions of rotating collapse

In the models using the rotation law
A, the apparent horizons are formed for
g =1.05 while in the rotation law B they
are formed for ¢=<0.92. In the collapse
of stars of mass 10M, discussed in § 3.3
they are formed for ¢=0.86. These
three types of the calculated models are

Fig. 3-18. The contour lines of @, for F93. different from each other in the equation

' of state, the initial density distribution,

the internal energy density and the rota-

tion law. However it seems they have almost the same critical value of ¢ for the

formation of black holes. In all the models in which the apparent horizon is formed,

we have found that nothing peculiar occurs outside the apparent horizon. Stark and

Piran (1985, 1986) also studied the collapse of rotating stars using Bardeen and Piran’s

gauge (1983). In their cases they use I'=2 equation of state. Although the gauge

they used has a strong apparent horizon avoidance, they suggest the formation of
black holes if @ (lapse function) becomes small.

Two of the most important questions in numerical relativity when we study the
collapse of rotating stars leading to the formation of black holes and neutron stars
are:

1) What is the final structure of space-time after the collapse of rotating stars?

2) What kind of information can we extract from the gravitational radiation emitted
during the collapse? By observing gravitational waves directly what kind of physics
in strong gravity can we know?

Concerning the first question, numerical relativity seems to have an answer for 2D
cases. Summing up the numerical results of two existing codes by which we can

P
-
-
-
-
-
-

2. 4. 6. 8
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calculate the rotating collapse, we have the critical values of ¢(=g.) for the formation
of black holes (formation of an apparent horizon) as

Kyoto Group (Nakamura 1981, Nakamura and Sato 1981; §§ 3.3 and 3.4 in this section)
qc remarks
Model A 1.05 supermassive stars (almost rigid rotation)
Model B 0.92 supermassive stars (differential rotation)
Model C 0.86  stars of mass 10M, (effect of strong
interaction is considered)

Stark and Piran (1985) suggest gc=1.2£0.2 or 0.81+0.05 for y=2 polytrope depending
on the extraction of the internal energy at the initial time.

The above results suggest that g. seems to be almost independent of equations of
state, rotation laws, initial density distribution, codes, coordinate conditions and
numerical methods. If we consider numerical relativity as an experiment, an exper-
imental value of ¢ up to now is 1.0%£0.1, which suggests the cosmic censorship
hypothesis is relevant under plausible initial conditions like those adopted in these
numerical simulations.

One of the largest advances in Stark and Piran’s code is the ability to estimate the
gravitational radiation emitted by a collapsing rotating star. This is due to their
gauge condition [Bardeen and Piran (1983)] in which the metric outside the star tends
quickly to the Schwarzschild metric. They found that the energy radiated for ¢ <g¢.
is proportional to ¢* and the wave pattern has a similar shape irrespective of g. The
waves show the dominance of the quasi-normal mode of a black hole (see also Parts
II and III). The efficiency of the gravitational radiation is found to be small (at most
107%mc?) partly due to the phase cancellation effects for 2D cases [Nakamura (1985),
see also Part II].

If ¢ is greater than unity, final results depend on the initial conditions [Nakamura
(1981); Nakamura and Sato (1981); Nakamura (1983); Stark and Piran (1985)]. For
example in general relativistic collapse of accreting neutron stars with rotation in
§ 3.4, depending on initial rotation laws, oblate shape or disk-like or ring-like rapidly
rotating neutron stars (not black holes) are formed in 2D calculations for ¢=1. The
shapes of these stars suggest they may be unstable to fragmentation. As early type
stars which are responsible for the formation of neutron stars and black holes are
rotating fast, the value of ¢ of collapsing cores is expected to be greater than unity.
Then the collapse, pursuit and plunge scenario will be relevant [Misner, Thorne and
Wheeler (1971)], which is essentially three dimensional (3D). As Nakamura (1985)
pointed out by extrapolating the results of the perturbative calculations (see Introduc-
tion and summary), an efficiency of gravitational radiation up to 9% is expected in
such a fully 3D process while only 0.1% is expected for 2D cases.

3D processes should be necessary for a strong emitter of gravitational radiation.
In fact as shown by Miyama, Nagasawa and Nakumura (1986), in 3D processes such
as fragmentation, the efficiency of emission of gravitational radiation increases at
least by a factor 10 even though they used the results of Newtonian collapse calcula-
tions and the Landau-Lifshitz formula to estimate the energy. It is now desirable to
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construct a fully general relativistic 3D code to answer the questions shown in the
beginning of this section. Fortunately the recent speed of super computers is fast
enough to construct such a code. The first step to construct 3D code in numerical
relativity will be given in §5.

§4. Axially symmetric collapse of deformed stars and magnetized stars

4.1. General relativistic collapse of mnon-rvotating deformed stars

In the previous section, we showed that under the plausible initial conditions
numerical results of general relativistic collapse of rotating stars suggest that Kerr
black holes are always formed for ¢=1, irrespective of the equation of state, the
initial density distribution, the rotation law and so on, which approves the cosmic
censorship. :

If the cosmic censorship hypothesis [Penrose (1973)] is true, the Schwarzschild
metric is known to be unique as the ultimate structure of the space-time after the
gravitational collapse of non-rotating stars. If it is not true the final structure of
axially symmetric space-times without angular momentum can be one of the Weyl
metrics [Weyl (1917); Levi Civita (1971)]. Zipoy (1966) and Vorhees (1970) studied the
nature of Weyl metrics for some cases and found that no horizons exist but cylinder
like, ring-like or disk-like naked singularities do exist.

All above studies concerning the final structure of axially symmetric non-rotating
systems are restricted to vacuum space-times. It is an open question whether a
Schwarzschild black hole is formed or not in a realistic collapse from a state of weak
gravity to a state of strong gravity. Yodzis et al. (1973) pointed out the possibility of
the existence of a naked singularity even for spherically symmetric space-times. For
non-rotating axially symmetric deformed dust collapses Nakamura et al. (1981)
suggested that a naked singularity may appear in prolate collapses if initial deforma-
tion is large enough. However in the above two cases, pressure is zero or ineffective
for p—co. In this subsection we calculate collapse of non-rotating deformed stars of
mass 10M, with a realistic equation of state. If the system is spherically symmetric,
there is no equilibrium solution because the mass is greater than 3M, [Rhodes and
Ruffini (1974); Chitre and Hartle (1976)]

1) Initial conditions
Units of mass, length and time are taken as

M=10M,, L=GM/c* and T=GM/c®. (4-1)
The initial 3-space metric is assumed to be conformally flat as |
= ¢*(7i)nat . (4-2)
We assunﬁe no poloidal motion. Then ¢ is determined by

Aflat¢:_27T(.0H¢6)/¢ . (4'3>

As for oy we use the form
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1 2 2
oot~ s e g 77) (4-4)
and
a?b=(1.5)*. | (4-5)

Equation (4+5) guarantees that the central density is the same for all models. The
shape of each model is characterized by a single parameter a. If a is greater than 1.5,
the shape is oblate while for a=1.5, the shape is prolate.

As an equation of state, we use

—il,)—pe for p=p*=3x10"g/cm®
P= (=0.05 in our units)

(‘0—,0*)64‘%,0*6. (4-6)

For o= p*, the trapped leptons play a major role in the pressure while for o= p* the

effect of nuclear force is taken into account by raising the adiabatic index from 4/3

for o= p* to the limiting value 2. The sound velocity approaches the light velocity
Table IV-1. The initial parameters of each model. PR and OB imply the proléte and the oblate initial

density distribution, respectively. In the fourth column, Max means the maximal slicing and
Hyper means the hypergeometric slicing.

Model Name U a Time Slice Apparent Horizon?
S 0.93 15 Max YES
PR1 0.95 1.3 Max YES
PR2 1.08 1.0 Max YES
OBl 0.94 1.7 Max YES
OB2 0.99 2.0 Max YES
PR3 2.2 0.5 Max NO
OB3 LT 4.0 Max NO
PR4 0.67 1.3 Max YES
PR5 0.72 1.1 Max YES
PR6 0.76 1.0 Max YES
OB4 0.67 1.7 Max YES
OBb 0.70 2.0 Max YES
PR7 0.36 1.3 Max YES
PRS 0.37 1.2 Max YES
PRY 0.40 1.0 Max NO
PR10 0.40 1.0 Hyper ’ NO
OB6 0.35 1.7 Max YES
OB7 0.35 1.8 Max YES
OB8 0.37 2.0 Hyper NO
PR11 0. 1.3 © Max YES
PR12 0. 1.2 Max NO
PR13 0. 1.0 Max NO
OB10 0. 1.7 Max YES
OB11 0. 1.8 Max NO
OB12 0. 2.0 Max NO
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for p— o which is the causality limit [Zeldovich (1962)]. The initial distribution of
internal energy is taken as

e=Kp'?, (4:7)

where K is a constant.

Now a and K characterize the initial conditions uniquely. Instead of K, we use
the internal energy defined by Eq. (3-76). Shift vector is taken to be zero. As for the
lapse function we use both the maximal slicing and the hypergeometric slicing.
Numerical methods are the same as that in §3. The only things we must do are
dropping the terms related to the rotation both in evolution equations of the metric
and in the hydrodynamics equations.

2) Numerical results

In Table IV-1 the initial parameters of each model are shown. For each model
we have tried to identify an apparent horizon using the method shown in §2. In
Fig. 4-1, we show whether the apparent horizon is identified or not for each model in
the U-a plane. The circles mean that the apparent horizon is identified while crosses
mean it is not. In the following we shall describe the details of four typical models.
* Model PR2

In this model, the initial internal energy is close to the virial value 1 for y=4/3
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equation of state. At early time a thin envelope expands toward the lateral direction.
In the central region, collapse proceeds in a rather spherically symmetric manner. In
the region where Z =4 and R =2, the matter falls down almost vertically as seen in
Fig. 4-2(a). The thin envelope continues to expand. In the center, the collapse
proceeds (Fig. 4-2(b)). At #=14.3, the collapse along the lateral direction is deceler-
ated and the matter falls almost vertically in the central region (Fig. 4-2(c)). Finally
the matter distribution becomes almost spherically symmetric in our coordinates and
an apparent horizon is formed (Fig. 4-2(d)). All the matter except the thin envelope-
will be swallowed by a black hole.
* Model PR9

The initial density distribution of this model is essentially the same as that of
Model PR2. As the initial internal energy is 0.37 times that of Model PR2, no
expansion of a thin envelope can be seen contrary to Model PR2. To see this
compare Fig. 4-3(a) with Fig. 4-2(a). In this model the collapse along the lateral
direction is not decelerated (Fig. 4-3(b)). At #=14.3, the matter collapses mainly
along the lateral direction as it is shown in Fig. 4-3(c), which is completely contrary
to Fig. 4-2(c). Finally the matter distribution becomes rod-like (Fig. 4-3(d)). The



62 T. Nakamura, K. Ochara and Y. Kojima

TIME= 2. 86E-81 TIME= §.5SE+883

Z vuevw v QUAX= P.177E-81  UELMGX= 8.111E-81, Z Vuwe v v QUAK= @.719E-81  VELMOX= @.524E+00,

TiMe= 1. 43E+81 TIME= 1.S1E+81

Z vvvv y v QUAX= P.58SE4B8  VELMAX= 9.298E+61. Z vvvv v v QUAX= @.825E+#@8  VELMAX= 8.602E+81.

Fig. 4-5. (a)~(d) Contour lines of @, for OBS.

apparent horizon has not been identified up to the final state of the computation by
using the maximal slicing. We calculated this model by using the hyper-geometric
slicing also but we have not been able to identify the apparent horizon yet.
* Model OB2

In this model, the initial density is close to the virial value. At early time a thin
envelope expands like Model PR2. In the region where R=2 and Z <£1.5, Fig. 4-4(a)
shows that the matter collapses along the lateral direction. The thin envelope
continues to expand vertically while in the central region the matter falls both
vertically and horizontally (Figs. 4-4(b) and (c)). Finally the matter distribution
becomes slightly prolate and the apparent horizon is identified (Fig. 4-4(d)).
* Model OB8

The initial internal energy of this model is 0.37 times that of Model OB2 while the
density distribution is essentially the same. A thin envelope does not expand because
of the small pressure (Fig. 4-5(a)). The matter falls both vertically and horizontally
(Figs. 4-5(b) and (c)). Finally the density distribution becomes disk-like. In this
model the apparent horizon has not been identified both in the maximal slicing and in
the hypergeometric slicing.
* Other Models

For zero internal energy models, the features are essentially the same as those of
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PRY and OB8. For the models PR 13 and PR12, the matter distribution becomes
rod-like. For the models PR11 and OB10, although the density distribution is not
spherical in our coordinates, the apparent horizons are identified. For the other
nonzero internal energy models, their features are in between the models discussed
above and the spherical model S.

Summing up the numerical results, we can say that if U >2/3 the density distribu-
tion becomes almost spherically symmetric in our coordinates in the final stage and
the apparent horizon is formed even if the density distribution is strongly deformed in
the beginning. In all the models with U >2/3 we have found nothing peculiar outside
the apparent horizon. We see only expanding thin envelopes. If we recall that the
singularity of the Schwarzschild black hole is hidden by the non-singular event
horizon, our numerical results suggest that the Schwarzschild black holes are always
formed for the collapse of non-rotating stars of mass 10M, with U >2/3 even if the
initial deformation is large.

If U <2/3, our results show that the initial deformation of the density is enhanced
if the deformation is large enough. Stars become rod-like and disk-like for prolate
collapse and oblate collapse, respectively. If we recall the structure of the Weyl
metric which does not have the event horizon but has the rod-like or the disk-like
naked singularities, the above models with U =2/3 and the strong deformation look
like one of Weyl’s solution. However such a model may not be realistic. Since a
star should have evolved quasi statically until the general relativistic instability sets
in, the internal energy in the beginning of the collapse may be close to the virial value
U=1.

4.2. Collapse of supermassive stars with poloidal magnetic fields

In § 3 we have treated the collapse of axially symmetric rotating stars. One of
the important conclusions there is that numerical results suggest the formation of
Kerr black holes for wide ranges of the initial conditions provided that the initial
density and angular velocity decrease uniformly with radius. In the previous subsec-
tions we studied the collapse of non-rotating stars of mass 10M, with deformation and
found that unless the internal energy is too small and the deformation is too large, the
Schwarzschild black holes may be formed instead of naked singularities. If we note
that the Schwarzschild metric is the special case of the Kerr metric, numerical results
obtained so far suggest the following conclusion: In the general relativistic collapse
of axially symmetric stars, the Kerr black holes are formed for wide ranges of the
plausible initial conditions.

The purpose of this subsection is to check whether the above prediction is the
case when the magnetic fields are present in the collapsing stars. As far as we know
none have treated the effect of magnetic fields in the general relativistic collapse of
axially symmetric stars. Strictly speaking, Wilson (1978) has calculated the general
relativistic collapse of magnetized supermassive stars. However as he used a semi-
relativistic method in which the explicit time dependence of the metric is neglected,
his method is not applicable to the collapse leading to black holes.

1) Basic equations
We adopt the (3+1)-formalism of the Einstein equation. For non-rotating space-
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times, there is no difference between the (3+1) and the ((2+1)+1)-formalisms. As
the coordinate conditions we use zero shift vector (8°=0) and the maximal slicing
condition. We also use the cylindrical coordinates (R, ¢, Z). We assume that the
conductivity is so large that the electric fields in the comoving frame are zero, that is,
we use the MHD approximation as

%#F/.zu:o. ‘ (4'8)

We consider only the poloidal magnetic fields. So only ¢-component of the vector
potential exists. In this case, Eq. (4-8) becomes

0 0Ay | ;0Ae _ .

Since 27A, is the magnetic flux, Eq. (4:9) expresses the conservation of the magnetic
flux. The conservation of the baryon number is expressed as

%Qb+%—5:%(RUAQb):0 , (4-10)

where A runs through R and Z and the various notations are the same as in § 3.
Combining Egs. (4:9) and (4:10), we obtain the conservation form equation for the
magnetic flux A,

2 QuAet 5 RQuAUA) 0. (4-11)

The poloidal magnetic fields B* are defined by
BA=2""e"%0zA, . (4-12)
As for the electric fields, only the ¢-component exists and is defined by

1.6

Eq)=‘—n”Fﬂ¢:—"&‘ at A¢7. (4'13)

As we consider only the poloidal magnetic fields, only the ¢-component of electric
current (j,) exists. From the Maxwell equations F%%=47", we have

TS TN SAm) w10

The Einstein equations become

Ruv—gmR=87( TE"+ T5) (4-15)
where
w=(0+ pe+ P)uuy+ Py - (4-16)
and ‘
a1 1

= Z}?(F#aFua _Tg#uFaﬂFaﬂ> . (4 . 17)
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In the (3+1)-formalism, the basic equations become in our case as
i) Hamiltonian constraint equations

x2~x“‘BxAB+‘2>R=2A‘(M)—2xKJ’+16ﬂ<pH+é<BABA+E¢E“’)> :
ii) momentum constraint equation

A—I(AXAB) w5 — 0a( +K¢¢) :87Z'<]A _ﬁSABE;oBB) ,

iii) time evolution of metric tensor
. aoHABZ —ZQXAB ’
0oA= — aAK,?,

OoXap= a<(2)RAB + xxaB)— 2axaSxcs— Ayans—al'A wanst aKoxas

- 87[0.'{SAB+%HAB(10H - Scc)}

+$(—BABB+%HAB(BCBC+E¢E¢)> ,

W Kf=aK (K +x)—ayad" A —a- P43 A7 —4xa( oy — Sa?)
+4-(B'Ba—E,E").

Hydrodynamics equations become
i) energy equation

ol au’VH A0e)+ dalau’VH AocU?)
= —P(r%(au"ﬁ/l)%— aA(dquﬁﬂUA)) ,

ii) Euler equations

(AVE Ja)+ 0s( UPAVE )
= — aAVH (84P+(P+ pn)(daa)a™)

+CM«/F(P+0H)<%(3AHBC) VBVC>_C?\/FEAC].¢BC )

iii) conservation of baryon number

do(au’vVH 20)+ ds(UBau’VH A0)=0,

iv) equation of state

_1
P==pe,
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(4-18)

(4-19)

(4-20)
(4-21)

(4-22)

(4-23)

(4-24)

(4-25)

(4-26)

(4-27)
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v) normalization of four velocity

au’=1/y1=VaV*, (4-28)
where _

VA=(P+pu) " (4-29)
and

Ut=aV*. (4-30)

The reason why there is no term from electromagnetic fields in Eq. (4:24) is that in
MHD approximation the electric field is zero in the co-moving frame.
2) Initial data '

We assume that the initial metric is conformally flat

Yii= ¢4( 7z'j)f1at .

We assume the linear momenta of the matter as well as K;; are zero at t=0. Let
p3(7) and 7, be the density distribution of N=3 polytrope and the initial radius of a
star. We use the following initial conditions:

5= o3(7) for =<5 107%05(0))
PHP 1107 05(0) for 7> 057(10"°05(0)) . (4-31)

As for Ap, we use the form
A,=CR*/(a®*+ R*+ Z?)*? (4-32)

where @ and ¢ are constants. For »>a, Eq. (4-32) becomes dipole fields. Defining
new independent variables x and y by x=R? and y=2% we have

X R '
B* =~2%aya¢zzez’;6 , (4-33)
*"? d¢+2xaxd¢)-—— ¢6 (4‘34)
and
E __ 1 0A, _ ut 0A,
¢ a ot au’ ox* "’
where
a,=C/(a*+ R*+ Z?)%* . (4-35)

Inserting Eqs. (4-33) to (4:35) into the Hamiltonian constraint equation (Eq. (4:18)),
we have /

A=~ 28— (0 + (5799 (4-36)

Initial distribution of internal energy density per gram ¢ is taken as
e=Kp"?. (4-37)
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Units of mass, length and time are

GM,
c?

M=M,, L=

and T =———ng

’ (4'38)
where M, is the total baryonic mass defined by
M=2z [~ ["Q.R dRAZ with Q.=(au’)BVH p.

Initial data are characterized by 7, C, @ and K. In all the calculated models 7o
is 10.5 and « is 0.57. Instead of C and K, we use M.y and U defined by

Mag = Emag/Egrav and U= Eint/Egrav s (4 * 39)

where

Enes=5 I £ “RdRdZ(B.B") ,

Ew=2x [ QueRdRAZ

and
Egrav:Mb + Emag+ Eint — Mg .

3) Numerical methods
As for the evolution equations of metric tensor, we use the same method as in § 3
and the previous subsection. The magnetic fields are completely determined by

)

solving .
9 0, Ap+L - (RQAUN=0 (4-40)
ot ¥ R oxt g . ‘

We use the donor cell type finite difference for the above equation. To solve the

hydrodynamics equation we must determine j,. However from the definition of j,, to
determine j, we need the first time derivative of E,, which is expressed as

0E, _ 3 (_ 1 8A¢->
ot~ dt\ a ot

0 (04
ot \ au’ ox?

A A B
(LN () w

We note that au® can be rewritten as

o BiHJ.J* .
au _‘/1+—‘F2sz , (4-42)

where the definition of J4 and % is
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=M and h=14e. (4-43)
Equation (4-41) means that there are terms proportional to d/4/0¢ and 9¢/d¢ on the
r.h.s. of Egs. (4:24) and (4:25). So we must solve the simultaneous equation to obtain
dJ4/0t and 9e/dt. However in numerical computations we use simpler methods. We
store at each time levels ¢, the value of au® and E, at each spatial grid points. Then
dau’ /ot and 0E./ot are given by

dau’ _ (au’)n-1—(au°)n-2 | :

T V) W (4-40
and

aEw —_ (Ew)n—l_(E¢>n—2 .

ot (4t )n- ’ (4-45)

4) Numerical results

In Table IV-2, we show the initial values for each model. As the gravitational
energy of each model is on the order of 0.11 in our units, the energy of the magnetic
fields is at least 0.001Mc? in these models. Then the magnetic field strength becomes
unreasonably large as

M ) (4-46)

17
B=10 gauss< M.

Thus even for a supermassive star of mass 10°M,, B becomes 10° gauss which is far
stronger than the magnetic field strength of white dwarfs and is comparable to the
weak field neutron stars such as millisecond pulsar [Backer et al. (1982)].

In Fig. 4-6(a), we show the initial stage for Model M1 with the value of Ma
=0.013. The left figure shows the contour lines of the equi-density &». Arrows show
the velocity vector. The right figure shows the contour of the positive current J, with
the maximum value @max and the negative current /, with the minimum value Qmin.
Arrows show the poloidal magnetic fields. One can see the dipole nature of the
magnetic fields. In this model the effects of the magnetic fields are not so important
that the collapse is essentially spherically symmetric (Figs. 4-6(b) to (d)). Finally the
apparent horizon is formed (Fig. 4-6(e)). All the matter and the magnetic fields
including the important part of the electric current are swallowed by a black hole.

In Fig. 4-7, we show the model M3. In this case the effects-of magnetic fields are
rather important. In the beginning, we can see the focusing of velocity vectors in
Table VI-2. The initial parameters of magnetic Fig. 4-7(a) at R=15 and Z=0. This is

collapse. Notations are shown in the text. due to the pinch effect of the magnetic
Model U | M. | Apparent Horizon fields. From the right figure of Fig.
I TEENE S— , 4-7(a), the peak of positive current j,
M2 0.85 0.05 YES exists at R=18 and Z=0. As the
M3 0.82 | 0.20 YES magnetic fields are dipole-like, the direc-
M4 0.77 | 042 YES tion of the force (X B) should tend to
M5 0.69 | 0.77 NO focus like the left figure. However as
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Fig. 4-8. (a)~(e) Contour lines of §@» and J for M4.

time elapses the gravitational force becomes more dominant than the magnetic pinch
effect (Figs. 4-7(b) to (e)). Finally the apparent horizon is formed. All the matter,
the electric current and the magnetic fields will be swallowed by a black hole. The
newly formed black hole can be considered as the Schwarzschild one since there is no
angular momentum in this system.

In Fig. 4-8, we show the model M4. In this model the effect of magnetic fields and
the pinch effects are too large from the beginning (Fig. 4-8(a)). The pinch effect
makes a ring-like shape of the density (Fig. 4-8(b)) and all the matter falls towards
this ring (Fig. 4-8(c)). In this case also, the apparent horizon is finally formed
(Fig. 4-8(e)). In model M5, due to the strongest pinch effect the numerical accuracy
near Z =0 plane becomes bad.

In conclusion we can say that the prediction in the previous subsection seems to
be the case even if we include the magnetic fields to the collapsing axially symmetric
stars. Under the plausible initial conditions the Schwarzschild black hole is usually
formed in the collapse of magnetized stars. However all these conclusions are not
proved for three dimensional problems. In the next subsection we will study the time
evolution of pure gravitational waves as a first step to attack the three dimensional
problems.

§5. 3D time evolution of pure gravitational waves
| ‘We adopt the (3+1)-formalism of the Einstein equations with =1 and £?=0 for

simplicity. As we neglect the matter’s degree of freedom in pure gravitational waves
problem, the basic equations become
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OR+K*=KuK", (5-1)
K=K, (5-2)
Ky="Ry+KK;—2K " Kn; , (5-3)
&ys=—2Ky, (5-4)

where K=y“K,; and | is a covariant derivative with respect to y”. To construct
initial data, we must solve constraint equations (Egs. (5-1) and (5-2)). For this
purpose, we first consider analytic solutions to Egs. (5-1) to (5:4) when the amplitude
of the wave is small.
5.1. Linearized solution

Let us express 7i; as

vi=rE+hy, (5+5)

where 7 is the metric tensor of the background space and indices of % are raised

or lowered by 7{¥’. We only take into account the first order of % in Egs. (5:1) to
(5+5). Then from Eq. (5-4) we have

Kij:*%aohij . (56)

By using Eq. (5:1) the trace of Eq. (5:3) becomes

oK

i~ KuK” (5-7)

which shows K is the second order quantity. From Eq. (5:7), Eq. (5-2) becomes in the
first order
‘ sz:uj:O, (5'8)

where || means covariant derivative with respect to 7. In the first order of %, Ricci
tensor K becomes

(S)Rij:‘%“( — Ryt Biny 3% By % — gy /%) (5-9)

From Eqgs. (5:6) to (5:8), we have
hkk:() and hz-k”k=0. (5‘.10)

As 7® is the flat metric, the covariant derivative is commutable. Thus R; becomes
in the first order

1

. (3)Rij= _7

hz‘j" k“k . (5'11)
Inserting Eq. (5-11) into Eq. (5:3), we have

8—atKii: _é’hm, P (5-12)
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From Egs. (5-6) and (5-12), we obtain

2 .
Kij: (5 g 13)

T Kk .

We expand K; by the tensor harmonics defined in Zerilli (1971) (see also Parts II
and III) as

K= Edlm(g ¢)A1m(7” t)"‘bzm(e §0)Bzm(7’ t)

+glm(8, @)Glm(V, t>+flm(0, @)Flm (7”, t)+sz((9, ¢)CZM<7’,7/L>

+dlm(6s ¢)Dlm(7’) ZL) ) (5.14>
where @in, bim, Cim, dim, fin and gin are tensor harmonics. From Tr(K;)=0, we have
Am+2Gm/r*=0 (5-15)

due to the orthonormality of the tensor harmonics. Equation (5-8) gives three

constraint equations as

L A+ 3 Am=2Be (5-16)

%Blm+~27Blm+gﬂ+(2 /I)F””— , (5-17)

- ContLCont (-2 P, (5-18)
where A, =/(/+1).

Inserting Eq. (5-14) into Eq. (5-13), we have

83; A= 83: rAmtE L p, g,y R e (5-19)

59;2 Bun— aazz B~ jf’)Ber o 2om 1 Fin o), (5-20)

T Gn=LrGn— L GGt 24— Pin (5-21)

Pty P2 L ppt A0, 4 2Bin (5-22)

2 Cn="2 clmi%ﬂlcm(z;—zm)z)m/rs (5-23)
and

a"fz 9 D= aa: S Din—2-L Dt D | (5-24)

Equations (5-19) to (5-22) and Egs. (5-23) and (5-24) belong to an even and an odd
Inserting Eqgs. (5:15) and (5:16) into Eq. (5-19), we obtain

parity mode, respectively.
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0 i 6 0

atz Alm a 2 Alm a 6 /1[

S Am+

im . . (5‘25)

The general solutions to Eq. (5:25) can be written as

Awm(r, t):yl*(%a—ay)l Pl _”)f,Q””(t tn), (5-26)

where Pim(t—7) and Qum(t+») are arbitrary functions.
Once Aum is given as Eq. (5:26), G, Bim and Fun are explicitly derived as

72
Glm: —TAlm s (5‘27)
11 9.5 .
Bn=7-""7, 7% Aim) (5-28)
and
1 d 7 9/ s > .
Flm /11 <G1m+ 37’ /‘i 87’ Alm) . (5 29)

It is easy to show that G, B and Fu defined by Eqgs. (5:27) to (5-29) satisfy Eqgs.
(5-20) to (5-22).
For an odd parity mode, if we insert Eq. (5-18) into Eq. (5:23), we obtain

2 2
gtz Cin= aa 5 Cim+ Va—i’-clm_% m . (5-30)

The general solution to Eq. (5:30) is expressed by

7,z<_1_i>l Rin(t—7)+Swm(t+7r)

Com= v or 7

(5-31)

where Ru(t—7) and Swm(t+7) are arbitrary functions. From Eq. (5:18), D is
expressed by

Din=25-(r"Cn). | (5-32)

It is also easy to show D defined by Eq. (5:32) satisfies Eq. (5-24). For given / and
m, our solutions have four arbitrary functions, P, @, Rimm and S, which clearly
express four true degrees of freedom of gravitational waves. (The solution for /=2
is usually called Teukolsky waves (1982).) For each mode (even parity or odd
parity), one of the arbitrary function represents the ingoing wave and the other does
the outgoing wave. The summation about / and m gives the general solution to Eqgs.
(5-13). One of the most important features of our solutions is that in deriving the
solutions, it is not necessary to carry out integration but only derivatives of given
functions are needed. Moreover, as we can see later, this solution is useful to
determine the numerical boundary condition for dynamical evolution of pure
gravitational waves.
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5.2. Initial value equations

To start the time evolution of a localized gravitational wave packet, we must
solve the initial value equations and determine initial data. Initial value equations
for vacuum space-times are

OR+ K*=K;K" (5-33)
and |
K=K, , (5-34)

where | means the covariant derivative with respect to 7; and we do not assume in this
subsection the linearity of the system. We assume that K=0 and 7:; is conformally
flat, that is,

7= ¢*(Yii)nat . (5-35)
Then Eqgs. (5:33) and (5:34) become

Ao = —%&KHKU (5-36)

and
K=, G-37)

Let K{P be one of the solutions to the linearized gravitational wave shown in the
previous subsection. We define K:; by

Ki=¢?K{P and K =¢ “K»7, (5-38)

where we raise and lower the suffix of K2 by (7;)na. It is easy to show that K
defined by Eq. (5-38) satisfies Eq. (5:37) automatically. That is, as far as y; is
conformally flat and K=0, K given by Eq. (5:38) is the general solution to the
momentum constraint equations because there are two arbitrary functions in the
solutions (Pin+ Qun and R+ Sm). Equation (5:36) is rewritten as

1 KPK®Y

A¢=*§T. (5-39)

As for K.;, we will use a special form as

le:le:leZSlmZO

except for
— . 2
Pa=y " beo )
and
+ 2
szz—él%exp(—%ﬁg)—) , (5-40)

where A and 7, are constants which represent an amplitude and a size of the localized
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wave packet, respectively. By this choice of P, Qin, Rim and S, it is easy to see
K is regular at »=0 for any ¢. At t=0, K{/”’s become

P=Ae ""*sin’fcos2¢ ,

K® _%e—ﬂ/z(?,r —7%)sinfcosfcos2 e,

Kp= ——jge"z’z(?)r— 73)sin?fsin2¢ ,
(B)*‘;rze r2’2< sin 9+(1—%7 +—— )(1+cos H))cosZgo,
KiP=—Ar? <1—%r + % > 2/2sin(9-(:os¢9sir12qo
and
K‘B’—érze rz""(—sinzﬁ <1——§— 24 7 )X(1+c0526’)>c052§0. (5-41)

We expand ¢ by the spherical harmonics Ym(6, ¢) as
¢=1+12m7’l¢lm(72) Ylm(@, §0) ‘ (5'42)

Here the important point is that ¢m is an analytic function of 7? as

2n

bun(r?)= Ean (5-43)

n! "’

where a.’s are constants. This behavior is due to the reasonable assumption of the
Tayler expansion of ¢(x, v, z) as

Hz,y,2)= 3 apqr‘”;,j, : (5-44)

where apqr’'s are constants. Inserting Eq. (5-42) into Eq. (5:39), we have

ALY dbm)y, 1 KPS
v dr tm g &

Multiplying Y7 to both sides of Eq. (5-45) and integrating over all solid angles, we
obtain

2
(L punt (5-45)

d? 2(/+1) d¢m _ /'KLB)K(B’“
d?’z ¢lm ¥ - ¢7 !

¢ should satisfy the boundary conditions as

.QEflm. (5'46)

dd in

o =0 for »=0

and

pmocr 2t for y-oco, (5-47)
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Fig. 5-1. Conformal factor ¢ as a function of » for various d=const and ¢=const. Solid lines show

S(=—-KPK®Y),  A(the amplitude of K;;) is 1. An arrow shows the Schwarzschild radius, that
is, the gravitational radius of this system is 0.11.

A method of solving Eq. (5:47) is as follows: We first set ¢»=0 and calculate
fin(#) in Eq. (5:46). For a given fim» we solve Eq. (5-46) under the boundary condition
of Eq. (5-47). Next we insert new ¢:’s thus obtained to the r.h.s. of Eq. (5:46) and
calculate new fi»'s. We repeat this process until é’s converge.

In Fig. 5-1, we show an example of solutions to Eq. (5:46) for A=1. In solving
Eq. (5:46) we use the extrapolation for estimating fi(0) from fi» with »#+0 except for
foo because for /=0 the integral in the definition of fi» becomes zero divided by zero.
If we use the Clebsch-Gordan coefficients to expand the non-linear terms in the
integrand, we do not need the extrapolation but too many memories are necessary to
store them. In Fig. 5-1, we use the units of 7=1. Solid lines show ¢(#, 0, ¢) as a
function of » for various 8 and ¢. An arrow in the figure shows the Schwarzshild
radius which is 0.22 in this case. For comparison we show — KPP KP4 (=S(r, 0, ¢))
by dashed lines. We can see the shape of the functions clearly reflects on that of ¢.
However difference in ¢ is not so large compared with the difference in S. This is
because (1), not the value of ¢ but 4¢ is related to S and (2), the true source term for
¢ in Eq. (5+46) is not S but S/8/$7, which has a tendency to diminish the difference in
S. Namely, if S is large, ¢ is expected to be large. Then the large value of ¢ will
cause the decrease of the true source term S/8/¢”. Thus 1/¢” factor will act to
stabilize the system. '

5.3. Time evolution

We now consider the time evolution of initial data given in the previous subsec-
tion. Equations that determine time evolution of the initial data of y; and K are
given by

—aalt'%'j: —2K;;
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and

2 Ky=" R+ KKy — 2K/ K. (5-48)

We first consider the spherical polar coordinates (7, 8, ¢). The spherical polar
coordinate system has two merits in 3D numerical relativity. One is that we can save
the number of memories keeping the large size of computing region which is sufficient
to estimate the gravitational waves. In order to estimate the gravitational waves the
radius of the outermost grid point should be greater than at least the wave length of
the gravitational waves which is expected to be 20M where M is the gravitational
mass of the system. In order to trace the wave we need at least 10 to 20 grid points
in one wave length. We need also at least 30 grid points to trace the evolution of
fluids. So we need about hundred grid points in 7-direction. On the other hand as
for the number of grids in d and ¢ directions, we do not need too many grid points
because it is expected that / =2 wave will dominate (see Parts I and III). So we need
fine grids only in 7-direction. This situation in (7, 8, ¢) coordinates can be compared
with that in (x, ¥, z) coordinates. In (z, ¥, z) coordinates the number of grids needed
in one direction will be twice as many. Thus we need at least (200X 200 X 200) grids,
which is too many, while in (7, 8, ¢) coordinates (100X20X%20) grids seem to be
enough.

The second merit is the easiness to put the numerical boundary conditions at the
outermost grid points. In numerical relativity, we solve the evolution of the metric
tensor y:;; and the extrinsic curvatures K, only in a finite region of space. We do not
solve 7; and K, outside the outermost grid points. Therefore we must put the
boundary conditions at the outermost grid points to tell the information on the outer
solutions to the inner system. For large 7, it is usually expected that there is no
matter and the space-time is nearly flat. So the solution will be expressed by one of
the linearized ones shown in § 5.1. There it is shown that the solution consists of
outgoing waves and ingoing waves. So we usually put the outgoing wave conditions
(i.e., no ingoing waves) at »=7max. As the outgoing wave is propagating along
O=const and ¢=const, (7, 8, ¢) coordinate is the best one to put the numerical
boundary conditions.

However, in the spherical polar coordinates, we must demand the regularity
conditions at »=0, =0 and =nx. Although, for example, the origin (»=0) is one
point in 3-space, many coordinate points with »=0, §=arbitrary and ¢=arbitrary
correspond to the origin. The condition to guarantee that »=0 is one point in 3-
space, for example, is called the regularity condition. In the spherically symmetric
case, the regularity condition [Nakamura, Maeda, Miyama and Sasaki (1980)] is

Yrr =Yoo V2= Yoo/r?sin?8 at r=0. (5-49)

Nakamura et al. (1980) simulated the spherically symmetric collapse of dust by
solving evolution equations of y; and K;;. They did not solve constraint equations
but use them in the evolution equations. As shown in Nakamura et al. (1980), even
in the spherically symmetric system, it is crucial to guarantee the regularlty condi-
tions numerlcally There is a term like
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1 2
( Yrr B :06) 7}2 <5.50)

in Ricci tensor. This term does not diverge at » =0 only if the regularity condition
is satisfied. However if there is a numerical error for the regularity condition (5-49),
for example near »=0 if 7, becomes

yrm="%+cr, | (5-51)

where c¢ is an error, then the term like Eq. (5-50) becomes proportional to 1/ near »
=(0. This causes the divergence of K;;. As K. becomes large near »=0, y; also
becomes large, which leads to the numerical instabilities.

In Nakamura et al. (1980), to avoid the above numerical instabilities, they used a
new variable defined by

a=(yrr—r00/r*)/7*. (5-52)

If we use the above variable, the regularity condition at »=0 (Eq. (5-49)) is satisfied
automatically. As shown in Nakamura et al. (1980), it is possible to rewrite the basic
equations by using above regularized variables without dangerous terms like
Eq. (5:50). In the axially symmetric systems similar regularized variables are usu-
ally used to guarantee the regularity condition on the axis and/or at the origin [§ 3,
Nakamura (1981); Stark and Piran (1985)]. Therefore in order to use the regularized
variables we must first establish the regularity condition of the metric in (7, 8, ¢)
coordinates when 3-space has no symmetry.

In (x, v, ) coordinates no problem arises concerning the regularity of the metric
tensor. One point in coordinate (x, v, z) exactly corresponds to one point in the 3-
space. Therefore yzz, 7z, 7w, etc., have definite values even at x=y=z2=0. As
the relation between (z, v, 2) and (7, 6, ¢) is

x=wrsinfdcosg
y=rsindsing
and

z2=rcosf , (5+53)

the transformation of the metric tensor in (x, y, 2) coordinates to that in (7, 8, ¢)
coordinate is expressed explicitly as

Yrr = Y2zSIn?Ocos® @+ yzysin®Osin2 ¢ + yyysin®fsin®e
+ 7y281n20sin @ + 72:€08%0 + yzsin2fcos ¢ ,
Yoo/7?= Y 22C0S>0cos® @+ yycos®sin® o + yyycos® Hsinz @
+ 72251In%6 — 7y.5in20sing — yzzsin2fcos ¢ ,

Yool (r2sin®0) = yzz8in’ @ — y2ysin2¢ + ysycos’y
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YrelV =%( y2281n26cos? @+ yzysin2 8sin2 ¢ + yyysin2 fsin® @)

+ ¥y2c0820sin @+ yz2c08260cosp— 7/52 sin26 ,

¥ro/ (7sinf)=— 7/5’6 sin2¢—+ yaycos2e+ 72” sin2¢

— 7zyC0SOsing — yyzcostlcos g,

and
voo/ (#2s1n6) =—§—( — 722SIN% @+ 272yC0S2 9 + ¥yySIN2¢)cos O

+ 7225infsing — yy:8infcos e . (5-54)

AS Yax, Yy, Y3y, €tc., have definite values everywhere, Eq. (5:54) tells us that y,», for
example, should depend on 8 and ¢ at »=0 although values of § and ¢ at »=0 have
no meanings. Unless we guarantee the regularity conditions of Eq. (5-54), it is
expected that numerical instabilities will appear as in the spherically symmetrlc
collapse shown in Nakamura et al. (1980).

Is it possible to find new variables by which the regularity COHdlthl’lS of Eq. (5-54)
are automatically satisfied like 1D and 2D cases? Can the basic equations be rewrit-
ten without dangerous terms like Eq. (5-50)? The situation in 3D cases is completely
different from 1D and 2D cases. For 1D and 2D spaces, the component of metric
tensor which should be regularized does not have the relation to many other
components but to one component. For example, in 2D cases in (R, ¢, Z) coordinates
the regularity condition is k

TRe=7ep/R> at R=0. (5-54)
Then we can use a regularized variable defined by '
9=(7re— 700/ R?)|R? (5-55)

like @ in Eq. (5-52) for spherically symmetric cases. We can use (yzz, Kz, g, 99/0t)
instead of (yge, Kkr, Yoo, 0700/0t) and we can rewrite the basic equations without
dangerous terms like Eq. (5:50) to avoid numerical instabilities on the axis of
symmetry. However in 3D cases the relation like Eq. (5-55) does not exist. The
relations that should be satisfied at »=0 or =0 or §=nx have the form as

f(y’fr, Y00, Yoo, Y10, Yre, Yoo, 09 §0)=0 . (5'56)

So it is hard to find the regularized variables like @ and g in Eqgs. (5-52) and (5-55) for
1D and 2D cases, respectively. Even if we find such variables, it is not clear whether
we can rewrite basic equations without numerically dangerous terms. The only
varibles which behave well at » =0 and on the axis seem to be Yzz, ¥, 72z, Yz, ¥vz and
72z although there is no proof for this statement.

The above consideration suggests. to us that we had better use the component of
metric tensor in (x, y, z) coordinates as basic variables. Then there are no merits to
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write down the Einstein equations in (7, 8, ¢) coordinates. In reality if we use 7,
7yy, *-+,etc., the basic equations will become the Einstein equations in (x, v, 2) coor-
dinates. This does not mean that we should use (z, v, 2z) coordinates for grids. If we
use (x, ¥, z) coordinates for grids, there is no problem concerning regularities but we
have severe problems concerning the number of memories, computing time, numerical
boundary conditions and so on. In future if we have super-super computers, the
above difficulties will be removed. However at present it is almost impossible to use
(z, v, 2) coordinates for grids in 3D numerical relativity.

Now we shall write down the Einstein equations in (x, v, z) coordinates. Then
Yxz, Yy, etc., and Kur, Ky, -+, etc., are basic variables although we use (7, 8, ¢) for
grids. In this choice one of the simplest way is to transform 0/dx, 9/dy, 3/6z to finite
difference versions of 9/dr, 8/30, 3/d¢ as

0

%:sinﬁcosqo 3T cosfcosg 0 sing 0 (5:57)

r 90  rsinf o’

9 _ . p. 0  cosfsing d , cosg J : .
oy =sinfsing 8r+ v 90 ' rsinf dp (5-58)

and

0 yep0._sind 9
9z U T 98-

(5-59)

In reality, Nakamura (1985 unpublished) tried to construct a 3D code by this method.
But he found first the last terms in Egs. (5:57) and (5:58) are numerically dangerous
and numerical instabilities arise on the axis. So we must get rid of these dangerous
terms in order to construct a 3D code in numerical relativity.

Let us assume every quantity @ in (z, v, z) has a Tayler expansion as

o a,,b,c
Q(x) y’ Z’ t):a'b’zczoaabC(t);!—g!i‘T . (5' 60)

Now, we try to express Eq. (5-60) by using spheriéal harmonics Y. If we notice that
sinf?*9cos¢’singp?cosf” is expanded as a sum of spherical harmonics of the form
[MacRobert (1968)]

{cos me

. }Plzn+q+r—2n(‘9) ’ %:O) 17 27 Ty (5'61)
sinme

it is possible to show that & can be reexpressed as
Q=27'"Qun(7* 1) Yin(0, ¢), (5-62)
where Q.» has a Tayler expansion about »*(not ) as
7,271
Qun(72, t)=Zn‘.q?m(t)7. (5-63)

We need the first and the second derivatives of @ in order to calculate R; and
other quantities needed in numerical codes. We first need the first spatial derivative
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of Q. For example let us consider 0Q/0z. Since 0Q/0z should have the Tayler
expansion like Eq. (5:60) as

% q pqr(t) " y‘iy ’ . (5.64)

0Q/0z should have the spherical harmonic expansion as
2L 51 Q7 1) Yin(6, 9). (5-65)

Q7.(72 t) should have a relation to Qu(#? ¢) which is calculated as

lzm(Vz, t):CIZ(l, WZ) ai) Ql—l,m

+ Gl m)<2w Qz+1m+<zz+3)@+lm),  (5-66)

where

_o [U+m)(I—m)
Ciel, m)—z\/(zzﬁ)(Zlﬁ) ’

v [UAm+ D —m~+1)
Caa(1 m)—\/ (znf+3)(2z+ni)

and
w=7r?.

Similarly we have @7» and @i» which are expressed as

Qin+1QMm= 2C1(l, m)a—iu_Ql—l,m—l

+2<C5(l, m>Q1+1,m—1+2C2(l, m)W%Ql+l,m—l> (5'67)
and
b= iQtn=2Cx(1, m)=2-Q
im Im 3\¢, aw {-1,m+1
—2( Col, m)Quirmas +2CuL, mYwg=Qusn, wet), (5-68)
where

(I+m)(I+m—1)
2/—-1)21+1) °

(I—m+2)({—m+1)
al, m)\/ [ES VIR I

C1(l, m)=
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_ JU=m=D{—m)

Cs(l, m)= (2/”11)(21+17;€ ’
_ [Gxmt2)((+m+1)

Cu(l, m)= ($+3)(21+ni) ’

Cs(l, m)=C\(Il, m)(2]1+3)/2
and

Ce(l, m)=Cu(l, m)(2/+3)/2.

We need also the second derivative to estimate Ricci tensor. However for the
second derivative of @, formulae become very complicated. We should first operate
0/0x, 8/0y and 8/0z to dQ/ox, 0Q/dy and 0Q/dz by hand. There will be a mistake in
this process. Next we must type the results to obtain the FORTRAN (Formula
Translator) program for numerical calculations. In this process also, there will be
many mistypes and misunderstanding of the expressions. To avoid all these mis-
takes, we use algebraic softwares such as REDUCE. We first make a program in
REDUCE to make a FORTRAN source program for numerical calculations of second
derivatives as shown in Appendix A. The statement in REDUCE is very close to the
original formula by hand. The REDUCE produces automatically the FORTRAN
statements as shown in Appendix B and stores them in disk memories of computers.
In this process, no errors exist besides the original program in REDUCE like Appen-
dix A. If there is a mistake in Appendix A, then the results will be completely
different from the correct one shown in Appendix B, which is easily checked by
calculating the second derivative of known functions. So in 3D numerical relativity,
the ability of algebraic manipulations of the computer is very important as well as
that of numerical digital calculations.

We adopt Qum in Eq. (5:62) as basic variables of the Einstein equations. We
express 7:; and Ki; as

ro=27"yF(r% t) Yin(0, @) (5-69)
and

sz:zrle!jm(Vz, t) Ylm((g, §0) . (5’70)
Then the first part of Eq. (5-48) becomes

2yl —— 2K (5-71)

As the second part has nonlinear terms, an expression like Eq. (5:71) is not possible.
We need more consideration.

For large 7, metric tensor has only slight difference from Galilean form 7 and
can be expressed as

Yi=nu+ Vi,

where
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77ij:3ij and i?ij!<<1.

From Eq. (5-48), we can see Kj; for large # is the first order quantity concerning 7.
Now let us consider the evolution of K= y“K,; and y=det(y:;). From Eq. (5-48), we
have

a\i’: —2Ky (5-72)
and
%ff_:@)R FK? (5:73)

Inserting the Hamiltonian constraint equation (Eq. (5-1)), we obtain

oK

T =KiK" . (5-74)

Equation (5-74) shows that for large » K is the second order quantity although K
itself is the first order one. This means that y—1 is also the second order. Now let
us rewrite the momentum” constraint equations as

aK.lJJ:_j; 8[Ku+yb([:’7 sz+n Km])—{" aK _Fiy (5.75)
ox ox
where

Fil= it pit

Since the Christoffel symbols and 7. are the first order quantities, F; is the second
order quantity. Using the first part of Eq. (5-48), we have

J . _ 87;;) -
a.Z'j 71]”'( 2/ Fdf (5 7())

Equation (5:76) tells us that dy:/0x’ is the second order quantity except for the initial
value. Equations (5-74) to (5:76) guarantee the transverse traceless nature of the
metric as it should be even in numerical version of the Einstein equations.

Ricci tensor is the most complicated source term for K;;. The explicit form of
Rij is

o km ,L( 0*Yim Py Py 0 )’km) n}
Ru=r| g G+ i s~ Gt )+ (B Tl .

(5-77)
We define (Rz’kjm)lin and (Rz‘kjm)Nonlin by
Prim . Py Frs  Pem ) _
(Rixjm)in= <8xk8:c T x9x™  dxtox™ | ox'ox’ (5-78)

and

(Rikjm)Nonlin:Fn,ij;ln - Fn,kmf’z'? . (5 * 79)
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It is clear that (Rm)un is the first order quantity while (R :xjn)nomin is the second order
one. Using (Rim)in and (Rixm)nonin, we can rewrite Eq. (5:77) as

1, 1 9 /37’z‘k> 1 9 /87jk>
Rz] 2A7u+ 2 ax_;\ axk + 2 8,1'2\ axk
1 ————82 v 9 5 = ki km
9 axi8xj(7ll+ Voot Vs3)+ 7 (Rily‘m)lm‘f'V (R iajm)Nontin . (5-80)

We first see the last two terms are second order. The det(y:;)(=7) is written explicit-
ly as

y—1=(1+ 71)(A+ 722)(1+ ¥33) +2 712 723 Va1
—(1+ 7)) 75—+ 72) 75— 1+ 733) 7—1
=¥Yn+ Yt Ysst+det2. (5-81)

Since y—1 and det2 are the second order, 711+ 722+ 733 is the second order. Using
Eq. (5:81), we can rewrite the third term of Eq. (5:80) as

F o oo sy Oy & .
axiaxj(7ll+ 7ozt Ta3)= o ariapraet?. (5-82)

If one uses the expression of the r.h.s. of Eq. (5:82), the second order nature of this
term is guaranteed numerically. However if one uses the L.h.s. expression, the second
order nature is not guaranteed numerically because each term is the first order. A
slight truncation error makes this term the first order and violates the traceless nature
of the waves. Although on the r.h.s. the expression of the second derivatives of det2
becomes very complicated, REDUCE is very powerful in the calculation of this term.
The results in the FORTRAN statements are shown in Appendix C. There the
notation as

71 72 Vs
Yu=| 72 72 Vs (5-83)
Y3 Vs Ve

is used.
At first sight, the second term of Eq. (5:80) seems to be the first order. However
inserting Eq. (5:76) into this term, we have

L 52?’z‘k 327jk >Jt [ Y oF; GE
[z<axjaxk+axfaxk o ﬁ(aﬂ* oz

which shows this term is also the second order except for the initial value. In reality
we define Fy; by

2 2.,
Fz-jz~1—< O yin O Yie ) (5-85)

)dt , (5-84)

2\ ox’ox* = oxiox*

From Eq. (5-84), we have the evolution equation for Fi as



Part I General Relativistic Collapse of Axially Symwmetric Stars 91

oFy _ ( oF: , JF, > ' (5-86)

ot 8:rj+ ox’

We will solve Eq. (5-86) with initial values as

___1__ az)’ik aZQ’jk ) .
Fy= 2 ( ox’ox"” + oxiox® )i=o" (5-87)

Since the source term of Eq. (5:86) is very complicated, we also use REDUCE to
produce the FORTRAN program and a part of the results is shown in Appendix D.
Now it is possible to rewrite Eq. (5-80) as

1 - 8

Ri=—
+ 7km<Rikjm)nn+ ykm(Rikjm)Nonlin . (5 . 88)

5.4. Numerical methods

In our formalism the basic equations to be solved become

%V_ﬁ:*z&j, (5-89)
%1; _9K(14T), (5-90)
oK i .
T =KiK ' (5-91)
aalL Kz.) Rz] +KK1J ZKilKlj (5'92)
and
oFy _ [ 0F: | 9F; _
7 (axf t axf> (5-93)
where
I'=y—1.
We expand 7, Ki, I', K and Fy; as
=§nr‘75?(r2, HYm(8, @), (5-94)
Ky=37 'K, ) Yin(6, 0), | - (5-95)
F=§V‘F“”(rz, HYwm(6, o), (5-96)
K=%7'K"(r* 1) Ym(0, ¢) (5-97)

and

Fy=2r'Fg(r*, 1) Ym(, ¢) . | (5-98)
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Inserting Eqs. (5-94) to (5-98) into Egs. (5-89) to (5-93), we have

2 yip =2kl (5-99)
L = a3 [KrYEde)", (5-100)
B — [viroKodop, (5-101)
L k= ——(<zz+6)—+4w T [STE s viaor v Py [Yaae
x (52 (?a = det2+ 7*"(Rixgm)in
7 Rugmenin K I — 2K K ) (5-102)
and

frr—real 38 =

where w=17? and Y:»™ is the complex conjugate of Yi». As for the integration about
solid angles, we use 41 points Gauss quadrature in §-direction and 16 points Discrete
Fourier Transform in ¢-direction, although the numbers such as 41 and 16 are
tentative and depend on the ability of the computer. The number of grids in 7-
direction is 100 with 7max—7ro where 7o is the initial radius of the wave packet
(Eq. (5-40)). We use w=7? as an independent variable instead of 7, because 7%,
K&+, etc., are functions of »*>. The i-th grid point is determined by the rule as

wWi=w;—1+ ”(Wi—l_u}z'72) , (5'104)

where 7(>1) is a constant. For each w, m ranges from —8 to 8 and / does from ||
to [m|+10. As before these numbers of grids are tentative and depend on the ability
of the computer.

We use the finite difference scheme with respect to w as

gg} <ﬁzw0; QZJrI_%Qil)/(ﬂwJﬁl—Aw_)ﬁ— Q (dws— Aw-) | (dw, + Aw-)
and
ZQ 2 er+1 z 1 B : . .
~ Uwi+ Zw) U dw, - Aw } 2Q' (4w dw-), (5-105)
where

Awi=wim—w:; and Adw-=w;—w;_.

‘As for the numerical boundary conditions, we use a simple outgoing wave condition
as
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(5%_—%>(7Z+Ile)‘7=Tmax:0 ’ . (5’106)

to estimate Q™ (wmax+dw, t). We adopt a leap frog method for integration about
time. 7y and [’ are determined at fx+12, while K, K;; and Fi; are determined at ..
This guarantees that the integration about time is essentially second order.

5.5. | Numerical results

For a low amplitude gravitational wave packet the numerical solution should
essentially agree with the linearized one. As an linearized solution we use Eq. (5-40).
Then the solution is expressed in units of =1 as

2

2
Azz=~35~exp<— r ;—t )[Cosh(n‘)(273t+3rt)~—sinh(n‘)(7’4+ r2 2+ 2%+ 3)],
(5-107)

2
Goo= ~”7Azz , (5-108)

N 1 ri4¢? 541 3,3 3
Bzz———?zexp — [cosh(#t)(37°t+ 733+ 373t +641)

—sinh(#2)(#®+ 3742+ 3722+ 372+6)] , (5-109)

__1 r’+t? 2 543 5 343
Fr=-5 sexp| — 5 |lcosh(#£)(47*t +47°t* =67t +20°£°+37¢)

—sinh(#£)(72+ 6752 —47°+ »*t*+ 3722+ 3)] .(5-110)

The metric tensor in (7, 8, ¢) coordinates is given by

Yrr= RG(AZZ YvZZ( 69 (0)) ,

Yra:Re<Bzz—a%‘ Y220, §0>> )

yro=Re( Burs Y0, 9))

700=Re(F22 Was+ G2 Y2) ,

7Yoo =Re((Faz Waz— Gz Ya2)sin’6) (5-111)
and

700 =Re(F3:X22)
where

0 1 &

_( & __#_ﬁ_ﬁ) ,
W”‘( 562 ~COt035 ~sinta ag7 ) Y2

and
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Xm:za—‘;(%—cow) Yoo . (5-112)

Since Y2 is expressed as

_ [ A5 . 2 s
Ya2 \/;;smﬁe ,

W22 and Xz become

Wao= %—(4—2511129)@21@

and
Xo2=,/ £—4 7sinfcos fe** (5-113)
327 :
As we are using Yz, Ya, -, €tc., we must first perform the transformation from 7,
Yro, ***, etc., to Yuz, Yay, ***, etc., which is straightforward but very complicated. We

use REDUCE again to do that. For each 74, our basic variables are Y.» component
of 75(7#"). So we need further algebraic manipulations to decompose 7. into 7.
As a result we have 21 nonzero components of 7. They are 7%, 7%, v22, ri, 71,
YTz, Vi3, Yi5, Yak, Y52, V39 Vows Vown  Vaw, Vv, Yow, Ve Yoz, Ve, 722 and 7z . The analytic
expressions of all these components are derived by REDUCE and a part of results
(%) is shown in Appendix E in FORTRAN statements. As a check of results, we

calculated

2 2
CHECK="Lptp—(- L+ 22— LED ) (5-114)

by REDUCE, which should be zero.
We show numerical results for A=10"?% in units of »=1. In Fig. 5-2, we show
viz" "X 7 as a function 7 at various time levels. Dashed straight lines show zero

~3
3.2x10

~3.8x10 " LoLL L s
0 t=0.75 /T, 7

(a)
Fig. 5-2. (continued)
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(b)

r/r

bl I MMt e e b g ey Aty be kbl v b g by
0 -
1=3.76 /1,
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-38x10°
0
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(d)
Fig. 5-2. (continued)
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(2)

Fig. 5-2. (a)~(g) Spherical harmonics component (/=0 and #=0) of the metric tensor 75" °X » for
A=10"% Both the ordinate and the abscissa are linear scales. Solid lines show ((7zz)i=m=0X 7)
and dashed straight lines in the middle show zero levels. Curved dashed lines in (c) to (g) are the

difference between numerical results and the linearized solutions.
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amplitude. Dashed curved lines show the difference between numerical results and
linearized analytic solutions shown in Appendix E. When the difference is small
enough, we cannot distinguish between the curved lines and the straight zero level
lines. Time steps needed for this calculation are 650. The maximum 7 is 7(=77
with 7=1) and the increment of time at each time step (4¢) is 0.015. The
computational time is 3 hours for all evolution by using a supercomputer FACOM VP-
200 with computing speed 400 MFLOPS. In Fig. 5-2, we have at early times ingoing
and outgoing wave packets near the center. As time elapses the outgoing waves
propagate outwards while the ingoing waves propagate inwards and are reflected at
the center to travel outwards finally. As the results, we can see several crests and
troughs. Since we show (7:"=°) X in Fig. 5-2, the spherical damping effects are
already taken into account. Thus the wave for late times is essentially expressed by
a simple function of the form f(» —¢). This means if we compare two figures with
different time levels in Fig. 5-2, they agree each other by the appropriate parallel
transport of one of the figures along #-direction.

At t=5.26, we can see the slight difference between the numerical results and the
linearized solutions. One of the reasons for this difference is that a few percent error
can be expected due to the non-linearity of the system. Since the wave amplitude is
1072 the non-linear effect is 10™*. Thus a percent contribution from non-linear term
to the solution will not be strange. The other reason comes from the numerical
boundary conditions. As the large difference appears near the outer boundary of the
numerical grids, it may be due to simple outgoing wave conditions used in this paper
as Eq. (5:106). As shown in a simple model system by Anderson and Hobill (1986),
if one uses a higher order matching between an outer analytic solution and a numer-
ical inner solution, the accuracy becomes much better than a lower order matching.

Anyway, at t=9.76, we see the wave goes away from the numerical outer
boundary without the artificial reflection of the wave. Figure 5-3 shows the evolution
of the metric component 7z» in the meridional plane, that is, x=0 plane. In Fig. 5-4,
we show the evolution of 7z in the equatorial plane, that is, z=0. At early times, we
can see two peaks in each constant » near the center. The wave pattern clearly
shows the quadrupole nature. Both Figs. 5-3 and 5-4 show that there is no artificial
reflection of the wave at the numerical boundary and the wave passes through
correctly.

In Fig. 5-5, we show the ADM energy flux estimated at » =57, from numerical
data by a solid line. A dashed line shows an integration of the ADM energy flux and
an arrow shows the ADM mass from the initial data. Each peak of the ADM energy
. flux corresponds to the troughs and crests in Figs. 5-2 to 5-4. A dotted line shows the
difference between the ADM energy flux calculated from the numerical simulation and
a linearized solution. We can see the bigger difference corresponds to the lower
energy flux. Even the largest difference is smaller than 10%. The mean difference
is a few percent. This suggests to us a possibility of estimating the energy of the
gravitational waves from the numerical results within an error of a few percent even
in 3D numerical relativity.
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Fig. 5-3. (a)~(i) Evolution of metric tensor (yzx—1) X » in the meridional plane.
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Fig.5-5. ADM energy flux. A solid line shows the
ADM energy flux of gravitational waves
estimated from.the numerical results at 7 =57.
A dashed line shows the integration of ADM
energy flux and an arrow shows the initial
ADM mass. A dotted line shows the
difference between the numerical results and
the linearized solution for A=1072
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Appendix A

A part of REDUCE program to produce FORTRAN program of second der-
ivatives.

Q0300
00310
00320
00330
00340
00350
00360
00370
00380
Q0390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
LR O

00510
00520
00530
00540
00550
DO570
00580
00590
00610
00620
00640
00650

D060

FOR AL LaMsY LET GZCL My Y)=CLZ LM *DFCGCL=~14M, YD Y)
FCZZCL MY Y #DECGCLEL My Y o YO HC3ZCL s MY #GCL+L Mo YD 3

FOR ALL LaMyY LET GXCLMyY)=mCLCL M) *DF (GCL=1 s M=1,4Y) YD
FCZCL A M Y4 DF CGCLAL s Ml YD) o YO +CSCL s MY #GCL+L s M1 YD
FCICLMIDFCECL~T1M+L YD YD

=G4 M) *Y 2 DF CGCLHL ML, YD) » YOI =COHCL s MY #GCLA+L ML, YD 5

FOR ALL LaMsY LET GYCL My YI=(mCLCL s MI*DF CGCLm1 s M=14Y)sY)
FCZCL MY #Y*DFCGCLAL M=1,Y D, YO +C5CL s MO +GCL+L s M=1,Y)
wCBCL M) *DF CECL=1 s M+L YD 5 YD)

FCACL MY Y4 DFCGCLAL ML, YD) 2 YO HCOHCL s MY *GCL+1 ML Y20 /15
FOR ALL LaM.Y LET GZXCLaMaYI)=C1ZCL M) #DF CGXCL=1sMsY )5 YD)
FO2Z Ly MY DF CEXCLAL My YD o YO +CIZCL M #GXCL+L s My YD 3

FOR ALL LaMsY LET GXYCL oMy YI==CLCL M) *DFCGY CLm] s M=1,Y25Y)
FC2CL s M Y +DFCQY CL+L s M=1,Y ) o YI+CSCL s M) *QY CLL+1 4 M=1,Y 2
FESCL MY *DFCEY CL=1M+15Y) 5 YD

~CGCL MY DECEY CL+HL ML, YD 5 YOI =CEHCL MO #GY CL+HL M+1 YD 3
FOR ALL LMY LET GYXCLMsYI=(=CL L MI*DFCaX (=1 M=1,YD,Y)
FC2CL MY Y #DF CAXCLAL s M=1 3 YD 5 YOI +CECL s M) #GXCL+L o M=1 YD
=C3CL MY *DECEX LT s M+15Y )2 Y)

FCLCL s MDY #DF CAXCL+HLM+L. YD YO +HCOHCL s MO *GXCL+L M+, Y22 /135
FOR ALL LM,Y LET GZYCL M YI)=CLlZCL M) *DF CGYCL=1aMaYD5YD

FC2ZCL s MY #YxDECOY CLAL s Ma YD YOI +C3ZCL My +GYCL+1. M, YD 5

FOR ALL LaM.Y LET GXZCL My Y)==CLCL s MI*DF (GZCL =1 M=14Y2 YD
FC2CL MY ADF CGZCLAL o M= 5 YD) 5 YI+CECLMI*GZCLAL s M=14Y)

FCFCL s M #DF CQZCL =L 4 M+L YD)

A CL s M) Y DE CQZCLAL M1, Y) s YI=COHCL MI*GZCLAL ML, Y23

FOR ALL LaMyY LET GYZCL My YI=(mCLCL MY #«DF CAZ =] s M=1,Y)5Y)
FCZCL MY DF CEZCLAT s M1 4 YD 5 YI+CECL s M) #QZCL AT s M1 5 YD

3L M DFCEZ =1 M+, YYD

FCACL MY *Y*DE CGZCLAL »M+L YD 5 YO +CHCL M *GZCLAL ML, YD) /T3
FOR ALL LaM.Y LET GZZCL M, Y)=CLZCL M *DF CGZCL=1+M3Y2 YD
FCZZCL MY *DF CQZCLAL s Ma YD s YOI +CEZCL MO +GZCLAT MY D 5

FOR ALL LaMyY LET GXXCL oMy Y)==CLCL oM *DF (GXCLmL sM=L14sY 2, Y)
FCZCL MY *DF CGXCL+L»M=1,Y 2 s YI+CSCL s MY *GXCLA+L  M=1,Y)

FC3CL MY #DF CAXCL=1 s M+15YD5YD

mCACL MR YR DF CGXCLAL S M+L s Y) 3 YI=CEHECL s MY *GXCL AL M+, YD 5

FOR ALL LMY LET GYYCLMsYI=(=CLCL M) *DF (GY (L1 M=1,Y2 YD
FCZCL MY Y DECGY CL+L o M=l YD o YI+CSCL MO *GYCL+LM=1,Y) -
=CHCL MY *DFCEY (L1 4M+1,YD YD

ACLCL MY *DECEYCLAL ML, YD 5 YO 4+CHCL MO *QY CLAL M+1,Y2 D /T35
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Appendix B

A part of FORTRAN list of spatial second derivative.

QZ=QCL+1,M)*C32ZCL, M) +Q1(L-1,M)*C1Z(L, M) +Q1CL+1,M)*C2ZCL, M)
. %Y

AX=QCL+1,M=-1)%CS5CL, M)-Q(L+1,M+1)*xC6C(L,M)-Q1CL-1,M-1)>%C1(L,
. M)4+Q1CL-1,M+1)%C3(L,  M)+QL1(L+1,M~1)*%C2CL, M) *xY~-QL1(L+1,M+1)x
. CL(L, M) xY
QY=I%*x(-1)%C(QCL+1,M=1)%CS5CL, M) +QCL+1,M+1)%C6(L, M)-Q1(L-1,M
. =1)*C1C(L,M)-Q1CL-1, M+1)*C3 (L, M)+Q1(L+1,M=1)%C2(L, M) *xY+Q1(C
. L+1,M+1)%CL (L M) XY)
AXZ=Q(L+2,M=1)%CSCL,M)*C3Z(L+1,M=-1)-Q(L+2, M+1)%C&CL, M) xC32
. (L+1,M+1)-Q2C¢L-2,M=-1)*C1CL, M) *C1Z(L-1,M=-1)+Q2(L-2,M+1)*C3
e (LoMIYXC1ZCL-1,M+1)+Q2(L+2,M=1)%C2 (L, MY*C2Z(L+1, M=1)xY%x%2~
. Q2(L+2,M+1)%C4 (L, M)XC2ZCL+1, M+1) xY*%2+Q2C(L,M-1)%xC2(L,M)*
. C1ZC(L+1,M-1)%Y-Q2CL, M=1)%C1(L, M)%xC2ZCL-1,M=1)%xY-Q2(L,M+1)
. *C4L(L,MIKCL1ZC(L+1 M+1)*Y+Q2CL M+1)%C3(L, MY*C2Z2CL~-1,M+1) %Y+
. QICL+2,M-1)%C5CL,M)*C2ZCL+1,M=1)xY+Q1(L+2,M=-1)%C3Z(L+1, M~
. 1)XC2CL M) %xY+Q1CL+2,M=1)%C2C(L, M)%C2Z(L+1,M-1)%xY-Q1(L+2, M+
e DIXCOECL MIXC2ZCL+1,  M+1) %Y ~QL1CL+2, M+1)*C3Z2CL+1,M+1)%xC4 (L, M

« I*Y-QL(L+2,M+1)*xCL (L, MIXC2Z(L+1, M+1)%Y+Q1C(L,M=1)%C5C(L, M) %
- C1Z(L+1/M-1)-Q1(L,M-1)D%C3Z(L-1,M-1)%C1C(L,M)-Q1CL, M=-1)%C1¢
« L/MIXC2Z(L-1,M-1)-Q1C(L/, M+1)*COCL, M)XCL1Z(L+1, M+1)+Q1 (L, M+1
« I*xC3Z(L-1,M+1)*C3C(L M)+Q1 (L, M+1)%C3 (L, MY*C2Z(L~-1,M+1)
ANS2=-Q1(L+2,M+2)*CO(L+1,M+1)*%C4 (L, MY XY-QLCL+2, M+2) %C& (L, M
« I*CACL+1, M+1)*Y~QL(L+2, M+2) %C4(L+1, M+1)%C4 (L, M) xY+Q1(L+2,
« MI%COCL+1, M=-1)%C2CL M) *Y-QLIC(L+2, M) %CHCL, M) *%C2CL+1, M+1) %Y~
- QLCL+2 , M)%CSCL+1 , M+1)%xCALCL, MY %Y+QL1C(L+2,M)%CSCL,MYXC4(L+1,
« M=1)xY+Q1(L+2, M) *%CALCL+1, M=1)%C2 (L, M) %Y-Q1CL+2, M) *xC4 (L, M) x
o C2CL+1 , M+1D%xY-Q1C(L, M-2)%C5CL~-1,M=1)%C1CL - M)-Q1 (L, M=-2)%C5¢
- L/eM)xC1T(L+1,M-1)-Q1CL, M=-2)%C2(L-1,M-1)%C1(L, M)+Q1 (L, M+2) %
. COHCL-1,M+1)*C3C(L, M)+Q1CL, M+2)%COCL, M) XC3C(L+1, M+1)+Q1 (L, M+
- 2)¥xCH(L-1,M+1)xC3CL  M)-QLICL, M) *COCL-1,M=-1)%C1C(L, M)+Q1C(L,M
< I¥CO6CL/MIY*CLC(L+1, M+1)+Q1 (L, MI®CSCL-1,M+1)%C3CL, M)=-Q1CL, M)
- *CS5CL M) *C3C(L+1, M=-1)-Q1CL, M)*C4(L-1,M=1)%C1C(L, M)+QL1CL, M) x
. C3(L - MYxC2(CL-1,M+1)
ANS1=Q(L+2,M-2)*C5CL+1,M-1)*CS(L,M)-QCL+2,M+2)*%C6(L+1,M+1)
« *COHL M)+Q(L+2, MI*COHCL+1,M-1)%xC5CL, M)-QCL+2,M)%C&CL,M)%CS
. (L+1,M+15+4Q2(L-2,M-2)%C1(L-1,M-1)%C1 (L, M)-Q2(L-2,M+2)%C3(
o L=1,M+1)%C3 (L, M)+Q2CL-2, M) *C3(L~1,M=1)%C1C(L,M)~-Q2CL-2,M) %
« C3CL - M)xC1(L-1,M+1)+Q2C(L+2, M=2)%xC2C(L+1,M=-1)%C2CL, M) %xY%%x2~
« Q2CL+2,M+2) % CACL+1  M+1) % CACL M) XY %x%x24+Q2(L+2, M) *C4(L+1,M-1
o I*C2(L/ M)*xY*x%x2-Q2(L+2, M) *C4L (L, M)*C2CL+1, M+1)*xY%x%2-Q2(L, M-
. 2)%xC2(L-1,M-1)*xCLCL M) %xY~-Q2CL, M=2)%C2CL, M)*CL1(L+1,M-1) %Y+
- Q2L M+2)¥xCL(L-1, M+L)%C3CL M) *Y+Q2CL,  M+2)%xC4L (L, MYXC3(L+1,
- M+ *xY-Q2CL , MI)*C4(L-1,M-1)%C1CL, M)XY+Q2CL,M)*%C4 (L, MY%C1(L
o t1/M+L)XY-Q2CL, M) XC3(L+1,M=1)%C2CL, M) *Y+Q2CL,M)*C3 (L, M) x
« C2CL-1,M+1D*Y+Q1(L+2,M=-2)%C5CL+1, M=1)%C2C(L, M)*Y+Q1(L+2, M-
. 2)xCS5CL/ M)*C2CL+1,/ M-1)%Y+Q1(L+2,M=2)%C2C(L+1,M=1)%C2CL, M) %
. Y+QNS?2

QXY=I%%x(-1)*QNS1
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Appendix C

FORTRAN list of derivatives of det 7.

Cmm e e
CDET21>
C
000607 DET21=GD261%GD4*xGD1+GD261%GD4-GD261xGD2xx2+
. GD261%GD1-2.%xGD251%xGD5%GD1-2.%xGD251%GDS5+
. 2.%GD251%xGD3xGD2+GD241xGD6*xGD1+GD241xGD6
. -GD241%GD3%%x2+GD241xGD1+2.xGD231xGD5%GD?2
. —2.%¥GD231%GD4%xGD3-2.%GD231xGD3-2.%GD221«%
. GD6%GD2+2.%GD221%GDS*GD3-2.xGD221%xGD2+GD2
. 11xGD6%GD4+GD211%xGD6-GD211xGD5%xx2+GD21
. 1%xGD4+2.%GD161*xGD141%GD1+2.%xGD161%xGD141~
. 4.%¥GD161xGD121*GD2+2.%GD161%xGD111%xGD&+2.%
. GD161%GD111-2.%GD151*x2%GD1-2.*GD151%%x2+4.%
. GD151xGD131%GD2+4.xGD151%GD121%Gb3-4.%xGD1
. 51%xGD111%xGD5-4.%GD141%xGD131*xGD3+2.%GD14
. 1x*GD111xGD6+2.%GD141%GD111-2.%xGD131%%x2%GD
. 4-2.%GD131%%x2+4.%xGD131%GD121%GD5-2.%GD121
. ¥%x2%xGD6-2.%GD121%xx%x2
C
CDET22:
C
000608 ANS1=-2.%GD142%GD131xGD3+GD142%xGD111*GD6+
. GD142%GD111~-2.%xGD141xGD132xGD3+GD141%GD1
. 12xGD6+GD141%xGD112-2.%GD132*xGD131%xGD4~
. 2.%xGD132xGD131+2.%xGD132xGD121%GD5+2.x%GD131
. ¥GD122%xGD5-2.%xGD122%xGD121%GD6-2.%xGD122%
.. GD121
000609 DET22=GD262*xGD4xGD1+GD262%GD4~-GD262%GD2%x%x2+
. GD262%GD1-2.%xGD252%GDS*xGD1-2.%xGD252%GD5+
. 2.xGD252%xGD3*GD2+GD242%xGD6*GD1+GD242%GD6
. —GD242xGD3xx2+GD242xGD1+2.xGD232%GD5%GD2
. —-2.%¥GD232*GD4xGD3~-2.%GD232xGD3-2.%GD222%
. GD6%GD2+2.%GD222*GD5%xGD3-2.%xGD222*xGD2+GD2
. 12%xGD6xGD4+GD212*GD6-GD212*xGDS*xx2+GD21
. 2xGD4+GD162xGD141%xGD1+GD162%GD141-2.%GD1
. 62%¥GD121%GD2+GD162%GD111%xGD4+GD162xGD1
. 11+GD161xGD142xGD1+GD161%GD142-2.xGD16
. 1%¥GD122xGD2+GD161xGD112*GD4+GD161xGD11
. 2-2.%GD152%xGD151%GD1-2.xGD152%xGD151+2.%GD1
. 52%GD131%xGD24+2.x%GD152xGD121*xGD3-2.%GD15
. 2%¥GD111xGDS+2.%GD151xGD132%xGD2+2.%xGD151x
. GD122%GD3-2.x%GD151%xGD112*GD5+ANS1

000611 DET23=GD263%GD4*GD1+GD263*GD4-GD263%GD2%x%x2+
. GD263%xGD1-2.%GD253%xGD5%GD1-2.%GD253*%GD5+
. 2.%GD253*GD3*GD2+GD243xGD6*xGD1+GD243%GD6
. ~GD243xGD3%x%x2+GD243%GD1+2.%xGD233%xGD5%GD?2
« —2.%GD233%GD4%GD3-2.%GD233%xGD3-2.%xGD223%
- GD6xGD2+2.%xGD223*%GD5%GD3~-2.%GD223%xGD2+GD2
. 13%GD6%GD4+GD213%GD6-GD213xGDS*x%x2+GD21
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. 3*GD4+60163*60141*GDi+GDléS*GDl&1—2.*GDi

. 63*60121*GDZ+G0163*GD111*GDL+G0163*GDl

. 11+GDlél*GD143*601+60161*60143-2.*GDlé

. 1*60123*GDZ+60161*GD113*GD4+60161*G011

. 3—2.*GD153*6D151*G01—2.*GDlSS*GDlSl+2.*GDi
. 53*GD131*GD2+2.*GDlSS*GDlZl*GDS—Z.*GDlS

. 3*GDlll*GDS+2.*GDlSl*GDl33*GD2+2.*GDiSl*

. GD123%GD3-2.%GD151%GD113%GD5+ANS1

CDET24;
c
000612 DET24=GD264%GD4*GD1+GD264*GD4~GD264*GD2*%2+
. GD264%GD1-2.%GD254%GD5%GD1~2.%GD254%GD5+
. 2.%GD254%GD3%GD2+GD244%GD6*GD1+GD244%GD6
. -GD244%xGD3%x%2+GD244%GD1+2.%GD234*GD5%GD2
. ~2.%GD234%GD4%GD3-2.%GD234%GD3-2.%GD224x
. GD6%GD2+2.%GD224*GDS*GD3-2.%GD224%GD2+GD2
. 14%GD6%GD4+GD214%GD6-GD214*xGDS5*%x2+GD21
. 4%GD4+2.%GD162%GD142%GD1+2.%GD162%GD142~
. 4.%GD162%GD122%GD2+2.%GD162*GD112%GD4+2 . %
. GD162%GD112-2.%GD152%%2%GD1-2.%GD152%%2+4.%
. GD152%GD132%GD2+4.%GD152%GD122%GD3-4.*GD1
. 52%GD112%GD5-4.%GD142%GD132%GD3+2.*GD14
. 2%GD112*GD6+2.%GD142%GD112-2.%GD132%%2%GD
. 4-2.%GD132%%2+4.%xGD132xGD122%GD5-2.%GD122
. *%2%GD6-2.%GD122%%2
c
c
CDET25;
c ,
000613 ANS1=-2.%GD143%GD132%xGD3+GD143%GD112%GD6+
. GD143%GD112-2.%*GD142%GD133%GD3+GD142%GD1
. 13%GD6+GD142%GD113-2.%GD133%GD132%GD4~
. 2.%GD133%GD132+2.*GD133%GD122*GD5+2.%GD132
. %xGD123%GD5-2.%GD123%GD122%GD6-2.%xGD123x
. GD122
000614 DET25=GD265%GD4*GD1+4GD265%GD4~-GD265%GD2x*2+
. GD265%GD1-2.%GD255%GD5%GD1-2.+GD255%GD5+
. 2.%GD255%GD3%xGD2+GD245%GD6xGD1+GD245%GD6
. —GD245%GD3%%2+GD245%GD1+2.%GD235%xGD5%GD2
. -2 .%xGD235%GD4*GD3-2.%GD235%GD3-2.%GD225%
. GD6%GD2+2.%GD225%GD5%GD3-2.%xGD225%GD2+GD2
. 15%GD6%GD4+GD215%GD6-GD215%GD5**x2+GD21
. SxGD4+GD163%GD142*GD1+GD163%xGD142-2.*GD1
. 63xGD122%GD2+GD163%GD112xGD4+GD163%GD1
. 12+GD162%GD143%GD1+GD162%GD143-2.%GD16
. 2xGD123xGD2+GD162%xGD113%GD4+GD162xGD11
. 3-2.%¥GD153%GD152*GD1-2.%GD153%xGD152+2.%GD1
. 53%GD132%GD2+2.%GD153%GD122%GD3-2.%GD15
. 3%xGD112%GD5+2.%GD152%xGD133*xGD2+2.%GD152%
. GD123%GD3-2.%GD152%GD113%GD5+ANS1
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c

CDET26>

’ C
000615 DET26=GD266%GD4xGD1+GD266%GD4~GD266%GD2*x*2+
. GD266%GD1-2.%¥GD256%GDS5%GD1-2.%GD256%GD5+
. 2.%¥GD256%GD3xGD2+GD246xGD6*xGD1+GD246%GD6
. -GD246%GD3xx2+GD246%GD1+2.%xGD236*%GD5%GD2
. -2.%GD236%xGD4*xGD3-2.%xGD236%GD3-2.%xGD226%
. GD6xGD2+2.%xGD226*xGD5%xGD3~-2.%xGD226%xGD2+GD2
. 16%¥GD6%GD4+GD216*xGD6-GD216%xGD5*x2+GD21
. 6%GD4+2.%GD163%GD143%xGD1+2.%xGD163%xGD143~
. 4.*GD163%xGD123%xGD2+2.%xGD163%xGD113xGD4+2.%
. GD163%GD113-2.%GD153%%x2%xGD1-2.%GD153%%2+4.%
. GD153%GD133%GD2+4.*xGD153%xGD123*%GD3-4.%GD1
. 53%xGD113%GD5-4.%xGD143%xGD133%xGD3+2.%xGD14
. 3xGD113%GD6+2.%GD143*%GD113~-2.%GD133%x*x2xGD
L-2.%xGD133%%2+4 .%xGD133xGD123%GD5-2.%GD123
. *¥%x2%xGD6-2.%xGD123%x%x2

Appendix D

A part of FORTRAN list of Fy;.

Q0008020 CRICTTLS

00008030 C

00008040 ANGE==3, *CULZ+GU2+AK111=-CUL 1 #GU3*AK1 31 =CL
99908050 . 11*GUZ*AKL21=2 . +«CUL 1 +GUL*AKL 1 1+GUNG+AKE
QuqOSOéO . B34+QUNS*AKZ I2+GUNS#*AKZZ3+0UN4+AKZ 22 +GUN
999080?0 . FxAKZ31+HGUNI#AKZ 1 3+GUNZ*AKZ2 2 1 +GUNZ*AKZ 1
QQQQ§Q§O . 2FGUNT*AKZ11+AK133x0UL61+AK132+6U1S 1+
00003090 . AKL31*GUL31+AK1Z3*GULS1+AK1Z2+GU141+AK]
QOOOs100 . 21GEU1Z1+AKT1 13 xGULI ST +AKT I 2+GUT 21 +AKT T
00008110 . I+GU111

00008120 ANSZ =3, «AK1 *GUZ#CUL1 121 =2 #*AKI*GUL #CLUT1 111 -
00008130 . CU3GxGH6*AK13 1 =2 . #CU3S+GUS*AK1 31 =-CU34*
09008140 . GUAAK] 31 =CU33+GQUE*AK1 61 =CLIS33+GUS*«AK1S
0000&150 o 1=3 . xCUZZ+GU3I*AK1 31 =-CU3Z2wGUS*AK161~CUS
Uquuﬁlﬁo o QU4 AKLS 1 =3, «CU32»QUZ#AK1 31 =-CUSZ T +GU3
0CQ00S170 . *AK161=-CU31+QU2*AK151=2 . «CU3 1 +«GUL*AK13
09005180 . 1=CUZ6xQU6*AKL1 21 =2 . *CUZS*QUS*AK1 21 -CLZ
Qgpp@g?@ o A44GEUL#AKL 21 =-CUZ23+GU6+AKL S 1 ~CLIZ 5+ GUS*
00008200 . AK141=3, «CU23#GUFxAK1 21 =CUZ2»GUS»AK151
00006210 . =CU22xGU4*AK141=3 . #CUZE+GU2*AK1 21 ~-CUZ1
QQQQ§§;O . *GEUI#AK1IS1=CUZ1*GU2»AK141 =2 . *«CUZ1+GUT *
gppp@gﬁ@ . AK1Z1=-CUL6+GUE*AKT1 1L =2 . *»CULS+GHUS+*AK111
QQQQ§§4U . =CUL4#GU4xAK]111=-CULl3#QU6+AK1 31 -CUL3+GL
pgpgﬁgSO o SHAKL1Z21=3 .« CUL3#GUSI*AK111=-CUL 2 +GUS+AK 1
Qqqqﬁgéo . A1=-CU1Z*GU4*AK1Z1+ANS3

00008270 ANS 1 ==9 . #AKTRZ 1 =AK6+GUEXCUL 331 ~AKE6*GQUS*CLLS
qguq@zﬁo . 21=AK6*GU3*CUL311-AKS*GUA»CL1 231 -AKS
Q0008290 . *EUS*CUL331=AKS*GUS*CU1221-AKS*GU4+«CUT

00008300 « S21=-AKE*GU3CU1 21 1-AKS*»GU2+CUL13]11-AK4
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Q0008310 » GUSCULZ31-AK4#GU4CULZ22 1 =-AK4+GU2+CLL
DO0O08320 « 211~AK3#GEUE*CUL 36T =AK3#GUG*CUL 131 =2
Q0008330 . AKS*EUS*CUL3S 1 =-AK3*GUS*CUL121-AK 3+ G4
00008340 . *CUL341=3, «AK3*QU3Z*CUL 331 =AK3*GU3*CUL 11
Q0008350 o 1=3 QK3 QU2 CUL321 =2 #+AK3* QUL *CUL31 L -
00008360 . AKE*GUOHCLILZ61 =2 *AK2+GUS+CL1 251 -AKZ #GU
00008370 » SRCULL31=-AKZ*GU4CUL1 241 -AKZ2+GQU4»CUL 12
00008380 o 1=3 e AKEZ*GUICUL23 1 =3  #AK2* QU2+ CL1 221 -
Q0008390 « AKE*GUZ*CUL111=-2. «+AKZ#GUL*CUL1211-AK 1 *GU
DO003400 o GCULI6T =2 o AK L #GUS*CUL 151 =-AK 1 *GU4*CLIT
00008410 « 141=3 xAKI*GU3*CUL131+ANSZ
Q0008420 FIJl=2.*ANS1
00008430 C

Appendix E
A part of FORTRAN list of linear solution.

00000010

SUBROUTINE EXACT(IS,R,T,GE,EE) 00000020
ER=EXP(=(R=T)x%2/2.) 00000030
EAZEXP(=(R+T)%:x2/2.) 00000040
SRT=(ER=-EA)*0,.5 00000050
CRT=(ER+EA)*0.5 00000066-
EXR=EXP (=R%R/2.,) 00000070
EXT=EXP(=T:T/2,.) 00000080
IFC(IS.EQ.1) THEN 00000090
IF(R.GT.5.D~1) THEN 00000100
GE==2./715.% (R4 SRT =4 uR&x3xCRTHT+6 . kR%%2%SRT 00000110
o TE%2=6,%R%:x2ESRT=4 . %RHCRTuTke% 3412 , %R*CRT AT+ 00006120
e SRT::T:H%4=6%SRTuTH:R243 . uwSRT)uRRHk(=1) 00000130
EE=14/15.5R%:26%CRT=1,/3 2R3 %SRTAT+2,/3 . %Rk 2% 00000140
o CRTuTx%2=24/3xR%u%2%HCRT=2./3 . 4RESRTxTx342 %R 00000150
e MSRTHT=1./15 . %Ru%x(=1)SRTHTH%542,/3 %Rk (=1 00000160
e SRT#:Tuu3=Rokxkx(=1)%SRTHT+1./3%CRT%#T%x%x4~2.%:CRT 00000170
. uTHR2+CRY 00000186
ELSE 00000190
GE==1./37800_ % (RxK10O%THXO6+6.xRu%BATHx8=-34 ,%R%kk 00000200
o BAeTkb442 o uREHBUTux4+RukOxTH%10=34 o xRueonxT 00000210
o WHBH+IIO KRMAHEHTHRE=1092 %Rk O%TH%44840 ,kRxHb% 00000220
o Tk2442 %Rux4xTuk8=1092 , #Ruk4uTxUo+ 7686 kR4 00000230
o LuTH%4=15120 %REXLXTHR2+45040 ,5REH4L+840 . %R%xx2% 00000240
e Tt6=15120.5Ru%2uTx244+63000 ,%xRue2%Tk2 = 00000250
e 50400 .%R*%2+5040 .xTx%4~50400,.%:Tx%2+75600.)%EXR 00000260
e WMEXTT 00000270
EE==1./775600.%(5 . %REXT Q% TH%8=7 ,kRXXx10%Tx%k64+10. 00000280
o WRANBXTX10~-100  %R%xBxTk%x8+280 , 4Rk B kT 6~ 00000290
e 210 HREXBHTHXL+RAXEX TR %1245 , SREKEXTHX10+645. 00000300
o HRUENTHHE2I4L65  ¥RUKGU Tk 646300, 2R xO6%T kb= 00000310
e 2520 xRk ORT #2442 o xRUKLRTHX10=1470 kRER4%T A% 00000320
e 8415330, %Rl Tk6=535504%Rkk4uTH%4+450400.%R 00000330
o W4T %%2=5040,%Ru%4+840 , %REH2xTH%x8=21000 . kR%k% 00000340
e 2%uTuckb6+138600,%R3:k2%uThu4=239400 %R 2%x %24+ 00000350
e 50400 ,kR%%2+5040.%TH%6~75600,%T%%44226800 %7 00000360
e wH2=75600.)REXRKEXT 00000370
ENDIF 00000380
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Part 11

Perturbation of Spherically Symmetric Space-Times
and Gravitational Waves

§ 1. Linearized theory of gravitational waves

As a preparation, we shall first review the linearized theory in gravity briefly
[Misner, Thorne and Wheeler (1973)]. Consider the perturbations of the Minkowski-
an space-time

Juw=g+ hu , (1-1)

where gf9 is the metric of the Minkowskian space-time and |%.|<1. Even if we
consider the perturbation of the Schwarzschild or the Kerr black hole, we can apply
Eq. (1-1) in the region distant from the black hole (wave region) owing to the
asymptotic flatness at infinity. From the Einstein equation for vacuum, we have

_ }Tﬂu,aa_gt(i(l)x) }_l—a/?,aﬁ"*‘ Eﬂa,va+ Eua,ﬂa:O y _ (1'2)
where

— 1 (0) ;

huuzhmj—"?g,uuh (1.3>
with

h=h=g s .
If the gauge condition
B q=0 (1-4)
irs imposed, Eq. (1-2) is reduced to

= huw,a=0. | (1-5)

The condition (1+4) does not fix the gauge uniquely. Consider the infinitesimal
coordinate transformations

= gt £ ' (1-6)
with

Eua®=0.
It changes /%, into

}T,ﬂu:h_uu_éﬂ,u—"SU,ﬂ_i_g;(gz) a,a ‘ (1'7)
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and Egs. (1-4) and (1-5) are kept unchanged.
We shall consider the wave solutions of Eq. (1:5) with (1+4):

huw=Re[ Ame™ ], (1-8)
where A and k. are constants satisfying

kok®=0 and Ank’=0. (1-9)
With the 4-velocity «* of an observer, we shall impose the conditions

Awu’=0 or  hwu’=0 (1-10)
and

AY,=0 or h=0. (1-11)

Notice that Eq. (1-10) makes only three of four gauge freedom (1-6) fixed, because one
of them E(Anu®)=0——/is already satisfied. Choose a tetrad {¢“)} such that
the observer sees the wave travelling in the +z direction, i.e.,

ely=u",  ely=—(kau®) '[£*+(ksr’)r”] (1-12)

with efy) and ef) being unit spacelike Vectofs orthogonal to each other and to ef) and
ety. Then Egs. (1:10), (1-4) and (1-11) are reduced to

Auo=0 or huwp=0, : (1-13a)

Alk;=0 or hi;=0 (transverse) (1-13b)
and

AL=0 or h=0 (traceless) . (1-14)

This gauge is called a transverse-traceless (TT) gauge. From Eq. (1-12), the non-
zero components of the wave vector and the metric perturbation are

ko=—k:=—w (1-15)
and
hee=—hsw=h+ (1-16)
oy = = | (1-17)
In the consequence, the metric can be written as
ds’=—dt*+ (1 + hy)dx?+ (11— hy)dy*+ 2hxdxdy + dz* (1-18)
where /4. and %x are the functions of f/*z. The waves of + sign and — sign

propagate inward and outward, respectively. Spherical waves propagating radially
are also treated equivalently in asymptotically flat regions. Now we consider
monochromatic, spherical waves of the angular frequency . Thus the metric
perturbations are written as

h+:Re[A+e—iw(tiT)] (1'198.)
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and
hx:Re[Axe_iw(tir)] . (1'19b)

(General waves are expressed as the superposition of the waves with various ). The
flux of energy associated with the plane waves is given by

2 2 ,
a(ftd% - lcgn- (AP +[AP) . (1-20)

As shown later, it is convenient to treat the perturbations of the black hole via the
Newman-Penrose formalism. Therefore we shall rewrite Eq. (1-20) by means of the
Newman-Penrose quantities (Weyl scalars). The quantities related with the
gravitational radiation are ¢ and ¢, which are defined by

o= — Coapysl “‘m’"m’° (1-21a)
and
Pa=— Coapysn®iin’m? , (1-21b)

where /%, n* m® and #* are the basis null vectors and Cags is the Weyl tensor. (See
Appendix for detail of Newman-Penrose’s quantities.) Note that by definition, the
Weyl tensor coincides with the Riemann tensor in the vacuum space-time, which is
Ricci flat (R.=0). For the metric given by Eq. (1-18), non-vanishing components of
the Weyl (Riemann) tensor are

Cozoz=— Coyoy= Cozaz=— Caoyey= —%]’&+ ,

COxOy = szzy - % h.x y

COxzx: - Coyzy: $%h+

and

szOy:C0xzy%$%hx y . (1'22)

where dots denote differentiations with respect to the {+=z. In the flat background,
the null vectors are given by

=1, 15, 1, 19=(1,0,0,1),  n*=4(1,0,0, —1)
and

m“=71-2——(0, 1,7,0). | (1-23)

Inserting Eqs. (1:22) and (1-23) into Egs. (1:21 a, b), we obtain
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o 0 for outgoing waves
2R+ il for ingoing waves | (1-24)

and

Jim %( hv—ilix) for outgoing waves
! 0 for ingoing waves . ; (1-25)

Since /o=w?ho(a=+, X) for the monochromatic waves, Eq. (1-20) is reduced to

d’E™ 1

didQ ~— 64nw?® 7ol (1-26a)
énd

2 ~(out)

= T (1-26b)

for the ingoing and outgoing waves, respectively.
§ 2. Perturbation of the Schwarzschild space-time

There are two ways of treating the perturbations of the Schwarzschild space-
time. In one way, perturbations in metric tensor are considered and the Einstein
equations are linearized about the (unperturbed) Schwarzschild metric [Regge and
Wheeler (1957); Vishveshwara (1970a); Zerilli (1970)]. The other way is via the
Newman-Penrose formalism and the Weyl tensors are perturbed [Price (1972); Bar-
deen and Press (1973); Teukolsky (1973)].

21. Metric perturbations —— Regge-Wheeler-Zerilli formalism ——

The study of the metric perturbations of the Schwarzschild space-time was
initiated by Regge and Wheeler (1957) to investigate the stability of the Schwarzschild
singularities. They presented the equation for the odd parity mode (see below about
the meaning of the parity) without the source term, while Zerilli (1970) obtained the
equations for the even parity mode as well as for the odd parity mode with the source
term. So the equations for the odd and the even parity perturbations are called the
Regge-Wheeler (RW) equation and the Zerilli equation, respectively.

We write the metric tensor in the same form as Eq. (1-1) while the background

9% is now of the Schwarzschild space-time

-1
I dr dr = —(1 ——2—%>dt2+<1 —%) @+ v (6> +sin?6de?) . (2-1)
A symmetric second-rank covariant tensor can be expanded by ten tensor harmonics
representing a wave of angular momentum /. Three of them are parity (—1)‘ (even
parity) and the other seven are of parity (—1)*** (odd parity). Then perturbation in
the metric tensor 4., and the energy-momentum tensor 7. can be expanded by the

tensor harmonics. In the following, we shall consider the Fourier components of %,
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and T, that is, each element of waves has the dependence on time as ~e ™,
Moreover some of the coefficient functions in the harmonics expansion can be
eliminated via the gauge freedom. In the gauge used by Regge and Wheeler (1957)
(RW gauge), the perturbations belonging to a given /, m are of the form:

[ 1 3Yun - 0Yim |
0 0 ho sind 9 hosind 56
1 0Yinm . 2 0Y0im
hw=| 0 Tl ot asind o 2:2)
i * * % 0 |
and
(1 —M)HO Yin H\Yin 0 0
h#u: * (1_ 2171,4 ) H; Yl,m 0 0 (2-3)
* * 72KYl,m 0
* x * v Ksin?0Yinm

for the odd- and the even-parity modes, respectively. The symbol #* indicates that
the components there are to be found from the symmetry 4. =%... The coefficients
ho, i, Hi, H» and K are the functions of @ and » (dependent on / and m). The
equations governing the perturbations will be obtained from the linearized Einstein
equations. Introducing a new radial functions R{L(7) by™®

hi=7rRn(7) /4 (2-4a)
- and
AA+2)7? +6A7+24 A dRH(7) .
K= 27 Ar +6) mo(7 )+ T dr (2-4b)
where

Ad=r(r—2) and A=({-1)([{+2),

we obtain the Regge-Wheeler (—sign) and the Zerilli (+sign) equations for the odd-
and the even-parity perturbations, respectively:

2
(E+ 0= VORI =S, | (2+5)
where 7»* is the tortoise coordinate defined by
r*=r+210g<%7—1>. (2-6)

The potentials V®, respectively, are given by

*) We use the unit of M =1 here and in the following.
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VO=4[(3+2)r—6] (2:7a)
and
VO e R+ D)7+ 602243607 +72] (2-7b)

The boundary conditions are that there exists a purely outgoing wave at infinity
(»*- +00) and a purely ingoing wave at the horizon (»*—- —o0), that is,

AGbet™™  for r*->+o
R(i) mw 1 *
4 (7/)%{357{7:21)@-2“” fOr 7,*_, —0 (2’8)
Then the energy of the outgoing wave is given by
AE _ 1 s 100 1) (=12 (AR AL (2-9)
do  327f% e e

The source terms S® are calculated from the energy-momentum tensor 7. but, in
general, very complicated except for the axially symmetric case such as the problem
of the radiation induced by a particle falling radially into a Schwarzschild black hole.

The equivalence of the Regge-Wheeler and the Zerilli equations without sources
(in homogeneous forms) has been proven [Chandrasekhar (1975), see also § 2.3 in this
volume], in the sense that the perturbations of the odd and the even parities are
characterized by the same reflection and transmission coefficient on the potential-
scattering problem.

2.2.  Perturbations in Newman-Penrose quantities

In this subsection, we consider the perturbation of Schwarzschild space-time via
the Newman-Penrose (NP) formalism. (The quantities in the NP formalism are
summarized in Appendix.) . This program was carried out by Bardeen and Press
(1973) and extended by Teukolsky (1973) to the perturbations of Kerr space-time.
Therefore the resultant equation is called the Bardeen-Press-Teukolsky (BPT) equa-
tion.

For the Schwarzschild metric, the NP’s basis null vectors are given by

C1e=(11, 17, 1%, 1%)=(r*/4,1, 0, 0)

na:%u, —A/r20.0),

e 1 . .
me=-rp - (0,0,1, 7/sin@) (2-10)

and as the spin-coefficients we have

CPETT BT T Tom s, YT ,@:_01257“2”— (2-11)

and
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k=0=A=y=e=g=r=0. (2-12)

We can prove that all the Weyl scalars of the background metric except for ¢. vanish,
that is,

$o=dr1=¢3=¢s=0 ; (2‘13)
and
Go=—7r"3, (2-14)

Thus, in studying the perturbations of the Schwarzschild space-time, we consider the
quantities «, 0, A, v, €, @, T, ¢o, ¢1, ¢s and ¢. are of the first order of smallness, each of
which will be attached by the superscript (1) in distinction.

As shown in § 1, we have only to know the equations governing ¢o for the ingoing
gravitational waves and ¢, for the outgoing waves at infinity. To obtain the equation
governing ¢, we start with the following NP equations [Pirani (1964)]:

(1) From Bianchi identities

(D+4eP—p) gV — (5 +47DV+20) sV + 31V ¢,
==+ E+27—27)0H+(6 +2a—27V) O
L2 OH+ O OH 220 0f (2+15a)
(0—7V4+48) P —(d+2y+41) $sV +30P &y
=—(4+2F+2y) O +(5 — TV +2a+25)0H
F200 QP+ FOGH -2V O | (2-15b)
(2) From Ricci identities k
A+ p+ F+37— 7)AV—(5 +3a+ B+ 70— 7)) W=—g, (2-15¢)

By virtue of the Einstein equations, @.»’s are related to the energy-momentum tensor
T, which acts as the source of the perturbations and are assumed to be the quantities
of the first order of smallness. For example,

D= —%me#muz AT = — A7 T (2-16)

and so on. Therefore @.’s are of the first order.

We shall assume that all the perturbed quantities have a time dependence as ¢
Omitting the terms of the second order or more in Egs. (2:15a~¢) and substituting the
explicit expressions for the unperturbed quantities o, », 7, @, 8 and ¢» (Egs. (2-11),
(2-14), etc.), we obtain

—iwt

(@r%) ps—L_1ds—61= —47z[d(.@0* 1 >T,,—”z+ .,E_l:fm,—,} , (2-17a)

¥

R @M(@m%) Ji—67=—tz 4 D1, +1 )Tn,ﬁ+xofnn] (2-17b)

¥
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and
1 3\5 15 _

a9+ 2) 1+ -1 g0, (2:170)

where
L rw r—1 . i r—1 ]

Dn=0r Wi +2n A Qn =or+ Wi +2n A (2 183.)
and

Lo=05— Sirzlﬁ 8o+ ncotd Inf=ao+—sir’1—ea¢+ncote . (2-18b)

Here in order to simplify the equations, we introduced new functions given by

Ja=dur*,  Ja=dsr*/V2,
Ton=Tonr*, Towa=Towiir®|V2,  Tan= Tawr?/2
and

A=avl2,  T=wr*/V2. - (2-19)
To eliminate ¢s, apply the operator 4(D11+3/7) to Eq. (2-17a) and the operator L -1
to Eq. (2:17b), and then add each other. In the consequence we obtain

[L1f2*+4<g)*1+ 3 )(@0— 3 )—%] Fo=8mr°T,, (2-20)

7 r
here A and ¥ have been eliminated by virtue of the Eq. (2-17¢) and
—2r°T= (91 +3)4( 90— L) T 2( 91+ 2) £ Tt L1 Lo T
(2-21)

The interchange of /¢ with #* and m® with #%° remains the full set of NP
equations invariant [Geroch, Held and Penrose (1973); see also Part III § 3]. Under
this transformation, ¢. is interchanged with ¢, and therefore we can obtain the
equation governing ¢o in the same way:

[£11£2+(g)0+i)4(g)2* «i>—~6~} Fo=877°Th, ‘ (2-22)
/e v v
and

—272T0:(.@0+%)<9)0ui7):me—z(@0+%),leﬁm+,f11,fo*T”, (2+23)
where

do= do

and
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Tu: Tu ’ szz Tm?’ﬁ s Tmm: Tmm272 .

Consider first the case 77=0. Then Egs. (2-20) and (2-22) allow the separation of
the variables by writing

$2-s=R(r)P(0)e™, (s==2) | (2-24)
where R is a function of # only and P is of 4 only. Then we obtain for s=—2

L LV P(9)=—AP(8) (2-25a)
and

[A(Qil%—%)(ﬂo—%)*%}l?(?’): +AR(7) (2-26a)
or s=+2,

L1 LyP(0)=—(A+4)P(6) (2-25b)
and

[(90+2)a( 92 - 2) L |R(N=+G+ORM), (2-26b)

where A is the separation constant and d, in -£L, and -£,' shduld be replaced by m.
Equations (2:25) can be written explicitly as

[ 1 d . od m® __ 2smcosf
sind df° " df sin?6 sin®6

—szcot26+s+/l]P=0. (2-27)

Thus the function Pe*™ is a spin s weighted spherical harmonics s Yi» [Goldberg et al.
(1967)] and the eigenvalue A is given by '

A=(1+2)({—1). (2-28)
In the case of the non-zero source T #0 we can expand ¢:_s and T as
bos(t, 7, 8, ¢)=fdw§Rzmw(7)sKm(9, ple ! (2-29)
and
8ar**Tu-s(t, 7, 6, go)=fa’a)§n Tima(7)s Yin(0, p)e™™" . (2-30)

Then for the radial function we obtain the BPT equation:

[4<Qzl+%)(.@o~%)—34]1%@): Toma7) | (2-31a)
and
[(@ﬁ—i—)d(g)z* ——37—)—%— (A+4)]Rzmw(r)= Timo(7) (2-31b)

or explicitly,
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[A $ ac,f’ As+l'&‘7d—_ Vs(V)}lew(V) Tlmw(V) (2'32)
with
4 2 N . 2 -
Vi(r)=—12 2“27 V7w —disro+ A, (2-33)
where
A=+2)(I-1). (2-34)

By means of Egs. (1+26a, b) and the asymptotic forms of ¢ and ¢, for »*— + oo,
the energy fluxes of the gravitational waves will be obtained. The asymptotic form
of the solution of the homogeneous form of Eq. (2-32) is for s=—2

R . 7—1Rine—iwr* + 7,3Route+z’wr* fOf 7*_, +OO
imw A?Rte—or* for 7*- —oo (2 . 35)
or for s=+2
R 7—1Qine—-iwr* + Y—SQouteﬂ'wr* fOI' 7,*_) +OO
imw A—ZQhe—iwr* . for 7*- — 00, (2‘36)

where R™, R°"', R*, @™, Q°** and Q" are constants dependent on -/, m, w. Here natu-
rally we assume that the outgoing wave at the horizon vanishes. Teukolsky and
Press (1974) gave the relations

R"=640*C'R™ and Q°”t-——a)‘4 CR* (2-37)
where

C=AA+2)+12iw .

Then we have only to solve the equation for s=2 or s=—2. (In the following, we will
deal with the equation for s=—2.) The energies of the ingoing and the outgoing
waves at infinity are given by [Teukolsky 1973; Teukolsky and Press (1974)]

+oo 6
En=[ SR o, (2-382)
Eou= [ 5 IR o (2-38b)

It is not easy to obtain the energy flux going down to the black hole. Teukolsky and
Press (1974), however, presented it using the tetrad of Hawking and Hartle (1972):

© 2
o f+ 20480 (16wc%1-21)(4w +1)2|Rh|2dw. (2-39)

It is difficult to solve the BPT equation numerically because the potential V' and
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the source Timw are of the long-range property. That is, if Eq. (2:32) is rewritten as™®

2
L+ K (o~ U)R=—5T,

then I and U become O(»7') for large ». What is worse, 47/r* of a test particle
falling from infinity with orbital angular momentum diverges as ~ »*2 for large 7 (see
§ 3.2). In fact, Detweiler and Szedenits (1979) solved the BPT equation via the Green
function method and encountered divergent integrals. Therefore they performed
integrals by parts and discarded the surface terms that are divergent.

§3. Generalized Regge-Wheeler equation

3.1. Transformation of the Bardeen-Press-Teukolsky equation

Sasaki and Nakamura (1981) showed that the BPT equation (Eq. (2:32)) can be
transformed into the same form as the RW equation (Eq. (2:5)) and the divergent
integrals mentioned above can be avoided. The basic idea for the transformation of
the perturbation equation was developed by Chandrasekhar and Detweiler (1975).

Let us define a new function Zme by

R(»)=+vZ(r). (3-1)
Then Eq. (2-31a) is reduced to

[A*+ AR A= B(IZ(r) =2 T (), (3-2)
where

Ai=dldr*+iw, N=N A (3-3)
and

A=A D) B)=Er +6). (3+4)

Here we shall consider the problem of expressing Eq. (3-2) as a one-dimensional wave
equation »

22X () — V() XA ={d?dr?+ o’ — V() X ()] =SG) . (3+5)

There is not a priori principle of the relation between Z(7) and X(7), but we shall
assume that

Z=N N X+ X, . (3-6)

where f is a certain function of # to be determined. By virtue of Eq. (3:5), this is
reduced to

Z=VX+(f+2i0)A.X+S . (3-7)
Applying /A- and A-/1- to both sides of Eq. (3:7), we obtain |

*) From now on, we shall omit the subscript /mw unless we need to indicate it explicitly.
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2
/LZ=—,8—£?X+ QA X+ A, S+1S (3-8)

and

A_A;Zz[QV—%@Az)nLZwB-—}XwL[ dQ__ 4. }

+AZS+fA+S+[ jf* }S, (3-9)
where A and @ are defined by
—B 4 d‘{k +fV (3-10)
and
Q=v+-4 . (3-11)

On the other hand, substituting Eqgs. (3+6) and (3-8) into Eq. (3:2), we have

AN Z= [(A+22a)),8 +BV}X+[B(f+22a)) QRQA+2iw) N X

~(A+2z'w)/1+s+[B—f(A+2z'w)]S+7{i7T. (3-12)

Since the function Z should satisfy both Egs. (3-9) and (3:12), we require that the
coefficients of X and /:X as well as terms containing the source terms should be the
same. Thus we obtain

AZ

—d‘i%—ﬁéé=3<f+2iw>—Q<A+zm> (314)
and
A7T A+A+S+(A+f)A+S+< f )s, (3-15)

Apart from the source term, we should determine the functions f, V, 8 and @ from
Eqgs. (3-10), (3-11), (3-13) and (3:14), while A and B are known functions.

Now we shall put another assumption of 4 being a constant. Then Eqgs. (3:13)
and (3-11) require that

Q=8B (3-16)

and

v-B—-4. | (3-17)
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Equation (3-14) with Egs. (3:16) and (3-17) gives

) o0
where
P 0

Thus functions @, f and V will be determined if the constant £ is obtained.
Substituting Eqgs. (3:16)~(3-18) into Eq. (3:10), we obtain the identity

2[Ar* ‘3(7/;t (/112:—6)132](7 2)* (62—36)=0, (3-20)

which yields
B=+6. (3-21)
In the case 8= —6, the potential V coincides with RW potent1a1 V& (Eq. (2-7a))
and Eq. (3:6) is reduced to
Z:A+A+X")+2(L75—§)—A+X(‘)

2
=—§3—A+77A+7X<-> . | (3-22)

On the other hand, in the case f=+6, the potential coincides with the Zerilli
potential V' (Eq. (2:7b)) and

2(Ar*—32r —6)

— (+) (+)
Z A+A+X + 7/2(/17/ +6) A+X
Y| r?
:m/LﬁZ'/h(/]V-F@X(H . (3'23)

As for the source term, substituting Eqs. (3:16)~(3-18) into Eq. (3-15), we have

T =7r*4g9/ LaENRY AT (3-24)
AT g
where
T O R =+6 3-25
g=r"°, "\ 76 or pB=16. (3-25)

For the particle falling into the black hole from rest at infinity, since the source
T is proportional to »"?e™*") for large » where ¢t=1£(#) gives the geodesic of the
particle. Then let us assume S~ #7»"e™*”. Noting dt(r)/dr ~r"% we know A.+S
~ Sdt Jdv ~»'*S. By means of Eq. (3 24) or (3:15), »°T ~(#"*2S. In the conse-
quence we find that »=—5/2 and the new source function S is of the short-range
property (see § 3.2 below) .

Two equations for X* are equivalent but we shall use the equation for X since



Part II Perturbation of Spherically Symmetric Space-Times 123

it is simpler. Its potential is the same as the RW potential and therefore we shall call
it the generalized Regge-Wheeler (GRW) equation:

[ di:? + w?— V(V)}lew(V):SlmwO’) (326&)
with
V() =2H(3+2)7 6], (3-26b)

A= —-1)(+2).

3.2. Source terms

Now we will consider the source term S explicitly for the particle travelling in
the Schwarzschild space-time. Here the back reaction to the particle from the
radiation of the gravitational waves is neglected and the particle always moves along
the geodesic (the test particle).

The energy-momentum tensor of the test particle of mass « (M) is given by

T%=y fd dz ~ 7 00z —z(2))

A e B s 1 )62 - () (3-27)

Since Tun, Tnw and Taa are of the spin-weight s=0, —1 and —2, respectively [Breuer
(1975)], we will write them as sA and expand as

A= [ do T same(r)s Ym0, g)e . (=0, —1, ~2) (3-28)
With the aid of the property for the spin-weighted spherical harmonics

Is[syvlm]:_[(Z+S)(Z—S+1>]Uzsfl Ylm y (3'29)
we obtain the source term 7o (Egs. (2:21) and (2:30)) as

6
‘A;/hld‘/h V-2a me} .

(3-30)

5
Tlmw - ‘—471'{[/1(A+ 2)]1/27’4()dlmw - \/5/1_4/1+77-—1almw +

By means of Eq. (3:27) and the inverse relation of Eq. (3:29), in turn, we have sa
[Sasaki and Nakamura (1981)]

dr

0l imw=— 87Z'< 4 > V,z d zwt(r)o 717”(9(7’)) y (3'313.)
=l LV (), Yon(2(r)), (3-31b)

a =i—az‘_lf:(r)2ei‘“”” Yin(2(7)) (3-31¢)
—2U lmw 471, dT -2 4 im s

where
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E(?f)=%—i sinﬁﬂa— (3-32)

dr’

V(r)=t(r)+7* and V'(»)=dV/dr. To integrate Eq. (3-24), we introduce a new
function W by '

3Q(=) . '
W = ; S +iwr* (3.33)

and then Eq. (3-24) is reduced to

d ,,dW _ 1

o ar T g T (3-34)

Substituting Eq. (3-30) into Eq. (3-34), we obtain

W () ==(Walr) + WA(r) + i) (3-352)
with

V%(V)=~{L%))z]lﬁ)( )+—-72f—1(7f)+ rif- 2(7)} ovir) (3-35D)

) =— {0 B )+ Ly (T e, (3350

W)=~ { BBy vk s ) eroren, (3-350)
where

A= Vil @0), £ A= L) Pl 2()),

S =L E s @)

Equation (3-35a) can be expressed as
W)=Wlr)— [“ar W)+ [Car [Tar mor) ter e, (3-36)

Here c1 and ¢ are the arbitrary constants, in principle. Unless we set them properly,
however, the relation between the radial functions Rime and Xime (Egs. (2-31a) and
(3+26)) will be complicated. . Since it is serious in solving the GRW equation numer-
ically, we shall look for the appropriate values for ¢ and c..

For that purpose we should examine the asymptotic behaviour of the GRW
equation both at infinity and in the vicinity of the horizon. First we will consider the
case where the source does not exist, that is, 7=0. This case does not mean that S
=0, unless both constants ¢ and c: vanish. Owing to the short-range property of the
RW potential, it is easy to give the asymptotic forms for the solution of Eq. (3:26):



Part II Perturbation of Spherically Symmetric Space-Times 125

Aoute+iwr*+Ame——iwr* fOI‘ 7.*__,_{_00

Boute+iwr*+Bine-—z’wr* for 7'*"> —c0 (3‘37)

X (7)={
where A°", A", B and B™ are constants. However, to find the relation between the
radial functions R and X, we should examine more precisely the asymptotic behav-
iours of X.

‘We consider first a vacuum case, where the source 7(») of the BPT equation
vanishes. Then Eq. (3:36) gives the source S(») of the GRW equation as

S(?’):%(Cﬂ"i-Cz)e—iwr* (3'38)

for which there exists a special (exact) solution

X(°)=~1;[cs(r—2)+c4]e‘i‘"’* , _ (3-39)
where

Cs= 12/1$j§(lz) =R (3-40a)

co= 2(’1“1)2";-5_(%1;;“‘”)” . (3-40b)

Since the GRW equation has two independent homogeneous solutions approaching

sior [ A+2  AA+2)E12i0
Fx(r)e [1+ 2iwr 8w?r?

+---]eif‘"* (3-41)

asymptotically for »*— + o, the solution with boundary condition Eq. (3:37) becomes

X(r)~AMEF (r)et™ + (AP — ) F-(v)e ™™+ XO(») (3-42)
for »*> +oco. From Egs. (2:35) and (3-22)

Rt=— 42 A% (3-43a)

Ro=— MDA (g (3-43b)

On the other hand, the asymptotic forms for »*— —oo of two homogeneous solutions
of the GRW are given by

+iwT* /1""1 _ A2_2A¢4(2/1_5)ZC0/ __0\2 .“} +iwT*
HLr)e ™ ~ [l iy =D g gz a2 [
(3-44)
and the solution with Eq. (3-37) becomes
X(r)~ BUH.(r)e @ +( BN =S H (r)e ™+ X () (3-45)

for »*— —co. Therefore we obtain
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AMA+2)—12iw [12i0— A(A+2)]cs

h__ in .

R =160 = 2i)0 —4i0) P+ 320 —2i0)(1 —4ie) * (3-462)

0=B°"". (3:46b)
Setting cs=cs=0 or ¢;=c2=0, the energy of the waves is given by

+00

Eou= [ 86 Z|A™Pdo, (3+47a)

En= [ 80’Z|A"dw, (347b)

B~ 80’S|B"do. (3-47¢)
Since the RW potential is real and B°*=0, we have the relation

’Aout’2+|Ain|2:)Bin\2 , (3'483.)
which involves the conservation of the energy

) Ent+Eqwi=FE,y. (3’48b)

We consider, in turn, the case 7 #0. In this case it is natural to assume that the
incident wave vanishes (R"=0 in Eq. (2:35)) and to consider only the radiation
generated by the source 7':

7,v.:il?()ute-*-Z'a)’r"“ for 7‘*—-)—{—00

R(r)= )
() {AZR"@"""” for y*¥—> —co (3-49)

Since the inhomogeneous GRW equation with ¢;=c>=0 has a solution X‘V(») whose
asymptotic behaviour for »*— +co is given by

X(l)’\’ [Aout+ O(V—l)]e+iwr* , (3.50)
the solution satisfying the boundary condition (3:37) is
X(r)=XVY+XO+(A"N— ) F-(r)e ™. (3-51)

(X is given by Eq. (3:39).) Therefore the relations (3-43a, b) are held with R*=(
in this case. _

For »*— —o0, on the other hand, the source S(») without ci, c: terms behaves in
the vicinity of the horizon as

SO ~[LBlr =D+ (r—2) [ (3-52)
with
ﬁ:[VW(V)]Tﬂ ,

 q=WO)Y =20 W(9)]r=2,
where »W(r) is defined by Eq. (3:36) with ci=c>=0. Then near the horizon, X*’ can
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be expressed as

XO(r)~[es(r —2)+co(r =27 +--Je ™™, (3-53)
where
_ Y/ ' .
=0 —4diw) (3-54a)
A+ 2—4iw)p+2(1—4iw)q )
o= T —2i0)(0 —diw) (3-54b)

Then we have the solution satisfying Eq. (3:37)
X(r)~B™H . (r)et™™ + B "H (r)e ™"+ XD+ X© (3-55)

From Egs. (3:22) and (3:49) we obtain

AA+2)—12i0

h— in
R =160 —2iw)1 —4iw) ©
(A+6—121w)cs+2(1 —4iw) cs +[12i0 — A(A+2)]cs .
* 32(1—2i0)(1 —4iw) , (3-56a)
OzBout i . (356b)

Equations (3-43b) and (3-56a) indicate that an appropriate choice of ¢1 and ¢: is found
from

c3=0, (3:57a)
(A4+6—12iw)cs+2(1 —4iw)ce+[12iw— A(A+2)]ca=0 . (3:57b)

.In this choice the condition of no incident wave corresponds to A™=0 and the energies
of the outgoing wave at infinity and the ingoing wave at the horizon are given by Eqgs.
(3:47a) and (3-47c), respectively.

Note that only for the radiation at infinity, however, we need the condition (3:57a)
alone and therefore it is possible to set ¢i=c:=0 [Sasaki and Nakamura (1981)].

§4. Quasi-normal modes of the Schwarzschild black hole

Now we consider the scattering problem of the gravitational waves incident from
infinity. Let the amplitudes of the incident and the reflected waves at infinity be A“‘
and A, respectively, and that of transmitted wave at the horizon be B™ (Eq. (3-37)
with B°*=0). The reflection and the transmission coefficients are given by
Bin 2

and T:’W .

out

2

R:\ (4-1)

From Eq. (3-48a), the relation R+ 7 =1 is held so long as the frequency w isreal. On
the other hand, for a complex frequency w, there might exist the solution of vanishing
incident wave (A™=0), that is, the solution with the boundary condition:



128 ‘ T. Nakamura, K. Oohara and Y. Kojima

X(V):{A:tejj:* for oo

: Bine for »*—> —co . (4-2)
Such a characteristic frequency corresponds to the free oscillation of the black hole.
So it is called the quasi-normal mode in analogy with the normal mode of oscillation
of a star.

The quasi-normal mode (QNM) is important for some reasons. First it is expect-
ed that the black hole will emit the waves with the frequency and the damping rate
~ of the QNM at least during the last stage of the event irrespective of the mechanism
by which the black hole is perturbed: by the absorption of the waves, by accretion of
matter around it or by a particle falling into it. For example, Vishveshwara (1970b)
examined the scattering of the wave packet by the Schwarzschild black hole and
found that the complex resonant frequencies appear in pattern of the reflected wave.
The second reason is more fundamental. If the QNM with a negative imaginary part
exists, the black hole will be unstable for the perturbation, since the perturbation
depends on time as e*™", '

Chandrasekhar and Detweiler (1975) first obtained the QNM frequencies by
solving numerically the boundary value problem. But their method is numerically
unstable. The difficulty is mainly caused by the divergence of the QNM solutions at
the boundaries »*— *too. We should find the solutions with the boundary condition
at infinity

X(r¥)= e“‘"*[1 + 0(-71—*” . (4-3)
However there is another solution, which behaves as
Xi(r*)=e | 1+ o(%)} . (4-4)

If the imaginary part of @ is negative, the linear combination of (4-3) and (4-4)
behaves asymptotically as

X+ Xi=er| 1+ 0( g )+ e#er+{1+0( )}

—eer 1+ 0(-%)). (4-5)

Therefore it is difficult to exclude solutions containing the term proportional to X;.
Several investigators tried to obtain QNM frequencies analytically or semi-
analytically [Mashhoon (1983); Schutz and Will (1985)]. These methods, however,
give only approximate values in principle. Leaver (1985, 1986) presented a method
which is numerically stable while an equation consisting of a (infinite) continued
fraction should be solved. Since the boundary condition Eq. (4-2) is rewritten as

_ o\—2iw N

e for ¥ > oo, (4-6)
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he expanded X(») as

X(7)=(r—2) Byt gan< ’”;2 ) : (4-7)

Rewriting the RW equation using » instead of »*, the three-term recurrence relation
for expansion coefficients a. is obtained:

aar+ Boaoc=0, | " (4-82)

anan+1+3nan+ Yn@n-1=0, n=12 -, | (4-8b)
where |

an=n*+Q2—4iv)n—4in+1,

Bn= —[2n2+<2—-162'a))n—32w2—8z'a)+ 1(1+1)-3],

yo=n"—8lon—16w*—4 . - (4-9)

For large 7, the expansion coefficients behave as

Mﬁli<_:fliiw>m+..._ (4-10)
an ”n

The QNM solution corresponds to the case of minus sign in Eq. (4:10), where the
series in (4:7) will converge uniformly. In general, the three-term recurrence formula
such as (4:8b) has two linearly independent solutions, say f» and g, if the boundary
condition or the initial value such as (4-8a) is not given. The solution f» is called a
minimal solution at n— oo, if

A non-minimal solution is called a dominant solution [Gautschi (1967)]. It can be
proved that if

Jnr
I

gn+1

an

<lim

n—-oo

lim

n—oco

b

then f» is minimal at #—>oco. Thus the solution with minus sign in (4:10) (the QNM
, solution) is minimal. Whether the solution is minimal or dominant depends on the
boundary condition, that is, on the value of w in (4-8a). Note that the QNM solution
(4-3) corresponds to dominant one. Although obtaining the minimal solution itself
numerically is not straightforward, the condition (the value of @) where the solution
becomes minimal can be found stable compared with the case of the dominant
solution.

The minimal solution of Eq. (4:9) will be obtained by calculating the infinite
continued fraction
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W= —A
. 1Y
Bl B _ 61’27’3
2 Bs— -
_T71 Y aeYs ‘ ' .
B By o (4-11)

The fraction W will be converged if and only -if the three-recurrence (4:8) has a
minimal solution @.[Gautschi (1967) ; Leaver (1986)]. In that case, if all @, (n=0, 1,
2, -++) of the minimal solution are non-zero, then the ratio of successive @, will be given
by

An+l . " Ynt+l @ne1Yn+2 ni2)n+3 (4-12)

an —,Bn+1_ ,Bn+2* Bn+3"

On the other hand, following up the recurrence relation (4:8b) from n=0 (4-8a), we
have

Qn+1 _ PBrn-1  Qn-2¥n-1 Gn-3¥n-2 Y1
= — . . 4-13
an dn—1 Bn—z_ ,3n~3_ BO ( )

From Egs. (4-12) and (4-13), the QNM frequencies @ will be obtained solving the
equations "

Brn-1 __Un-2Yn-1 An-3Yn-2 Y1 _ — Yn+1 Cn+17n+2 Gn+2Yn+3 | (4.14)

an-1 ,Bnmz’— ,872—3_ ﬁo _Bnﬂ_ 3n+2_ ,871+3_

for n=1, 2,---. The equations for all »>0 are equivalent to one another but the
numerical solution obtaining most stably for each » is different and then various
QNM frequencies will be obtained. Leaver (1985) has solved Eq. (4-14) for /=2 to 12.

§5. Gravitational waves induced by a particle travelling in the Schwarzschild
geometry

Now we shall examine the gravitational radiation induced by a test particle
travelling in the Schwarzschild geometry via the generalized Regge-Wheeler (GRW)
equation. The test particle means a particle that moves exactly along the geodesic
and turns out the source of the perturbation in the metric (or in the curvature).
Therefore we do not consider the back reaction of the gravitational radiation such as
a shift of the orbit of the particle from the geodesic.

5.1. Trajectory of the particle falling to the Schwarzschild black hole

We consider a test particle of mass ¢ falling from infinity to the Schwarzschild
black hole of mass M(>u). Let pe and pL. be the total energy and the orbital
angular momentum of the particle. The particle with e=1 is at rest at infinity, while
one with €>1 has a finite velocity at infinity. Take the orbital plane as §=7/2, and
the trajectory of the particle is given by

%c/0-2)
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2
(L) —em1+ Loy 2o (= o)

dr s 73
and
-4 .

For a given ¢, there is a critical value of L. (say Lent), such that the particle with
L less than it will plunge into the black hole while if L. is greater than Le:i, the
particle will approach the black hole but will recede again toward infinity. For e=1,
Leii=4 and for €>1,

27e*— 362 +8+ /(27— 362+ 8)> 4 64( & —1)
2(e?—1)

Lcnt— (5'2)
The point nearest'the black hole of the trajectory (the periastron #.) is found as the
largest root of the equation y(»)=0; ». >4(=twice a Schwarzschild radius) for e=1
and L:>4. If €>1, the value of 7+ can be smaller than 4.

5.2. Radiation by a particle plunging into the black hole

First we consider the case e=1 and L.<4, where the particle starts from rest at
infinity and plunges into the black hole [Oohara and Nakamura (1983)]. To obtain
the source term of the GRW equation (3-26), substitute the trajectory (5-1) into Eqgs.
(3-35b~d) and we have

Wo= —(C07+ C1+%>e““"’")"”"” , (5-3a)
a;‘j’/l :{C0< Z?’};L,L >+ C, Zml;/z _’_%}ei(wv(r)—m)) , (53b)
ddVZZ —{za)Co[(}’V y 4+ MLe ZWLLz V’} f;} Hwvr)-mp) (5-3¢)

where * denotes the derivative in respect of » and

2w*
cl=i;’3~Lz _lpm(ﬁ ,
Co= L +Pu( ) (5-4)

with sle(e) defined by
SYlm(ey @):splm(e)eimw .

We shall solve the GRW equation (3+26) with the boundary condition (3-49) by means
of the Green function method. Define two independent solutions (X', X&) of the
homogeneous form of Eq. (3:26), whose boundary conditions are
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X(O)_' e for »*->—oo-
T A ™+ Ame T for »*- +co (5-5a)
and

Boute™™ 4+ Bine 7" for 7*-> —o0

X&=y
' {e“"” for 7*-+oo, (5-5b)

where Aout, Ain, Bowr and Bin are constants dependent on /, w. Then the in-

homogeneous solution of Eq. (3:26) with the boundary conditions (3:49) is given by

x@ [Tsx@are+ X0 [ sx@ware
ZZ'CUUQIn ’

Xima(r*)= (5-6)

where the denominator 2/w A is the Wronskian of Eq. (3:26). Then the complex

out

amplitude A% in Eq. (3-48) is given by

AU m, )= At =5 [ T SXPar*. 5-7)

0

out

To abbreviate the suffix, we write A({, m, w) instead of A%w from now on. The total
energy of the wave radiated is given by Eq. (3-46), but with the aid of the symmetry

A, —m, —w)=(—1)'A, m, v), (5:8)

we define the spectrum as

(dE

%)mwzf%wz(lA(l, m, w)*+|A(, —m, —w)P)

=16w*A(l, m, w)|?. (5-9)

The numerical calculation was performed with L-=0, 1, 2, 3, 3.5 and 3.9, and the
amplitudes A(/, m, ) are solved for the multipoles up to /=6. The frequency ranges
from 0.02 to 1.4 with dw=0.02 for each L.,/
and m. Figure 5-1 shows the energy spectra
for L.=3.5. In each multipole /, the contribu-
tion from m =/ mode is much larger than from
other modes except for L.=0. The peak of
the spectrum for each / appears at the funda-
mental frequency of the QNM [cf. Leaver
(1985)]. This fact indicates that the
gravitational waves are radiated mainly by the
free oscillation of the black hole irrespective of
the orbit of the particle to collide with the hole.

The energies of each multipole / defined by

dE
T /1P
100

02 04 06 08 10 I ° E , :
2w E.= f 2(—“’ ) dw (5-10)
Fig. 5-1. The energy spectra for L.=3.5. o @\ dw /mew
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Fig. 5-3. Total energy and the angular momentum
of the gravitational waves induced by a parti-
cle for various values of L. The solid line
corresponds to the total energy E and the
dashed line to the total angular momentum J.
The dot-dashed line shows the energy calculat-
ed by means of the quadrupole formula.

Table V-1. The constants @ and 4 in Eq. (5-11).
L. a b
0 0.44 2.0
1 0.21 15
2 0.22 11
3 0.36 0.86
3.5 0.53 0.76
3.9 1.0 0.71

are shown in Fig. 5-2 for various values
of L, which leads to the empirical rela-
tion

E1=ae'“<—]%>ucz,

(5-11)
where @ and b are constants for a given
L.. The values of @ and b determined
empirically are tabulated in Table V-1.
The value a increases, while b
decreases, with the increase of Lz, which
means that the contribution from higher
multipoles gets larger as L: increases.
Assuming the relation (5-11) holds even
for /=7, the total energy radiated is

-2b

e
Bow=1—g=7

(5-12)
and the contribution from /=7 is no
more than 3% even for L.=3.9.

We show the total energy Fout in the
left half of Fig. 5-3 (solid line). The
amount of Ko diverges as L.
approaches 4. This is because the parti-
cle turns round the hole infinite times to
approach »=4 (twice a Schwarzschild
radius) since we neglect the back reac-
tion of the gravitational radiation.

By means of Egs. (1-9), (2-19),
(2:29), (2:35) and (3-43a), two independ-
ent modes of the metric perturbation 7.
and /%x for » > oo are given by
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Fig. 54. The wave forms %.(f—7*) emitted by a particle of L.=0.0(a), 2.0(b), 3.0(c) and 3.9(d).

ho— = [ L YinA(L, m, @) (5-13)

We show the wave forms %+(¢ — »*) for various value of L. in Figs. 5-4(a)~(d). Each
of wave trains consists of three parts: (i) precursor, (ii) burst and (iii) ringing tail.
The shapes of the precursor and the burst depend strongly on how the particle plunges
into the hole. The ringing tail of each 2‘-pole wave, on the other hand, is in the
universal shape irrespective of the value of L: and the frequency and the damping rate
of that part respectively correspond to the real and the imaginary part of the QNM
frequency. The appearance of the ringing tail summed up over all multipoles is
rather complicated if L: is close to 4, since in that case the decrease in the amplitude
with / is slow.. The energy of the wave is mainly from this part as shown by the
spectrum (Fig. 5-1).

Now we can obtain the gravitational waves radiated by a group of particles or
continuous matter distribution via incoherent summation of the complex amplitude
A(l, m, w) (see § 6). The most simple example is the radiation by a ring of mass g,
where only an m=0 (axially symmetric) mode survives for each /. We show the
energy by a ring plunging into the hole in the left half of Fig. 5-5. It does not diverge
at L.=4 on the contrary to the energy by a single particle. This is because no waves
are emitted when the ring approaches the marginally bound orbit and turns round the
black hole with its radius unchanged. Surprisingly a ring, rotating and plunging into
the hole, emits less waves than one falling without rotation. Figure 5-5 illustrates
that the energy by a ring decreases with L. and has a minimum at L:>=3. The
amount of the wave radiated by the rotating ring does not depend on the speed of the
rotation but on the rate at which its radius changes. Since the contraction rate of the
ring gets smaller for larger L., the amount of the waves decreases. Figures 5-6 (a)
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Fig. 5-6. The wave forms %.(¢—»*) emitted by a
ring of L.=2.0(a) and 3.9(b).

and (b) are the wave forms of the radiation by a ring. The shape for L.=2 bears a
great resemblance to that of the waves emitted in the axisymmetric collapse of a
rotating star calculated by Stark and Piran (1985).

If the massive black holes constituting a binary system collide, which possibly
exists in active galactic center or quasars [Blandford (1979)], the coalescent black
hole may recoil against the gravitational radiation in the collision. To estimate the
recoil velocity, we will calculate the linear momentum of the wave. The linear
momentum of the waves observed at infinity is given by

dzE
P.=[[do do foz;
=/a’co 8a)2§ l;n,A(l, m, w) A", m', a))fd.Q(_z Yin) o Yom)n:, (5-14)

where #; is the unit vector at infinity, say,
(%, ny, n2)=(siné cose, sinfd sing, cosf) .

By means of the relation

fdg(s'g }71377!3)(32 le’"z)(Sl .lemx)

:[ 47[(2[1+1)(2[2+ 1)

1/2
205:+1 J Osi+s2, sa3m1+mz,m3C(ll l21s; Slsz)C(lllzla; Whmz) (5'15)

and
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cosf= 4TﬂoYm,

sinﬁcosgo%-isinﬁsingo:,/%—ﬂo Yu,

where C(lil2ls; tp2) is the Clebsch-Gordan coefficient, we have

Px+ZPy:£w‘%dw ,

Pz:()
with

dP

(5-16a)

(5-16b)

ar 2
dw 16w Zl{[

(l+3)(l—1)(l+m+2)(l+m+1)}”2
21+3)2/+1)(I+1)

X[A(, m, w)A(I+1, m+1, 0)— A, —m, ®)A(l+1, —m—1, v)]

2l =m)({ +m+1)]
[(I+1)

A, m, 0)A(l, m+1, a))} )

(5-17)

Here we used the relation A(l, —m, —w)=(—1)*A(l, m, w). Figure 5-7 shows the
magnitude of the linear momentum P=+P;>*+ P,? as a function of L.. We found that
P obeys the empirical relation (a solid line in Fig. 5-7)

P/2

0 | 2 3 4,
Fig. 5-7. The linear momentum of the
gravitational waves induced by a particle of

various values of L. The solid line corre-
sponds to the empirical formula Eq. (5:18).

P=9x10"%(4L.2+5L,+10)2
s
X ( M)"C :

It suggests that P will not diverge even
at L.=4. This is because the particle
turns around the black hole many times
approaching »=4 if L. is close to 4 and
therefore it emits the waves almost
isotropically. Consequently the
momentum of the waves does not in-
crease so violently because of the cancel-
lation while the energy diverges in the
limit of L.=4. In Figs. 5-8(a) and (b),
we show the direction of the linear
momentum of waves (solid arrows) for
L.=2 and 3.9. For 0= L:=2, the linear
momentum is parallel to the velocity
vector of the particle at the horizon.
This fact means that the major part of
the momentum is radiated near the hori-
zon (the region of »<4). On the other
hand, for large L:, the direction of the

(5-18)
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Fig. 5-8. The orbit of the particle and the direction of the radiated linear momentum. The solid line
shows the orbit of the particle of L.=2(a) and 3.9(b). The dashed circle is the event horizon (»
=92). The direction of the total linear momentum of the gravitational waves is shown by the
solid arrow as well as the direction of the velocity of the particle at the horizon by a dashed

arrow.
momentum is completely different from that of particle’s velocity at the horizon.
This is because the particle changes the direction of the motion considerably even in
the vicinity of the horizon.

Let us apply our calculation to the collision of two black hole whose mass is M
and £=0.1M. Then the result of P=4.5X10"%(x/M)uc for L.=3.9 corresponds to the
recoil velocity of the coalesced black hole being 4 X107*c~120km/s. If we take the
kinematic factor in consideration for ©#>0.1M, the maximum velocity can be estimat-
ed at about 240km/s. This value is three times larger than the velocity expected by
Fitchett (1983) using the quasi-Newtonian approach but is much smaller than the
escape velocity against the galactic center. Therefore, even if black holes exist in the
center of galaxy and collide with each other, the coalescent black hole will not escape
from the galaxy. It is possible, however, for a binary black hole in the globular
cluster to escape from the system and wander around the galaxy if they coalesce into

a single hole. '
In addition to the energy and the linear momentum, the gravitational waves have

the angular momentum except for the axially symmetric system, where the angular

momentum is strictly conserved. It is well known that the angular momentum

parameter ¢ defined by
__[total angular momentum] )
7= M(CMIcH)c (5-19)
is important for the collapse of the rotating star (seé Part I in this volume). The core
of a massive main sequence star has the value of ¢ much larger than an ordinary
neutron star by at least two orders of magnitude. Therefore the angular momentum
should be lost at some stage of the collapse —— ¢-issue problem [Miller and de Felice
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(1985); de Felice et al. (1985)]. In fact, the numerical study in the axially symmetric
collapse of a rotating star (Part I) reveals that the star with a large enough angular
momentum will not turn into the black hole but may form a flat disk. Such a disk
must be unstable against the non-axially asymmetric fragmentation and become the
multiple-star system. If such a system loses the angular momentum, the stars will
collide with each other to be a black hole or a neutron star after all. We will
therefore calculate the angular momentum transported by the gravitational waves to
examine whether the gravitational radiation is effective for the angular momentum
loss.
The angular momentum of the gravitational waves is given by

= 0BG )

lL,m

with

(%)™ )

=16mw|A(l, m, w)*. (5-20)

The dot-dashed line in Fig. 5-3 shows the angular momentum /.. If L:=0, then
J= vanishes since the system is axially symmetric. The curve of J- (dashed line) in
Fig. 5-3 is almost parallel to that of £ (solid line) for L.>1 and the ratio of E to /-
is given by ‘

3
]—‘f=(0,15io.01)(§—M . (5-21)

This is due to the /=m=2 mode dominance in the gravitational radiation; the ratio
E/]: is close to a half of the QNM frequency for /=2.

Assuming the ratio E/J. is the same even when x= M, we can estimate the change
in ¢, that is,

a0=—{(7) ~2alp
=—(6.7—2¢)E . | (5-22)

Inserting ¢=1 and E=0.2, which corresponds to values for L.=3.9, we obtain 4q
~ —1. This result suggests that the angular momentum can be lost by gravitational
radiation in a non-head-on collision of black holes and the coalesced hole has ¢
considerably smaller than unity.

5.3. Radiation by a particle scattered by the black hole

Next we shall consider a particle starting from rest at infinity but passing near
the black hole, which is the case €=1 and L.>4 [Oohara and Nakamura (1984)].
Note that there are two ways, in this case, that is, to and from the black hole,

r(+t)=r(—1) and o(+t)=—op(—1t). (5-23)



Part II Perturbation of Sphevically Symmetric Space-Times 139

Here we set r=¢=¢=0 at the periastron »=#,. Then the source term S(#») or W(7»)
will be given as the summation of the contributions from the inward and the outward
ways:

W(r)=W(r(—=t)+ W(r(+1)),
that is, from Eq. (3-35),

Wo=— { —<C07+—Cy—2>cos(cot —me)+2iCisin{wt — mgo)}e"“”*ﬁ_(r —7y), (5-24a)

d , 1 2
Tzlj,/l ={<Co?’ + 2%0:},% Cry 2722 >cos(wt*m¢)
+ﬂl7~:§-—c—°sin(cut — mqa)}e"‘“’* O(r —ry), (5-24b)
2 2.7 2 .
ddffz =Hz’a)Co< 747 — 2227 — ”Zj;z>+ EZC; }cos(wt— me)
. .
+ coC()(—ZALZJr ZZZZZ >sin(a)t — M(p)]e“‘”* G(r—ry), (5-24¢)

where 6(7) is a step function defined by

0 for »<0
O(r)= .
) {1 for »>1, (5:25)
and Ci, C; and C; are constants defined by Eq. (54).
In obtaining the source term from Eq.(5:25), we will be confronted with the
integration such as

1= [ 70 tar,

where f(7) does not diverge anywhere while y(»)=0 at »=7.. If we change the
variable, however, from 7 to the proper time r, then I will be reduced to

1= ["f(r)de .

It is easy to perform this integration numerically.

The numerical calculation was done for L.=4.001, 4.01, 5, 7.5 and 10, for which
the periastron lies at »=4.09, 4.30, 5.125, 10.0, 26.0, 47.9, respectively. If L. is larger
than these values, the periastron is far from the horizon and therefore the general
relativistic effect must be small. For each L., we calculated multipoles up to /=6
with m varying from —/ to /. The value of @ ranges between 0.02 and 1 with dw
=0.02. For L:=5, the calculation was done with o from 0.002 to 0.02 and dw=0.002
in addition, since the peak of the spectrum was found to be located at w<0.1.

Figures 5-9(a) and (b) show the wave forms for L.=4.01 and 5. In contrast with
the case L:<4 (Fig. 5-4), the ringing tail is missing even for L.=4.001. For large L,
the wave form represents that of the wave by a particle in a circular orbit [Detwiler



140

T. Nakamura, K. Oohara and Y. Kojima

0.4

)hee

Ll:\

1 1

It

-80 -30

(@)

30

90

005

1

1 1 1
-1080 -360 360 1080

(b)

Fig. 5-9. The wave forms 4.(¢f—7*) emitted by a particle of L.=4.01(a) and 5(b).

(1978)].

We show the energy spectrum for L.
=4.01 in Fig. 5-10. The contribution from m
=/ mode is dominant in each 2*pole radia-
tion. The frequency @max, Wwhere the
spectrum of each multipole has a maximum,
depends on L. and is completely different
from the QNM frequency of a Schwarzschild

black hole. Instead, @max=w+, which is
given by
02 04 06 08 1o '
w—10.—1(%) (5-26)
Fig. 5-10. * The energy spectrum for L.=4.01. t)r=r

where £, is the angular velocity of the parti-
cle at the periastron »=7,. This suggests that the gravitational waves result mainly
from synchrotron radiation of the particle and most of them are emitted when the
particle passes through the periastron. In fact, the source term Sino(7) at » ~#; is
very large and

Sme(7) ~constant X 7’47 cos(wt —mo) . (5-27)
Inserting this into Eq. (5:7), we have
to
A(l, m, w)~constant X/O dt%cos(a)t —mqp)%Xé?) , (5-28)

where £ is a characteristic time of the particle being near the periastron. Since #»°
and dr/dt are almost constant and ¢~ 2.t there,

sin(a) - WLQ+> to X(O)
Imw
w— m.Q+

A(l, m, w)~constant X ri). (5-29)

Thus we obtain
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(E)  ccorixtp(r.p(Sinte—mb ), (5-30)
Since @ Ximw|> is expected to be a slowly varying function of w, the maximum of
dE/dw is located at w=m.. The numerical calculation has confirmed this peak of
the spectrum for each m. Then the dominance of m=/ mode leads to Eq. (5:26).
Equation (5:30) explains also the existence of other minor peaks in the spectrum and
their location agrees almost with the evaluated values from Eq. (5-30).

The lack of the ringing tail in the wave pattern and the disagreement between
wmax and wres (the QNM frequency) indicate that the quasi-normal mode of the black
hole is hardly induced. The total energy is shown in the right half of Fig. 5-3.
Figure 5-5 shows the total energy of the waves by a ring. Although the energy does
not diverge in the limit of L.—4, it is apparent that its magnitude is not continuous
at L.=4. This is because the quasi-normal mode, whose contribution is dominant if
L.<4, is hardly excited if L.>4.

The angular momentum carried by the gravitational waves is shown in the Fig.
5-3 (dashed line). The ratio E//: is about wmax(/=2)/2, as it is in the case L.<4.
Since wmax=w+(Eq. (5-26)), the value of the ratio varies with L. if L.>4, while it is
almost constant if L.<4; @max= wres (the QNM frequency).

In addition, we calculated the linear momentum of the radiated waves and found

|P|=2.62><10‘2<%/xc> for L.=4.01, (5-31)

which is about a half of that for L-=3.9. For large L.(>5), the direction of the linear
momentum is parallel to the velocity vector at the periastron.

5.4. Excitation of the quasi-normal mode of the black hole

In the previous subsection we found the characteristics of the gravitational waves
emitted by a particle will not be of the quasi-normal mode of the black hole if the
particle falls from rest at infinity and is scattered by a Schwarzschild black hole.
That means the free oscillation of the hole is hardly induced by the waves emitted by
a particle at outside of » >4. The reason is believed as follows: The Regge-Wheeler
potential has a maximum Vmax at 7max<4, while the particle cannot enter the region
r<4. Therefore, even though some part of the waves emitted at » >4 propagates
toward the hole in the RW potential, it will bounce off the potential barrier and the
quasi-normal mode of the hole is hardly induced.

If the above explanation is true, we will observe the excitation of the quasi-
normal mode of the hole in the case that a sufficient amount of waves can penetrate
through the potential barrier. The most favorable case is when the periastron is
located inside the barrier, which is realized either if the particle has a non-zero
velocity at infinity or if the black hole is rotating. Ruffini (1973) has studied the
gravitational radiation by a particle starting its motion with a finite velocity v. at
infinity and falling radially into a black hole. He found that the spectrum is broad
and the amount of the energy increases substantially compared with those of the
waves by a particle with v-=0. The waves of a sufficient high frequency will pass
over the barrier, even if the particle itself does not reach the region inside of the
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Table V-2. Parameters used for calculation of dE°“2'/ dw
gravitational radiation by a particle of specific 10
energy € and specific angular momentum L.
The position of the periastron 7. is shown in 10!
the third column and w+ is defined by Eq.
(5-26). )
10
€ Lz ¥+ @+
-1.01 4.08 4.01 0.25 g
1.1 4.73 3.64 0.29 ,
1.2 5.37 346 | 032 10
1.3 5.99 3.36 0.33 | =
14 6.58 3.29 0.34
15 7.16 3.25 0.35 1o
1.75 8.56 3.18 0.36
-5
2 9.94 3.14 0.37 10
2 12.5 5.40 0.27
2 15 6.99 0.22 1.0 w
2 20 100 0.16 Fig. 5-11. The energy spectra for é=1.01 and 1.2

with L being 0.025% larger than Lerit.

potential barrier. Then we can expect that the gravitational waves from a relativis-
tic particle will excite the quasi-normal mode (or the free oscillation) of the black hole
[Oohara (1984)]. '

We have examined the radiation in the case of ¢ from 1.01 to 2 with L. being
0.025% larger than Lct (Eq. (5:2)). Numerical calculation was performed only for
/=2 with m from —2 to 2.

Figure 5-11 shows the spectra of gravitational waves for e=1.01 and 1.2. As
shown in § 5.2 (e=1, L.<4), if the quasi-normal mode of the black hole is excited, the
peak of the spectrum is at wres (the real part of the resonant frequency). In the case
e=1 and L.>4, on the other hand, the peak is at w+ (Eq. (5-26)), which is given by

. ZLz( 7’+ - 2)
- 3 ’

o (5-32)

w+
where 7+ is the position of the periastron. Apparently the peak for e=1.01 is located
at o+ and the quasi-normal mode may not be excited. For €=1.2 and L.=5.37,
however, the value of w; is close to wres. Therefore it is difficult to decide whether
the quasi-normal mode is excited or not, only from the spectrum.

The wave form, however, may be a more precise indicator. Figures 5-12(a)~(c)
are the wave form for €=1.01, 1.1 and 1.2, respectively. We can safely say that the
ringing tail appears for €=1.2, while it does not for e=1.01. The case €¢=1.1 seems
to be a critical one. Then we may conclude that the quasi-normal mode is excited if
e>1.1. In Fig. 5-13, we show the energy going into the black hole through the horizon
as well as the energy of the outgoing wave at infinity. This figure illustrates that the
amount of the wave penetrating through the potential barrier increases remarkably if
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Fig. 5-12. The wave forms z.(f—»*) for e=1.01
(a), 1.1(b) and 1.2(c) with L. being 0.025% lar-
ger than Ler.

€>1.1. In fact, the potential barrier for
[=2 is located at » =3.28(= #max), which
is just inside of the periastron ».=3.64
for e=1.1.

In addition, we calculated the waves
by a particle of e=2 with L.=125,15
and 20. Figures 5-14 (a) and (b) are the
wave form for L.=125 and 15, re-
spectively. It is obvious that the ring-
ing tail appears even for L:=15 and the
quasi-normal mode is excited, though
the periastron (#+=6.99) for L.=15 lies
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Fig. 5-13. The total energy of the outgoing wave
(solid line) and the ingoing wave (dashed line)
for various values of ¢ with L. being 0.025%
larger than Lce.
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Fig. 5-14. The wave forms %.+(¢ — »*) for e=2 with

L.=12.5(a) and 15(b).
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dE ot/ dw outside the potential barrier (7max=3.28).
0 The wave of @ >( Vimax)'"?, where Vmax is the
height of the potential barrier, can get over
the barrier. Then it is expected that the
quasi-normal mode may be excited if a
large amount of the wave @ >(Vmax)"? is
emitted. Figure 5-15 shows the energy
spectra for L:=125 and 15. It indicates
that the amount of the high-frequency
wave is large compared with the case of
the small e (Fig. (5-11)).

In this section, we considered the
waves of only /=2, though the contribu-
tion to the amount of the radiation from
higher values of / may be important if € is
large [Ruffini (1973)]. As for the excita-
I l I I tion of the free oscillation of the black
‘ } hole, however, the analysis only for /=2 is

Fig. 5-15. The energy spectra for e=2 with probably enough, because the. potential

L.=12.5 and 15. barrier for waves of /=3 is inside of the

barrier of /=2 (#max=3.11 and 3.14 for [

=3 and 4, respectively) and ( Vmax)"? is larger (0.61 and 0.82 for /=3 and 4, re-
spectively) for larger values of /.

§6. Phase cancellation effects of gravitational waves

6.1. Radiation by N particles in a circular orbit

We can investigate the gravitational radiation by a group of particles by incoher-
ent summation of the waves by a single particle if they do not interact with each other
and each of them travels along its geodesic. The simplest is the radiation by a ring
falling into the black hole, as shown in the previous section. In this case, only the m
=0 modes survives in each 2‘-pole radiation.

Now we shall consider the radiation by N identical particles in a circular orbit
around the black hole. Detweiler (1978) has examined the gravitational radiation by
a particle moving along a circle around the Schwarzschild black hole. On the other
hand, the rotating ring will not emit the gravitational waves. Then the present
investigation will reveal how the amount of the radiation decreases as the number of
the particle N increases [Nakamura and Oohara (1983)]. :

We shall assume that all the particles have the same mass and they are rotating
in the same circle at regular intervals. Let a radius of the orbital circle be 7 and a
mass of each particle be #/N. Then the specific energy E and the specific angular
~ momentum L of each particle are, respectively, given by

= 10— 2 .
E= v7”0(7’0‘3) (6 1)
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and

l’:z: "o .
7"0—3

The angular frequency of a particle 2 is

_dpldr __ Lnd
20D

—3/2

2

and the orbit of the j-th particle is represented as
P (t)=0¢t+6;

with
_ 2w,

The source term in the generalized Regge-Wheeler equation is given by
Szmw=55§3?wf(7’ﬂ, N) s

where

N
f(m, N):N—lgeim&-

_ |1 if m/N=integer
0 otherwise

and S is the source term of a single particle given by

Sgom)a)zﬂ-(So‘}‘ Si+ Sz) 7;2 eiw(r*—m*)@((!)— m.Q)

with
So= ﬂmoPm(ﬁ =7/2)r*(ro—3) Y (ro—7»)8(r — o),
$1=27i VA 1P 0 =17/ 2)7o(70—3)26(r — 7o) ,
S2=1-2Pim(0 =11/ 2) 7™ "(0—3) [ 1*(7 — 1)+ 270(r — )]

and

—1 if x<0
0 if =0.

9(x)={
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(6-2)

(6-3)

(6-4)

(6-5)

(6-6)

(6-7)

(6-8)

(6-9)

(6-10)

By virtue of the linearity of the GRW equation, the amplitude Ximo is given by

szwa(m, N)Xl(gz)w

(6-11)
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2 and therefore the luminosity dE/dt is
given by

QE_:%% m2 Q% f(m, N) X% me?

-dt
(6-12)

with the amplitude of a single particle

v . Because of Eq. (6+7), the mode m

#+(integer) X N vanishes. This is a kind

\ of the phase cancellation effects. Since

the contribution of the quadrupole (/ =2)

mode exactly vanishes for N >3, we can

presume that the luminosity for N >3 is
fairly smaller than that for N=1 or 2.

We calculated the luminosity of

multipole up to /=20 for various values

of » and N. Figure 6-1 shows ‘the

luminosity as a function of N. It seems

to obey the empirical relation

A A
Fig.6-1. The luminosity of the gravitational radia-

tion induced by N particles in circular orbit of
radius 7o.

where @ and b are constants.

The above phase cancellation effect is observed even in a quasi-Newtonian
approach. Let us consider three compact stars of mass » in a circular orbit of radius
7o. Then we have an equilateral triangle solution of the classical three body problem.
The orbital period P is determined by

2__ 2_7T 2: Gm .
Q _( P) 2 (6-14)

Setting an orbital plane as z=0, non:vanishing components of the quadrupole
moments of this system are

Dav=Dyy="3-mr? . " (6+15)
Since the quadrupole moment is constant against the time, this system does not emit
the gravitational waves if the quadrupole formula is adopted. The octapole radia-
tion, however, survives in this system. Adopting the octapole formula by Becken-
stein (1973), the luminosity is given by

dE 2187 G

202
W— ——2“8““2—5‘ MVOZ.QZ)Z%.QZ . (6‘16)

Since the total energy of the system E is

E:_M

Sy (6-17)
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the decay time of the orbit of a triplet star is

_ 9 P >10/3< M >7/3 .
\—5.4 %10 y< ) () - (6+18)

On the other hand, the decay time of the orbit of a binary star is

i 5 P >8/3< M )—5/3 .
T2"1'8X10y<10min 1AM, ) (6-19)

where the energy is lost mainly by the quadrupole radiation.

6.2. Radiation by a dust shell

Nakamura and Sasaki (1981) have examined the gravitational radiation by a dust
shell of mass m falling straightly into a Schwarzschild black hole of mass M (> m).
Here the dust shell is assumed to be axially symmetric. Each mass element will
travel along the geodesic with a constant azimuthal angle 8. Then its radial position
7 is given as a function of ¢ and 4:

r=R(; 0). (6-20)
Assuming the shape of the shell at {=1# be given by
R(t; 0)=709(8) , (6-21)

then Eq. (6:20) can be inversely expressed as

t=T(r)+ T (r)— T (r9(8)) (6-22)
with
T(r)=-3(5) ~4(5) +2n @11 . (6-23)

1/2
(7)1
where # is a constant and g(@) is a function of @ representing the deformation of the

shell. Note that the shell is spherical if g(8)=1. The source term S of Eq. (3-26)

is given by a summation of the one-particle source term Sin. of each mass element,

that is,

Simw= fimwS i o (6-24)
with

Fimo(70)= [ o(0)expliol T(70) = T (rg(0)[}o Pm(8)e™dR2, (6-25)
where 0(#) is the mass per unit solid angle and is assumed as

o(8)=const=m/4x . ’ (6-26)

Because of axial symmetry of the system, fino Will vanish unless m=0. Then the
radial function is given by
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lea):Xl(rez)mflmwam,O v (6'27)

and the energy of the waves is
E=2l[:8w2[X585szw]2dw
=SB, (6-28)

where X, is the solution of Eq. (3-26) with the one-particle source term Sim..
We shall examine two types of deformation:

(1) the prolate shell

7=10 and ¢(8)=1+acos?d, (6-29a)
(2) the oblate shell

=10 and g¢g(8)=1+asin’*g, | (6-29b)

where a(>0) is a deformation parameter. Because of the symmetry about equatorial
plane, the energy E. for odd / vanishes in these cases. The trajectory of the mass
elements at §=0 and 0=7/2 of the prolate shell are shown in Figs. 6-2(a) and (b) for
a=1/2 and 16, respectively. Notice the element at §=0 falls remarkably later than
one at 6=r/2.

Figure 6-3 shows the total energy E of the gravitational waves emitted by a
prolate shell as a function of ¢. For /=2 mode, E increases in proportional to a” so
long as a is small. The value of E, however, reaches a maximum (=7.8X107*
X (m/M)*Mc?) at a=1/2 and starts to decrease in proportional to a™". In the case /=4,
E increases as a@* for small @ and attains a maximum(=4 X 10~%(m/M)*Mc?) at a=1/4.

r

a=1/2

r a=18,

-62 -32 -2 28 -1822 -1222 -622 -22 578 1178
(a) (b)

Fig. 6-2. The trajectories () of the mass elements of the prolate dust shell with ¢=1/2(a) and
16(b). The solid lines show the trajectories of the elements at #=0 and #/2. The dashed line
is the difference »(8=0)—#(0=r/2).
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Fig. 6-3. Energy of the gravitational waves emit- Fig. 6-4. Same figure as Fig. 6-3 by an oblate shell.
ted by a prolate shell as a function of logza. '
After that E decreases in proportion to @'. The behaviour of the energy of waves

by an oblate shell is the same as that by a prolate shell except that the decrease for
large a is proportional to ¢ *? as shown in Fig. 6-4. :

The dependence of the energy £ on a for small ¢ can be easﬂy understood
examining the behaviours of finw in the limit of e=0. For small @, Eq. (6-25) becomes

v
fwwoc/_‘lelwcﬁ aPz(#>dﬂ y (6‘30)
where g=cos8 and P:(x)=0Pm(68). Using the theorem
1
Il/x’”Pz(ﬂ)a’/,z=O for m</ or m—mn=odd,

we have
Srowx<a?+ 0(a*+"?) . (6-31)

Then E, is proportional to & for small a. As for the part of large «, the decrease in
E is due to the phase cancellation effect. The waves emitted by each mass element
are dominated by the quasi-normal mode of the black hole as shown in the previous
section. The period 7T: of the waves in quasi-normal mode is

Tl -

2w ~{16 for /=2

6-32
Wres 8 for [=4. ( 32)

Figure 6-2(b), on the other hand, shows that the difference in the collapsing time
between the mass elements at §=0 and #/2 is about 950 for a=16. Since this time lag
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is much larger than period 7> and 7, the cancellation of the wave amplitude will be
remarkable after integrating over the entire shell. The time lag for ¢=1/2 is about
16 (see Fig. 6-2(a)), which is comparable to 7:. Therefore the maximum of E is at
a=1/2. It is in the case a=1/4 where the time lag coincides with 7%. This fact
implies a maximum of £ for /=4 at ax1/4.

§ 7. Perturbations for spherically symmetric stars

In this section, we examine adiabatic perturbations for a spherically symmetric
star, using metric perturbations. Since the metric outside the star is the Schwarz-
schild one, perturbation equations there are identical with equations considered in § 2.
The boundary condition at the event horizon in the case for a black hole is replaced
by the condition at the stellar surface, which is determined by solving perturbation
equations inside the star. Outgoing gravitational waves from the star reflect the
inner structure of the star. We can obtain information about the inner structure from
them. Van Horn (1980) discussed various classes of neutron star oscillation modes,
which are sensitive to different physical properties, e.g., density distribution, tempera-
ture, shear stress, rotation, magnetic field and so on. We will consider simple neutron
star models so that we restrict our examination to the so-called p-mode, which is
sensitive to global density distribution and couples most strongly to gravitational
radiation. McDermott, Van Horn and Scholl (1983) and Finn (1986) calculated
g-mode oscillations for warm neutron stars. Schumaker and Thorne (1983) consider-
ed the general relativistic theory of torsional oscillations in the presence of shear
stress. The fluid motions for these modes are confined to the region near the stellar
surface, that is, the solid crust of neutron star. Periods for these modes are more
than factor 10 longer than those for p-modes so that gravitational radiation rate is
more than a factor 10° weaker. As the results, these modes couple to gravitational
. radiation weakly.

Since we are interested in gravitational radiation, we restrict our examination to
modes with spherical harmonics with index /=2. For /=0 and /=1, there are fewer
degrees of freedom because there is no gravitational wave. In that case system for
perturbation equations becomes simpler [Campolattaro and Thorne (1970)].

71. Equilibrium configurations

The static spherical metric which describes the geometry of an equilibrium stellar
model can be written as

ds*=—e¥dt*+ &*dr*+ r¥(d*+sin*0de?) , (7-1)
e =1-2M(r)/r, 2

where M(7) is the gravitational mass inside the radius ». Equilibrium configurations
can be obtained by solving the Tolman-Oppenheimer-Volkov equations,

3 A
Zf _ (p+p)(M;47rr pe' (7-3)
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dv _ 2M+4xrip)et
- 2

dr 7 ’ (7-4)
dd—ﬂf=47r72‘o, ‘ | (7-5)

where p and o are the pressure and the total energy density, respectively. Since we
are interested in p-modes, we assume a barotropic star,

p=1(p) . (7-6)

In this case the frequency for g-modes is zero [Thorne (1969)]. Especially we use in
numerical calculations a simple polytropic equation of state,

p:Kpl+1/n ) (7.7)

where K and # are constants. These equations (7+3)~(7+5) are integrated numerical-
ly as an initial value problem from the center of the star (» =0) to the value of » where
the pressure vanishes. We denote this value as R, the radius of the star.

Outside the star, » = R, the metric becomes the Schwarzschild one,

eV=e*=1—-2M/r, (7-8)
where M =M(R) is the total gravitational mass of the star.

7.2. Perturbations inside the star

7.2.1. Tensor harmonics

Since the unperturbed state is spherically symmetric, the angular variables are
separated in the equations for the perturbation quantities. We deal with tensors,
which are expanded by tensor harmonics [Zerilli (1970)]. Let 7. be a symmetric
second-rank covariant tensor, it can be expanded as follows:

T= 22 (Alm(malm(o)+Alm(1>alm<l) + A in +Blm(0)blm(0) + Bunbun -
m

+ Qun ¥ cin® + Quncin+ Dindim+ GinGim+ Finfin) , (7-9)
where
Ym 0 0 0
0 0 0 O
m(o)= 7-10
@ 0 00 0" (7-10a)
0 0 0 0
0 Ym 0 0
1Y, 0 0 0
GO tm 7-10b
@20 0 0 0 (7-10)
0 0 0 0
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0 0 0 0
am=| 0’ o ol (7-10¢)
0 0 0 0
0 0 Yimo Yime
: 0 0 0 0
b ® = o , 7-10d
‘ L200+D ] = 0 0 0 ( )
x 0 0 0
0 0 0 0
O 0 Ylmo lemgv
bm:—r—"——_ ' ' I} 7.10
"TRIGTD| 0 0 0 (7+10e)
0 * 0 0
: . O 0 Ylm,;a/sing *SinH}/lm,O
- 0 0 0 0
SO — o 7-10f
“ 20 +D) | * 0 0 0 : (7-100
x 0 0 0
0 0 0 0
o ” 0 0 Yino/sind —sinfYins (7-10g)
" RIED| 0 0 0 ’ &
0 = 0 0
0 0 0 0
2 0 0 0 0 v
A= . , , 7-10h
l Vanl(I+1)| 0 0 —Xim/sin€ sin@Win ( )
0 0 * Sin6Xum
00 0 0
200 0 0 0 .
Im=T10 0 Ym 0 ’ (7-109)
0 0 0 sin?0Ym
00 0 0
)2 00 0 0 )
. 7-10
/i v 4nl(l+1) 0 0 W Xim ( J)
0 0 * —sin*0Wm

and
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Lol +2)

2 1.

The symbol * means components derived from the symmetry of the tensors. Yum is
a usual spherical harmonics and X;» and W, are given by

sz=28—8¢<a—ag—cot¢9> Yo |
W, :<a—2—cot9—9—~—~l——a—z)y (7-11)
"\ 062 060 sin®f 0% ) ™

These ten tensor harmonics are orthonormal with respect to the inner product:
(T, 9)= [7"7"* TwSud, (7-12)

where 7" is the Euclidian metric. We note that parity for ¢, ¢, d is “odd” (—1)**!
and that for others is “even” (—1)%

7.2.2. Metric perturbations

The perturbations of static spherical stars are decomposed by using tensor
harmonics for the angular variables 6, ¢ and the Fourier components for the time
variable ¢. Thus normal mode is characterized by harmonics index /, m, parity and
frequency w. The metric perturbations in the Regge-Wheeler gauge are given by

d322d302+ ngdd+dSéven , (7'13)
dso’=—e"dt’+ e'dr*+ r*(d6?+sin®0de?) , (7-14)
d5taa=2ho ——g 00 Yondtdd +sin03s Vinclicp )"
siné .
+ 2h1< _ns_iiTﬁ_a“’ Yimdrd0 +sin 00, Yzma’rdgo)e“i“’t , (7-15)

dséven=e"Ho Yime ™ **dt*+ 2H,\ Yime™*'dtdr + e*Hy Yime *'dr?
+ 72K Yime “(dO?+sin®0de?) , (7-16)

where dso’, dssaa and dséven correspond to unperturbed metric, perturbed metric of “odd
parity” (—1)"*' and that of “even parity” (—1), respectively. Quantities %o, %1, Ho,
H,, H; and K are functions of only radial coordinate ». The perturbed Einstein
tensor is calculated straightforwardly by

—‘25Guu:1’l#u; a;a—(f#; U+fv;#>+2Rp#auhpa+ haa; ny v )
- (Rpuh#p+prhup)+guu(fA A haa; A ; A) + hpuR—gpyhaﬁRaﬂ y (7‘17)
fp:hya;a. (7’18)

The coefficients for each tensor harmonics in the above equation —28G.., are given as
follows:
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odd-parity

even-parity

c: ~—21(—f/ie”*[a) ) 2;0 v —the” —dnwe(o+ p)rin+4mi(o+p)etrh
7*2‘6 (Z(Z+1)4—+87r72(p—p)>ho] , (7-19)
c: —Zi(%lle‘”[—wzhl—l—ia)ho’— 210 ho+ Z)hl] , (7-20)
d: *A——W[ Ay + h1+za)e Yho+4nm(p— p)rhl} (7-21)
a': 2e”"*[k”+e*<i 57{[24 .or)K’— 7;8; K
—’17H2/+ e"<87r nt2>Hz+87rpe*HoJ , (7-22)
a®: fZ[—ZcuK’+2cue < 1 3M )K+ 2;() Hz—i-z’(sz;Z ;167rp>H1] ,
(7-23)

A
a:Ze"”[ w’K—e <—1~—ﬂ+4 Ty >K’ 2zcoe Hl+ie“ AHy

+ 18 g4 Lo, 0D gy |, (7-24)
b —————'ZZ(HD[ (e "Hy) +4mi(o+p)rHi— a)(KJer)J, (7-25)

b: ——Zl—(l;ﬂe—y[— 1wH, + €U<K/_H0/) - eA+y{47rpr(H°+H2)

(- (- 2. -
ﬂ—l&gﬁﬁm—mL (7-27)

g: ﬁ[e‘“{—sz—e”“*K” 2e” (1—M+27r(p 0)7? )K’

+2iwe™"HY + 21w (1— M

7—4ﬂprz)Hl —w*Hs+ e’ *Hy”

+ e”<%+7—ﬁz+47r(2p— p)r)Ho’+e7<1 —%+47rp72>Hz’}

n—i—l

(H,— Ho>+167zp(H2~K)} , (7-28)
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where

_I(U+1)

n=-—g—=--1. (7-29)

Here we used unperturbed equations to replace the derivative of unperturbed metric
by the density, the pressure and the mass, e.g.,

— Lt ———L-=—A4n(po—p)e’. (7-30)

7.2.3. Perturbations for energy momentum tensor

(1) Odd parity motion

The fluid displacements &, &4, &, can be also classified with respect to rotations
in the unit sphere. &, is a scalar and a set of (Eo, &,) is a vector. There is no scalar
in odd parity part, so that we have

&r=0. (7-31)

A vector in odd parity part can be written as
&= UGN~ g ) Yime ™,
=U(7)sin60 Yime ™t . (7-32)

The fluid four velocity corresponding to the fluid displacement (Egs. (7-31) and (7:32))
can be written as

="z, Ur, Us, Us)

—1
siné

=<—e”’2, 0, —z'a)Ue‘”/ze‘i“’t( >8¢ Yin,— iwUe "2e7 " sin 60, Ylm) . (7-33)
We consider a perfect fluid, so that the energy momentum tensor is given by

T/.w:(p'f'p)u,uuu_*'pgﬂu . ‘ (7.34)

The perturbations for energy momentum tensor are given by

5T / (-ET%—@*K;o):8Tt¢/(Sin0Y,e)=iw(p +5) Ue™ ™ + pho | (7-35)
8T79/<—'gi%l_Hqu):aTm?/(SinﬁKO):pkl . (7'36)

The coefficients for tensor harmonics in 67, are given by

o _ J21(1+1

== w(o+p) U ~ idho) , (7-37)
—SUUED 4 (7-38)

d:0. (7-39)
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(2) Even parity motion
Since the fluid displacement &, is scalar and a set of (&, &) is a vector, we can
write them as

Er:%Z_e—%/z W(?’) Ye—ia)t ,
6__ 1 —iwt
E _;7V(T) }/,Ge ’

1

—WV(V) Yo ", (7-40)

gr=

The fluid four velocity corresponding to the above fluid displacement (7-40) can be
written as '

u#:(ut) Ur, Uo, u¢’)

:{—eym(l——%—[{o Ye—iwz>’ e—u/2<_lr_a; WQ’U2+H1> Ve iwt ’

lwe "2 VY e ™ jwe " VY,Q)e_””‘} ) (7-41)
The perturbations of energy momentum tensor for a perfect fluid are given by
8Tu=e"(8po—pHyYe ™), (7-42)
8T wm=2e*(5p+ pH, Ye ™), (7-43)
N A2

aTtr:<%pJ;zﬁ>ﬁ— W — le) Ye it : (7-44)
8Tw/Y,0=0Tw/Y,e=—iw(o+p) Ve ™", (7-45)
8T oo/r*=0T vo/7*sin*0=0p+ pK Ye ™ | ' (7-46)

The Eulerian changes (J) for the pressure and density are related to the Lagran-
gian change (4) for the number density of baryons # as

80—(p+zb)<%—>—$’p’,

ov=ro(2%) ¢, (@)
| where y is the adiabatic index defined by
_otpdp .
¥ 5 do- (7-48)

The Lagrangian change of the baryon number density is given by

An _

i AR

:_{e~x/2 I;I/;_’_ l(l;l:zl)v +_};T21_:2_+K} Ye—z‘u)t , (7_49)
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where | means the covariant derivative with respect to 3-geometry at constant time
and ®g is the determinant of the metric for the 3-geometry.
From Eqgs. (7-42)~(7-46), the coefficients for tensor harmonics in 67 are given

by

0 =+ AW+ oWy (o4 LDV 2o k)1 pp e (7-50)
a: —{(71)W’+p W) e‘i/2+ p( l(l+1)V+K) (—Zl—l)pﬁz}e*, (7-51)
a: iﬁ{ —"“)(p;;p)em W+,0H1} , (7-52)
pO. (R 21”‘*‘1) (KH‘.D)V , (7.53)

‘s

b: 0, ' (7-54)
710, (7-55)
g: f{ (ypW'+p' W) e_m —7p< Z(ZJ;DV H2>+p(1 V)K} (7-56)

7.2.4. Perturbation equations for odd parity modes

We have basic equations for odd parity modes by comparing coefficients of the
tensor harmonics for the perturbed Einstein equations:

5Gﬂy:87faT,uu . (7'57)

The basic equation for odd parity mode can be written in a form of a second-order
differential equation as

et 2 (e(” Dz dX> {a)z—e”< Z(HZ_D - 61[34 —47r(p—p)>}X=O, (7-58)

dr dr ¥ ¥
I=e%2X » (7-59)
___i (u—A)/z*d, | .
ho= " g (rX), (7-60)
U=0. (7-61)

Equation (7-61) means that the fluid motion does not couple to gravitational wave
[Thorne and Campolattaro (1967)]. Thus Eq. (7-58) means the propagation of the
gravitational waves through the star. Equation (7:58) reduces the Regge-Wheeler
equation if the background is the Schwarzschild metric in which p=p=0, ¢’=¢"*=1
—2Mlr.

In general the odd parity displacement (7:31), (7:32) corresponds to torsional
oscillation mode, which is related to shear stress of the matter instead of the bulk
stresses. Such a shear stress may be important in the solid crusts of neutron star.
Schumarker and Thorne (1983) considered shear energy momentum as well as bulk
one and formulated the perturbation equations.
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It is easily found that regular solution for the propagation of the gravitational
wave has the dependence X oc#*! near the center. Thus propagation equation for
the gravitational wave of odd-parity can be determined by imposing one more
boundary condition, for example, purely outgoing wave at infinity.

7.2.5. Perturbation equations for even parity modes

The perturbed Einstein equations for even-parity are reduced to the following
fourth-order system of equations from Eqs. (7:22)~(7-28) and (7-50)~(7-56):

. Al2
K’:iHO#—(”z—“—)—Hﬁe*(W)r« 1, 3M )K+ 8rlotp)e™ (.69
s 7w r ¥
e _{ 2 }e*Hl—z'we‘{K+Ho+167r(p+ NV}, (7-63)
H’0=( 1 4M > AH0—2'<0)€4U“ nj1>H1
r 7 . rw
Al2
+<47rpr~ir 3M) *K+§”(—pi;f)—ew, (7-64)
726/1/2
W=~ 9 Ho—r%e?K—2(n+1)e*?V
~~7}7[%e“2<4 wpri+ n+iﬁ£>}[0
ieu%u(a)re A (71+1)e (M+47U)7’3)>
2 rw
+ % ”2{<47rp72+1——]¥><47rpr —1+ SM >e*+a)27fze’“
(47rpr +n+—3ﬂ>}K} , (7-65)
K{a)ze‘”~— (47rp7 —1+———-3M ><47fp+’M3>}+Ho{l§‘+ 3]134 }
v v 7
3
—Z'Hl{ﬁ)“e“’l”” (”+1)(M+47TP7’ ) } {§Zr((p+p)e’”2(M+47Tpr3)}
7 ) ¥
+ V{8nw’e " (o+p)}=0 (7-66)
and
H,=H,. : (7'67)

Thorne and Campolattaro (1967) first derived perturbation equations. Thorne and
his coworkers subsequently studied gravitational radiations and oscillations of
relativitic stars [Thorne and Campolattaro (1967); Price and Thorne (1969); Thorne
(1969)]. They however dealt with a fifth-order system of ordinary differential equa-
tions for K’, K, Ho, W and V. It was later noticed that true dynamics should be
governed by a fourth-order system of equations [Ipser and Thorne (1973)]. The
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additional unphysical modes were indeed prevented from actual numerical calcula-
tions for quasi-normal oscillations of relativistic star by suitable boundary conditions,
even though they dealt with a fifth-order system of equations [Thorne (1969)].
Lindblom and Detweiler (1983) reduced this fifth-order system of equations to a
fourth-order system of equation for Ho, K, W and X, a certain linear combination of
V, W and Ho. They used this system of equations and studied the quadrupole
oscillations of a number of neutron stars. Their system can be obtained by eliminat-
ing H, from Egs. (7-62)~(7+66) and is equivalent to our system of equations. Their
fourth-order system of equations, however, becomes singular in some frequencies.
They recently got rid of such a difficulty and obtained a nonsingular fourth-order
system of equations for Hi, K, W and X [Detweiler and Lindblom (1985)]. The
essential point to do so is to eliminate H, instead of Hi. The coefficient of H; is not
of definite sign, so that the system for Ho, K, W and X becomes singular at the point
where this coefficient vanishes, that is, at the frequency:

o =m+D)e*Anpr*+ M) /7> | ‘ (7-68)
In order to make numerical calculations easy, we use the following functions:
K=(7/R)'K
Hy=—iwr(¥/R)'H; ,
K—Ho=7*7/R)'Y,
4r(p+p)e?W=r(»/R)'U , (7-69)
where we explicitly factor out #’ in order for these functions to be regulaf at »=0.

Eliminating V from Eqgs. (7-62)~(7-66) with definitions (7-69), we have a new
nonsingular fourth-order system of equations for K, Hi, Y and U.:

o~ -~ —~ A —~
K’+—iK e <47rp7+ M>K+ (”“)H Y+2—iU, (7-70)
2 A+v —~
' +ﬂH1 2227 {e“( 3% —4ﬂp>+<47rpr +—%><4ﬁpr—%+ 37{124 >}K
{2 GM M }
—l—e{r 2 —0)r i (47pr+ M)

v 2
—re*{l- Zz<27—n 6334 —87rp>}Y—4 7 (471'1)7 +M)U
(7-71)

-V

{+2 17"——26 <47rpr+ M>K+ w'e H,—2e <47rp7+v%>17, (7-72)

7,

Y+
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U’+~Z~j——1—U*—[—12ﬂ(‘o+p)r+

ve{ampr =+ S Nmr 2]

p;f’{a) re v+ (4 wpr+1-2)

P

ey O+D 2 2 e”#(”*‘l)euf 3 5
<2( +1)— T Wrte )< - eI (4 mpr +M)>H1

2(n+1)e”{ 2 v, M
B +—73 4o

20n+1)e” < 3M >
w*y A o

+772{47r(p+p)7—
e

{2(%@%—1)@

Arpr*+ M)
—<4n(p+p)+%<47zp+—%—>>r}e*(7. ’ (7-73)

Let us assume these functions have a power series expansion at the center of the star
as

K:ko‘*‘kz?‘Z’F“', ﬁ1:ho+hz7’z+"‘,
Y =yo+yari+--, U=uo+u2r?+---. (7-74)
Then we have from Egs. (7:70)~(7-73),

871 (3po+ po)(I+1)+60’e ”"k  4afe™™ y
Y= 3(/+2)(I+1) T3 +2)(J 1) Hoo
2 4 .
ho= TR~y o (7-75)
where po, po and v are the zeroth order coefficients in the power series for
0= 0+ 027+, p=potparite, v=utupriteee . (7-76)

Similarly the second order coefficients %, /42, y2 and u. in the power series (7-74) are
determined by o, 02, Do, D2, Vo, V2, ko and uo. The explicit forms of them are omitted
here although they are used in the actual numerical calculations. Thus the number
of the regular solution is two near the center of the star.

Since we use the form (7-7) as equation of state, the pressure and the density near
the stellar surface behave from the equations of the hydrostatic equilibrium as

poc(R—7)"t,  poc(R—7)", | (7-77)
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where # denotes polytropic index in Eq. (7:7). From Eq. (7-73) we have near the
surface

Uoc(R—7)"*'-0 as - R. (7-78)
In this case the Lagrangian perturbation of the pressure vanishes at the unperturbed
surface,

dp=rp 0. (7-79)

7.3. Perturbation equation outside the star

Outside the stellar model, perturbation equations agree with those for the
Schwarzschild space-time. Equation (7-58) for odd-parity mode is reduced to the
Regge-Wheeler equation. The perturbation equations (7:62)~(7:66) with p=0=0
are reduced to Zerilli equations [Zerilli (1970)]. After some manipulations, we have
the perturbation equations for odd and even modes as

{e—A__d_e~xi7+w2_ VZ}Xle- :=odd, even

e *=1-2M/r, (7-80)

where V; and S: are potential and source terms, respectively. Voaa and Veven are
given by

Vodd‘—".€4< Z(l:; 1 - 6334 ) ) (7-81)
-1
Veven= 7’3(nf+3M)2 27 (n+1)r3+6n°Mr*+18nM?*» +18M°}, (7-82)
where
_I(U+1)
n= 5 1.

At the stellar surface, function X for both modes is related to interior perturba-
tion functions. For odd parity mode, this function X should be continuous at the
surface. As for even parity mode, the boundary condition at » =R is given by

.dX _ w(n+1)R*+3nMR +6M* R>—3nMR—3M?

—ATT . 7. .
¢ dr lren (nR+3M) ey Ko (1089
__ Rt 5 R* > '

We consider a test particle of mass ¢ moving outside the star as a perturbing
source. Energy momentum tensor for the particle is given by

("o dz* dz” | .
ST =1 f "8z — Z(e)) gy, - (18)

where Z*(r) is the particle’s geodesic line in the unperturbed spacetime. We use the
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notation as
7)=(T R, 6, D). (7-86)

The energy momentum tensor (7-85) can be decomposed in terms of tensor harmonics.
Then the source terms in Eq. (7-80) become

(7-87)

Soda= { JnT Q-+ /274(—%;1‘)\8_@),} .

Seve“:87w_}\H a)(n;f:i-_;M)<<l/(_l) %»

_ nrie 40— n(n+1)r*+3nMr+6M*
V2w(nr+3M)? Jun+low(nr+3M)*

rle™t B \ 27 i
+7’“’+3M\A+\/n+1> vZn(n+1)F]’ (7-88)

where @, D, A® A, B®, B and F are components of the tensor harmonics for the
energy momentum tensor (7-85). They are given in the Schwarzschild metric as
odd-parity

Y dO

1 . 0Ym 00
Q=" 75( r =R [sin@ 0 a9 50 7] (7-89)
_ M _
D= /z’m')’a(y R(t))
T2 a0 (28)} ki 5t s 2 ]
even parity
A=r(R Y25~ R(5) Vinl ), (7-91)
A‘”"/?' EIE_ -2 _ Vs .
=2y~ v 0(r—R(1) Yin(RQ), (7-92)
BO— /ﬁ” o-18(r — R(1))Lzl2). Y””(Q), (7-93)
—— by DR s R L) (7-94)
— M _
= oan D y0(r — R(t))
x[‘é? L2 X D)+ {( ‘gf) (sin@)"‘(%)z}mm(g)], (7-95)

where
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Q=(0, 0), y=%%~. | (7-96)

Since the potential terms in Egs. (7-81) and (7-82) both for odd and even modes
are of short range nature, the solutions for Eq. (7-80) have wave form:

X~ Anexp(Eiwr), i=odd,even as 7—0. (7-97)

These coefficients A are related to the metric perturbations due to gravitational
radiation at infinity. The gravitational wave can be written in terms of 4 and f,
which are transverse and traceless part in the tensor harmonics. For the outgoing
waves, the metric perturbations are given by

odd-parity

1 s 2 wr* —iw '
hm/: Jﬂ[«,dd] wr A(odd)e e td#u(ﬁ; §9) s (798)
even-parity

hw:_«/_;:ﬂ' 2n(n+1) [:dw%A(even)eiwr*e_ia‘_‘tf#V(6, ?). (7-99)

Or two polarization of metric %+, 2x can be written as

h+iihx= ﬂ%rf a’co(v 2%(%+1 A(even)+ A(Odd)> lw(r*wt)iZ Ylm((g, §0) ’
(7-100)
where
_ 1 .
+2 Ylm_ 2m< Wlm Sln(9 le) . (7 101)

74. Numerical rvesults

7.4.1. Differences between a black hole and a neutron star

We consider gravitational radiation emitted by a test particle of mass # moving
in a circular orbit at R, [Kojima (1987)]. We restrict numerical calculations to
quadrupole mode (/=2). In this case, the source terms for odd-parity mode vanish
due to symmetry. The explicit source terms in Eq. (7-88) are given by

sy (g o)

—2A
A Te
nr+3M J1— 3
w(n+1)r*+3nMr+6M? e !

(nr+3M)*r J1=3M/r

n+1——m2 7.902
— (7 — R ¢
= /7 (7/ 0), (7 102>

5(7”-]?0) )

" B=-— 0(r — Ro)
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o (M/p)? dE/dt where Pin(0) is the associated Legendre
10 ' black hole | T function which is related to Yi» as
10 72 = NGl Yin(0, 9)=Pimn(8)e™. £ isthe angular
10 ¢ f I frequency of the circular motion at R,
_g foformula h that is, the Kepler frequency: 2%=M
L0 eutron star /Ro®. Source terms for m++2 in the
10 Pk quadrupole mode vanish as expected.
1o "L In order to give stellar models simi-
—1oF lar to realistic neutron stars, we adopt
10 145 the following equation of state:
g™ 577015 20 25 30 Gplc*=100(Go/c?)? . (7-103)
R, /M
Fig. 7-1. The gravitational wave luminosities are Figure 7-1 shows the luminosity of the
shown as functions of orbital radius both for a gravitational waves as a function of
black hole case and for a neutron star case. orbital radius Ro. In this figure

The minimum radii are chosen as Ro=3.2M for differences are shown when central
the black hole case and the stellar surface for

the neutron star case, respectively. An esti- object is a black hole or a neutron star.
mate in terms of quadrupole formula is also The luminosity increases monotonically
shown by a dashed line. with the decrease of Ro for the black
hole case.- When K, goes to 3M, that is,
the photon circular orbit, the total energy flux diverges for black hole case because the
total energy of a test particle diverges there. The end point is chosen at Ro/M =3.2
in the figure. In contrast to the black hole case, there is a finite peak for the neutron
star case. This peak comes from the resonant oscillation of the star with the
gravitational waves emitted by the test particle. This will be discussed later. In the
figure, we also show results in terms of quadrupole formula, in which we consider the
contribution only from orbital motion of the particle with mass # moving with Kepler
frequency £ at Ko. The luminosity is given by

dE _32 554 6_Q<_ﬂ_>2(£&>_5 .
dt—5/ARoQo—5 i i ) (7-104)

This formula is a quite good approximation as shown from the figure, even though the
system becomes relativistic. In the space-time outside the black hole, the difference
appears as the orbit approaches the photon circular orbit. The fundamental quasi-
normal mode of /=2 multipole for a Schwarzschild black hole is Mw =0.37367
—0.088896:. The frequency of the gravitational radiation at 3M is Mw=2,/M/(3M)*
X M ~0.3849. Maximum of the potential for the Regge-Wheeler equation is also
located near »=3M. As the orbital radius approaches 3M, the gravitational wave
emitted by the particle moving near 3M is resonant with the oscillation of the black
hole, so that the amplitude increases. Similar phenomenon occurs for the space-times
with neutron stars. In this case, the resonant frequency is determined by inner
structure of the star, which depends on the equation of states.

7.4.2. Differences among relativistic stellar models

We will consider the difference among various stellar models. Figure 7-2 shows
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Fig. 7-2. Normalized amplitudes of the
gravitational waves are shown as a function of ~ Fig. 7-3. Same as Fig. 7-2, but for the amplitude

the orbital radius. The frequency of the near a resonant frequency. Especially the part
gravitational wave is also shown. The kind of near the maximum peak is enlarged in the
lines denotes different stellar models, which are figure. :

determined by the equation of state (7:103) and
different central density poc in units of g/cc.

the amplitude ratio of the gravitational waves %z/ho as a function of the radius of the
circular orbit for stellar models with equations of states (7-103) and different central
density o.. In the figure, the frequency of the waves is also shown, that is,

w/QR=2%2/2=2(R./R)™*?, : (7-105)

where Q=(GM/R?"* and R is the radius of the star. The value %z means the
amplitude obtained by solving the relativistic perturbation equations. The value %o
means the amplitude for the gravitational radiation from the orbital motion estimated
by the quadrupole formula, that is,

Y21t 1 212
jo=2Y 2T 1 - =7, :
0 10 R22%8(w—msd) , m=12 (7-106)

The ratio %z/he means the response of the star in a sense. The fact 4z/ho¢=1 means
the response is less important, that is, the gravitational wave is irrelevant to the
central object. When the particle moves far apart from the star, the response is small
as expected. However, resonant phenomena occur when the orbital radius
approaches a certain value, in which the frequency of the gravitational radiation
coincides with the quasi-normal mode of the star. The amplitude shows a sharp
peak. Near such a peak, we have to change the value w at sufficiently small inter-
vals, typically dw/wo=107° in calculating /=.

The behaviour near the resonant frequency is shown in Fig. 7-3 for the stellar
model with equation of state (7-103) and the central density p.=1x10"%g/cc. This
behaviour is essentially the same for different models. ‘
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Table VII-1.
central density oe.

T. Nakamura, K. Oohara and Y. Kojima

Resonant properties for the stellar model with the equation of state (7:103) and different

Resonance exhibits properties with maximum height of %z/%q at the frequency wo
and half width of the frequency I.

0:(10%g/m?) M/M, R(km) GM/Rc? maximum wo/82 Two
1.0 0.802 10.81 0.109 1.343x10% 1.2338 1.6x107*
2.0 1.126 9.65 0.172 4.419%10 1.2044 4.3x107*
3.0 1.266 8.87 0.211 2.774 X 10 1.1637 4.7x10™*

Table VII-2. Same as Table VII-1, but for the
stellar models with GM/Rc?=0.0738 and
differenct polytropic indices #.

different polytropic indices #.

Table VII-3. Same as Table VII-2, but for the
stellar models with GM/Rc?*=0.1475 and

n maximum wo/82 Tlwe n maximum wo/R T
0.5 4.349x10° 1.1066 7.5%107° 0.5 7.408 10" 1.1250 3.5X107*
1.0 . 3.613x10? 1.2295 7.5%107° 1.0 6.458 X 10" 1.2137 2.7%X107*
1.5 2.788 % 10? 1.4479 9.2%x107° 1.5 5.079 <10 14175 3.6X107*
2.0 2.126 x10* 1.7480 1.0x107* 2.0 3.844 x10! 1.6597 2.6x107*
0/ Q
2.0 1.0 0.5
2@2" | 20 ‘].'.’».'il""" | !
" 3 1 s
=119 P = n=1.5
g 1 kg
Ten [
oo
1.5 L.5 !% i
o
| 4 b
b e | b b ]
AR
b
Bl
I
IRAR
0.5 T | 0.5 T T T T
1 2 3 4 5 6 1 2 3 4 56
Ro/ R Rv/R

Fig. 7-5. Same as Fig. 7-4, but for different stellar
models with GM/Rc?*=0.1475.

Fig. 7-4. Same as Fig. 7-2, but for different stellar
models with GM/Rc?*=0.0738. They are distin-
guished by the kind of lines corresponding to
the polytropic indices #.

The maximum, the frequency giving the maximum and the half-width at the
half-maximum in energy are tabulated in the Table VII-1. As the central density
increases, that is, the star is more relativistic, the resonant frequency normalized by
{2 approaches unity and the height of the maximum value decreases.

In order to understand physical picture of this resonance, we imagine the follow-
ing forced harmonic oscillator with damping to mimic the system for the star and
gravitational waves
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E(t)+2IE () + 0% E(t)=aw?e™ ™", (7-107)

where £(¢), I'"' and wo are dimensionless amplitude, damping time and normal fre-
quency, respectively. This oscillator is driven by the external source with dimension-
less coupling a. We will identify wo and I with real and imaginary part of the
quasi-normal mode of the star because the gravitational wave carries away the
energy of the system and works dissipatively.

The Fourier component of £ at w is given by

aw?

§=- w*+ 21wl — we? *

(7-108)

The total amplitude is the sum of this harmonic oscillator and the external source
itself. Thus the ratio %z/he corresponds to

|1 aw?
fe )_’1 w?+2iwl — wo® |
_[{0—-a)e’— v’} +Qwl) ]1/2 .
‘[ (' — 0P+ Cawl)? : (7-109)
When »? approaches w¢®, f(w?) increases as
fa?)="222 1 (7-110)

2 J(@*—wd)+1?

near the resonance. The height of the peak is given by (aw,)/(2I")(>>1), where we use
the fact I'< wo, which is clear in Figs. 7-1~7-5 and Table VII-1~3. At w=wo=* I, the
height becomes 1/+2 times maximum value. This width of the frequency corresponds
to the width at the half maximum in energy because E o< /Z’w?.

When o® approaches wo®/(1—a)(> wo?), f(w®) decreases as

6002 - 21 .
f(l—a'>_ awo <l. (7-111)

This corresponds to a minimum. Thus the interference between the excited quasi-
normal mode and waves from a test particle makes the sharp minimum. From the
behaviour of f(@?) for w*< we?, it is found that the coupling constant « is a small value.

From these facts and Table VII-1, we can calculate the quasi-normal mode (wo
and I") and coupling constant . The quasi-normal mode agrees with the previous
work [Balbinski, Detweiler, Lindblom and Schutz (1985)]. While quasi-normal
modes are determined without perturbing source, the coupling constant @ is not
determined until the perturbing source is included. It is found that the coupling
constant is very small a~107%2 These properties are general for different stellar
models.

Next we consider the stellar models with GM/Rc?*=0.0738 as a neutron star model
with R=20km and M=M,. These models are different in density distribution
depending on the polytropic index #. Results are shown in Fig. 7-4 and Table VII-2.
There is no difference of the response among these stellar models when the particle
is moving at Ry>3R. When the orbital radius is small enough, resonance occurs.



168 T. Nakamura, K. Oohara and Y. Kojima

The resonant frequency is determined by the equation of state used for the equilibrium
configurations. For softer equation of state, that is, larger #», the resonant frequency
islarger. As # increases, the density distribution is more centrally condensed, so that
the frequency to be resonant with the star becomes higher. It is indeed found that the
amplitude for stellar model with z=2.5 does not have a maximum value and always
increases slightly as Ro— R, although numerical calculations are done up to (Ro—R)
/R=107°.

These features concerning equation of state are the same for stellar models with
GM/Rc*=0.1475 as a neutron star model with X=10km and M =M,. Results are
shown in Figs. 7-5 and Table VII-3.

Appendix

The Newman-Penrose (NP) formalism is a tetrad formalism with four null
vectors [*, n", m" and #", where [* and »”* are real vectors, while m* and m”* are
complex conjugates of each other. These vectors satisfy the following conditions:’

[“lu=n*nu=m"m.= m"m.=0, (null vectors) (A-1)

="M= n"me=n"mu,=0 (A-2)
and

“np=—m"Wi,=—1. (normalization) (A-3)

We use the following symbols as the directional derivatives along the basis vectors:
D=1V, Ad=n"V.,
8:7%#7#, 5T=7}7&”7y. (A'4)

The spin coefficients are defined by
a/:—%“(%ﬂ§lm_ - ﬁﬂgmﬂ) ’
__ 1 “ = 7
3—7(75 Slm— — mi*om") ,
_1, . 77 1 “
7—7(14 Alm— — m*Am*) ,
5=%(n”Dlm— —m"Dm") ,

‘/1=—n7z“§n#, p=—m"n., v=—m"dn., n=—m"Dn.,
x=m"Dl., po=m"6l., o=m"Sl., t=m"dl.. (A-5)

The Weyl tensor is the trace-free part of the Riemann tensor and given by

Coapro= Rugys— %(QOO’R/?& +gpsRar— goyRas — gasRpr) + %(gargﬂs —gssgas) R . (A-6)
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Ten independent components of the Weyl tensor are represented by five complex
scalars (Weyl scalars),

Uy=~ Capysl *m*1"m° ,
U= — Coaprsl “nl"m’ ,
U= — Caprsl “m’m’n’ ,
Ys=— Caprsl “n’m’n’
and
Wy=— Capyol “° 070" . (A7)
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Part II1

Gravitational Radiation from a Kerr Black Hole

§1. Tetrad formalism

It is convenient for some calculations to use a tetrad basis of four linearly
independent vector field instead of a coordinate basis and to consider equations for
quantities projected to the tetrad basis. We choose the tetrad as

e, (a=1,23,4) (1-1)

where the Greek and Latin indices indicate tensor and tetrad indices, respectively.
We define the inverse of the matrix [e.”’] by [e%]. They satisfy relations,

ed'e®u=08s", ede’ =04, (1-2)
We project the metric tensor g.. onto the tetrad frame,

Nav=ed'es’gum ,  7*°=e"%e’g", | (1-3)
where 7% is the inverse of the matrix 7., owing to Eqs. (1-1) and (1-2),

Naon %= 84" . (1-4)

We assume 74 is a constant matrix. We can raise or lower the tetrad indices using
7% and 7., as well as tensor indices using ¢* and gw, e.g.,

Can=1av€ u=guea’ = Nasgme®” . | | (1-5)
Thus tetrad components for any tensor field A., are given by

Amw=ed'er’Au, A®=c%e% A" ' (1-6)
or inversely,

Apw=e%e’ A, A =ee,” A% . _ (1-7)

Directional derivative of any tetrad component A.(=e,*A.) along the tetrad e,
is given by

Aa,b = eb”&l(eauAu) - eaﬂA#; vey’ + YcabAc s (1 . 8)
where 7cas is the Ricci rotation coefficients defined by
Yecab™ ec#ea/z; vey’' = — Yaco . (1 . 9)

The last equality comes from the fact 7. is a constant,

Ozebuauﬁac: Yaco t Yeab . _ (1 '10)
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The tetrad components of Riemann tensor can be expressed in terms of the
rotation coefficients,
Ravea= Ruuxpeaﬂebuec/l ed
=(Cav; 1,0 Cav; oy 1) e ed
= — Yavc,d T Yabd,c — ‘)’abf( }’cfd - '}'dfc) - 7bfc7fad + }’bfd7fac , (1 ° 11)
where we used the Ricci identity,
Cav; ;0™ Cav; ;2= Ruvived” . : | (1'12)

The relationship among the Riemann tensor, the Weyl tensor and the Ricci tensor
in the tetrad frame is

Cabcd»z Ravca— %’( ﬁacRbd - Uadec + 77bdRac - 77bcRad> +%R( Nacod — 77ad77bc) .

(1-13)
The Bianchi identities are given by
0= Rasicair)
= Rﬂv[/lp; ol ea"eb”ec"ed"ef‘f
:%[c%:f]{Rabcd,f - ﬁnm(Vnamebcd + YnorRamea + Yner R aoma + yndeabcm)} . (1 . 14)

§2. Newman-Penrose formalism

In this section, we choose the tetrad basis explicitly and write down equations in
this frame with specified notations. In the tetrad formalism, choice of the tetrad
basis depends on the underlying symmetries of the space-time. In the Newman-
Penrose (NP) formalism [Newman and Penrose (1962)], we use null tetrad, which is
convenient for radiation problems. Four null vectors (/% »*, m”, m") are chosen as
a tetrad basis,

lﬂlﬂ:nun#:m;zmﬂ:mp%#:() , (2'1)

where /* and »" are real, m* and " are complex conjugate of one another. We
impose normalization and orthogonality conditions on these vectors,

- Zy%ﬂ:m;ﬂ’ﬁ#:l ’

lum" = [un" = nam" = nm" =0 . (2-2)

Corresponding to this tetrad, 7% becomes
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0 -1 0 0
—1 0 0 0
ab . b= 2.
7 Nab 0 00 1 (2-3)
0 01 0
The four directional derivatives are defined by
D:l#ap, A:nﬂa,u, 5:7%”3,1, §=7ﬁﬂaﬂ. (2'4)

Twelve complex functions called spin coefficients are defined in terms of the Ricci
rotation coefficients as

k=ysu=m"lp, 1", o="rsia=m"lu, ",
0‘:)’313:7%#1;1;;;7%”, z‘*—*}’slz:m"lu;un”,
V="Youz=— MW" Np; ", ﬂ:7243=—n7z”nﬂ;um”,
A= Yous= — W"Nu, oM, T=9u1=— MW" Nu, ",

QZ%‘(7’214+ 7344):%(74”[;4; Y — M, ),
— 1 — 1 #® v =1 v
,8—7(72134‘ 7343)——7(% Zﬂ;um MM, M ),
— 1 — 1 #“ v o v
7'_7(7212"‘ 7342)—7(7’1 L, " — M Wi, w0 ),

EI%(VZII‘*‘ 7341)=%(nﬂlﬂ;uzu“m#m#;ulu) ’ (2.5)

where antisymmetric property of 7. is used. These functions appear more naturally
when dealing with spinors than with tetrad vectors [Newman and Penrose (1962)].

The geometrical meaning of some of the spin coefficients is as follows. From
definition (2+5), we have

Lo v=(e+ E)lunv+(y+ 7))l —(a@+ B) Lt — (a+ B) Ly — kiTiunty— Emuny
+ Oy + Ty — THiuly — Tmply+ 0wy + DMty . (2-6)
Contactiﬁg this equation with /¥, we have
lusl*=—(e+ &)+ kmip+ Km, . 27

The quantity x denotes the curvature of the congruence /*. If x=0, {* forms a
congruence of null geodesics. In this case, e+ & can be made zero by a change in
scale /.~ al* and we have '

51 w=5 o+ P)=Re(0)=4,

%zm; nitiv= —%(p— 2)?=[Im(0)*=w?,
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%zw;y>z”;”=02+|a|2. | (2-8)

The quantities 8, w and |o| are sometimes called the optical scalars. They denote the
expansion d=Re(p), rotation w=Im(p) and shear ¢ of the ray of the congruence /*.
If w=0, the direction for /* is hypersurface orthogonal, that is, proportional to a
gradient field.

In order to know the meaning of r, we contract Eq. (2:6) with »”. From Eq.
(2+6), we have

Z,u;uny:rm;z"}— ZTWL;“—(7+ ?_’)l,u. (2'9)

By a change in scale /.~ al*, y+ ¥ can be made zero. The quantity r denotes the
directional change of /* along the direction of »”.

For the congruence #»*, the spin coefficients v, ¢, A and 7 have similar meaning to
k, o, 0 and r for the congruence /.

In the NP formalism, ten independent components of the Weyl tensor are given by
~ the five complex scalars, '

%: - C#uxplﬂmullmp , qf}= — Cympl"n”l*m” ,
Y= —%C#,,Ap(l"n”l‘n”~ "n*m*m’) ,
%: - Cﬂu&pl#nvﬁl{np s w‘d‘: — C;zu/zp%”m”n’l%?p . (2 ° 10)

Ten components of the Ricci tensor and scalar curvature are defined by the following
seven scalars:

1 1

1 SRun'n’,  Ou=—-pRu(l"n’+m"i),

@00:— 9

R#ul”lu , @22:—

Dy, = 51(): _%Rwlﬂmu y Qo= @20‘—‘ —%RWWZ#W&U , ES 521= _%Ryun#mu ,

A=—R/24, (2-11)

where Q@o, @11, @22 and A are real and others are complex quantities.
The appropriate linear combinations of Riemann tensor (1-11) can be written in
terms of the notations ((2-4), (2-5), (2-10) and (2-11)),

— Do+ 8k=(0*+065)+o(e+ &)— Fr—k(Ba+ B —n)— Do , (2-12a)
—Do+8k=(p+ p)o+@Be— &)o—(r— T+ a+38)k—, (2+12b)
—Dr+de=(r+ 7)o+ (T+m)ot(e—)c—QBy+ 7)k—— Qo , (2-12c)
—Da+ de=(p+ E—2e)a+B5— Be—ri— ky+(etp)r— D, (2-12d)
—DB+de=(a+n)o+(p— E)B—(ut+ik—(a—T)e— Ui, (2-12¢)

—Dy+de=(r+7)a+(t+m)f—(e+ &)y—(y+7)et+n—vk— W+ A~ D,
(2-121)
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— DA+ Sn=(pA+ )+ (n+a—B)r—viE—(Be— &)A— O, (2-12g)
—Du+dr=(ppu+od)+H(z—a+B)r—(e+ &)p—vk— T;—2A , (2-12h)
—Dv+dr=(n+ F)p+(ZT+0)A+(y— 7)r—Be+ &)v— U— Oy, (2-121)
— A+ dv=—(u+mA=QBy—7)2A+@Ba+B+r—)v+ ¥y, (2-12j)
—0p+ So=(5+B)o—Ba—B)o+(po—p)c+(p— Dk+ T — Dor (2-12k)
—da+ 6B=(up—20)+aa+pBBR—2a8+(o—p)y+(p— e+ Wh—0u—A,
(2-12D)
— M+ Sp=(a+B)u+(@a—=38)A+(o—P)v+(p— B n+ Us— D, (2:12m)
— v+ dp=2+ AT+ (r+ 7= v+ (r—38— @)y~ D, (2+12n)
—Oy+dB=(r—a—B)y+ur—ov—ev—(y—7—wph+al— 0y, (2-120)
—O0r+do=po+ Ao+ (t+B—a)c—@By—7)o— k7 — Dz, (2:12p)
—do+ dr=—(pi+c)+(8—a— F)r+(y+ 7)p+ﬂlf+ U424, (2:12q)
- —da+Sy=(o+ev—(c+BA+(F—Da+(F—7)y+ ;. (2+12r)

The Bianchi identities (Eq. (1-14)) can be written as
— DU+ S U +3xW— Q2e+40) U —(n—4a) &,
= —D®o1+ 8 Qoo —2(e+ 7) Por— 20D+ 2401+ T Do
—(T—=2a—28) P, (2-13a)
— DU+ U+ 2¢W—30W:— 22— a) Ui+ AT,
=— 8§01+ ADow—2(a+ 7)Do1+20011+ Do — 2710
—(Z—2y=27)®0—2DA, (2-13b)
— DU+ S+ kW +2(e— o) Us— 37U+ 2.7,
=—DQs+ 6D20—2(p — &) Doy + 20 D10—27D11 + & D22
+(Q2a—28—7)Dn+25A, (2-13c)
— DU+ S+ (de— o) Ui— (4 +20) Us+ 320,
\:A@zo— Do +2(a— T) Do +20D10+ 5Dy — 2101
—(Z+27y—27%) D, , (2-134d)
—A%+5¥f1—(47—#)%+(4r+2,8)w1—3a¥f2
=DQo2— 6Po1+ 27T — B) Por — 26 D12— A Doo+ 2001,
+(o+2e—28) D2, : | (2+13e)
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— AU+ 0 — vl —2(y — 1) i +3c¥—20¥5
= — A0+ 8 Qo2+ 2(Z— 7) Qo1 —20P12— Voo + 27Dy
+(7—28—2a) Do +25A , (2-13f)
— AU+ U — 20U+ 3o+ (27 —28) ¥s— o Ui
=D®02— 0P, +2( 7 + B) D21 — 2 D11 — A Do+ 277D12
+(0—2e—28)D—24AN , (2-13g)
— AU+ U —3vTUo+ Qr+4p) T+ (r—48) U,
= — A3+ 5 Do+ 2( T+ 7) Doy — 20Dy — T D20+ 2AD12

+(T—2a—28) D, . (2:13h)
Finally the commutation relations among D, 4, § and § are written as
—AD+DA=(y+ y)D+(e+ &)Ad—(t+n)d—(c+7)5 , (2-14a)
~8D+D8=(a+B—~7)D+kd—(p+e—&)0—07, (2-14b)
—84+45=—vD+(r—a—B)Ad+(u—y+7)5+ 2145, (2-14¢)
—88+86=(g—wD+(p—p)d+(a—B)o—(a—pB)¢ . (2-144)

§3. Geroch-Held-Penrose formalism

In the NP (Newman-Penrose) formalism, a choice of a complete tetrad at each
point of space-time is arbitrary to some extent. However, two directions are natu-
rally defined at each point in some geometry. For example, in radiation problems,
two null directions can be singled out at each point. In this situation, equations in the
NP formalism can be summarized to symmetric form (GHP formalism) [Geroch, Held

and Penrose (1973)].
There are two dimensional freedoms to choose a tetrad on condition that the
direction of /* and »" is unchanged. Let us consider the following transformations:

[#>pl* n*— iy (3-1)
and
mh - em* (3-2)

where 7 and 6 mean the magnitude of boosts in /-# plane and rotation angle in m-#%
plane, respectively. We introduce a complex number A by A=y7»e"? A scalar @ is
called a scalar of type (p, g) for the transformation of the tetrad, if it transforms as

Q- AP JIQ =y PrDI2,i0(=Di2() (3-3)

The spin and boost weight for the scalar of this type are (p—q)/2, (p+4q)/2, re-
spectively. Transformations (3-1) and (3-2) can be rewritten as :
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[*=> 21", m* = A ' m”

= A Am” n* =27 A7 0" (3-4)

We can find the quantities /*, m*, m" and »* are of type (1,1), (1, —1), (—=1,1) and
(—1, —1), respectively. One of the essential point in the GHP formalism is to classify
the various quantities into same types. Another important point in the GHP for-
malism is to use three symmetric operations, under which the full set of NP equations
(Egs. (2-12), (2:13) and (2-14)) is invariant. As the results, equations in the NP
formalism can be expressed in considerably simple forms. Three operations are
defined by

(i) Complex conjugate operation denoted by bar: (p, ¢)~ (g, p)

[“— 1" n*-n", m" - m" wt— m" . (3-5)

(ii) Prime operation denoted by prime:’ (¢, ¢)~>(—2, —q).

[*->n", nt— " m* - " mtomt. (3-6)
(iii) Star operation denoted by star: * (p, ¢)~(p, —q)
"> m* n'- —m*, m* > — " m* - n" . 3.7

For the derivative operator D, 4 and &, such a type cannot be defined, so that new
derivative operators including some of spin coefficients are defined for a quantity 7 of
type (p, ¢) as

b p=(D+pe+q&)y

b : an operator of type (1,1), (3-8)
D p=(d+pr+a7)n

b’: an operator of type (—1, —1), (3-9)
dn=(8+pB+qa@)y

3 : an operator of type (1, —1), (3-10)
&n=(6+pa+aB)n

& : an operator of type (—1, 1), (3-11)

where D and 3 are pronounced as “thorn” and “edth”, respectively. Alternatively
these operators are defined in terms of the type (0, 0) operator, O, as

@,u:——l;t D/—n# D +m;46,+ﬁlg6
=l7u+%(p+q)n”lu;r%(p~q)n‘z”mu;ﬂ. 4 (3-12)

The type of spin coefficients (Eq. (2-5)) except @, 8, ¥ and ¢ are as follows:
k:(3,1), 0:(3, —1), 0:(1,1), (1, -1,
¥K=—v: (=3 —1), d=—2X(-3,1),
o=—w(-1,-1) and =—-m(—11). (3-13)
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We used «/, ¢, 0" and ¢’ instead of v, 4, £ and 7 in order to manifest the symmetry
under the prime transformation.

The Weyl tensor, the Ricci tensor and the scalar curvature are quantities of the
following types: ’

U= (4,0), V= (—4,0),
TB=1y:(2,0), T=9:(—2,0),
U=1,:(0,0),

Goo= 035" (2, 2) Doy=Doo: (—2, —2),
Qo1 =0x": (2,0), o= Dor": (—2,0),

Goz=D2": (2, —2), D==00":(—2,2),
@m: 0y (0, 2) , D= D" (0, *2) ,

Ou=01"(0,0) and A=A":(0,0). (3-14)
With these notations, twelve of eighteen equations (Eq. (2:12)) are rewritten as
—0p+do=(o—p)r+ (o' — )+ V— Do , (3-15a)
—3 o0 +80=(0"—p)'+(p—p)K+ Ti— @y , (3-15a")
— b+ be=(r—)p+(7—0)o— U,— Do, (3-15b)
— b+ b=(— )+ (' —1)0"— Cs— Dy, (3-15b")
— bp+drk=0*+06—kr—kt'— Do, (3-15¢)
— Do +dk=0%+0"G — k't —K1— D22, (3-15¢")
—0r+ bo=*+ ik’ — 50— 00 — Doz, (3-15d)
— 7+ bo=t*+KE—60—0 00— D, (3-15d")
— bo+dk=(p+p)o—(c+T)k— T, (3-15¢)
— Do+ K="+ p)o —('+ )k — ¥, (3-15¢”)
— Do+8r=pp0 +00'—rT— ki + Uot+2A (3-151)
and
— D=0 GO~ T~ Kkt B2 (3-15f)

The remaining six equations cannot be written as the above forms. They play their
roles as a part of the commutator equations for differential operators b, D', § and
o'. In the above equations, the symmetry under prime operations is evident, that is,
Egs. (3-15a")~(3-15f") can be obtained by the prime transformation of Egs. (3-15a)~
(3-15f). Equations (3:15b) and (3-15d) can also be obtained by the star transforma-
tion of Egs. (3:-15a) and (3-15c), respectively.

The Bianchi identities can be written as
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(F+)T—( D +40) Ui+ 3P

—(5+ 7)) Goo—( D +25) o1 —20@r0+24Pr1 + Doz, (3-16a)
O+ o) U— (D' +4p)U+3£' T,

=+ 7)Poa—( D' +205") 01— 20" P12+ 24 Or1+ &' Do, (3-16a")
(D'+0) T~ (8+47r) Ui +307:

=(8+27)Po1—( D + 7)ozt 26D12—20D11 — & Doo (3-16b)
(DP+o)U—(+4)Us+30 T

=(F+27)0u—( D'+ 7)) Oa+ 24 10— 20 11— 5Dss, (3-16b")
o Uy—(§+20) Wi+ ( D +30) W — 24T

=(§+27) @0 —( D'+ ") Poo+ 27010~ 20011 — 5Do2+2 D A, (3-16¢)
oUi—(30+20)Us+( D'+30) C—2£ T,

=(8+27)0u—( D+ 9) o+ 20 Oro— 20" Pr1i— 5 P20+2 D'/, (3-16¢")
W W—( D' +20) B+ (8+37) U207

— (D420 O+ (B+ 7)Dos— 20Bra+ 2rDys + ' Do+ 254, (3-16d)
kU— (D +20) G+ (§ +30)Wo—20" T,

=—(D+20)0u+(F+ 7)O2—20 Dro+27 P11+ EPoa+25 A . (3-16d)

Equations (3:16 a")~(3:16d") are obtained by applying prime conjugation to Egs.
(3-16a)~(3-16d). Equations (3:16b) and (3-16d) are also obtained by star conjuga-
tion to Egs. (3-16a) and (3-16c), respectively.

Finally the six commutation relations among P, D’,d and & when applied to a
scalar 7 of type (p, ¢) are written as

—(D b'— D' D)p={7—)8+(c— )&+ (k' — 0’ — To— Q1.+ A)

+q(k B —7 /= T— Ou+ AN}y, (3-17a)
— (80 —38)n={(p"—0") D +(p—0) D'~ plop’— 00" = o+ D1+ A)
+a(p 5= &= Tt Ou+ A}y, (3-17b)
~(b3-8Db)yp={pd+0d— 7 D—x D’
+p(pk—1to—W)+q(c'k—p T'—Dn)}7, (3-17¢)
—(bP'd—8 D )p={p&+03— 7D —« D’
—plok’ =10’ = W3)—q(G &F'—p' T—Ou)}7, (3-17d)

—(Db&—8& D)p={pd+ 03— D — & D'+ p(0'k— o' — D)
+q(p’k— 75— W)y, (3-17e)
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—(DbP'3—0 Db )p={00+5&8—~cDb’'—F D
— ok —0't— Ow)—q(p k' — 7 6’ — W)}y, (3-17f)
where Eqs. (3-17d) and (3:17f) are the prime conjugate version of Egs. (3-17¢) and
(3-17e), respectively. Equation (3-17b) is obtained by the star transformation of Eq.
(3-17a). Furthermore, Eq. (3-17e) is the bar conjugation to Eq. (3-17c). In deriving

above commutation relations, we used the commutation relations among D, 4 and &
(Eq. (2-14)) and the field equations (Eq. (2-12)).

§4. Gravitational perturbation of a Kerr black hole

In this section, we will derive perturbation equations of the Kerr metric called the
Teukolsky equations [Teukolsky (1973)], using the NP formalism. The NP quan-
tities (null vector, spin coefficient, Weyl tensor, etc.) can be divided into background
and perturbation quantities as usual. Kerr metric as well as Schwarzschild metric
have so-called type D character of the space-time in the Petrov classification, so that
some of the background NP quantities vanish in a chosen null basis. Before deriving
the perturbation equations, we will explain properties of the type D.

Having chosen a tetrad frame, there are six degrees of freedom corresponding to
homogeneous Lorentz transformation. They can be decomposed into three Abelian
subgroups [Janis and Newman (1965)]:

(i) The vector ! is unchanged:

-1, m-m+al, n-on+am+am+aal . (4-1)

(ii) The vector n is unchanged. This is the prime conjugate version of the above
transformation (i) in the GHP language,

n-n, m-m+bn, I->1l+bm+bm+bbn. (4-2)

(iii) The directions of I and n are unchanged. This symmetry was used to classify
the types in the GHP formalism

- AL, n->A'n, .m—>e“’m. (4-3)

Under these transformations, the Weyl tensors (2:10) transform as:
For the transformation (i),

-9, U-U+a®, oo Brt2ah+a* ¥y,

U-» U +3aW+3a° 0+ a* Wy,

Vi»U+4al+6a’B+4a’ i+ a' . (4-4)
For the transformation (ii),

U~ ¥, U U+ 0¥, Uy U+ 200+ b* U,

Ui- Ui +3b%+30° Vs + b,

Uo— U+ 40U+ 60> Vo +40° U+ 0 U, (4-5)
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For the transformation (iii),
T— N2*?Y, U-> Ne®W, U- Uy,
Uy Nle 0, U— N 2720y, (4+6)
For the transformation of class (ii), ¥ can be made zero by choosing & satisfying
Vo' +4 W0+ 6 Wb’ +4 Wb+ T =0. (4-7

The new direction of I, that is, I+ bm-+bm+bbn, is called the principal null-
directions of the Weyl tensor. We assume Z:+0, then there are four roots for Eq.
(4:7). The Petrov classification depends on the number of coincident roots within the
four roots, that is:

Type I :Four distinct roots of Eq. (4-7).

Type II : Two coincident roots of Eq. (4+7).

Type D : Two distinct double roots of Eq. (4:7).

Type III : Three coincident roots of Eq. (4-7).

Type N : Four coincident roots of Eq. (4+7) .

In the type D case, let & and b:(#b1) be two double roots of Eq. (4:7). If Eq.

(4-7) has a double root,

Wi+ 36T+ 302 W+ b W=~ 1 db(%+4b§m+ﬁbz¢f2+4b3%+ b* )

=() for b=b;. - (4-8)

Thus ¥ as well as ¥ can be made to vanish at the same time under the
transformation of class (ii). Next we consider the transformation of class (i).
Under this transformation, ¥ and ¥ can be invariant, that is, zero. In the similar
fashion for the transformation (ii), ¥ and ¥, can be made to be zero at the same time
if Eq. (4:7) has another double root. Thus after two transformation, that is, class (ii)
with =51, and class (i) with @=(b.—b:1)"", we obtain

Vo=U=U=U,=0. (4-9)

The relation between vector I and vector n can be symmetric in the type D space-
time. This fact causes the GHP formalism useful.

We consider vacuum space-time such as the Kerr geometry. ¥ is the only
nonvanishing scalar among the Riemann tensors and is invariant under the transfor-
mation of class (iii). We have from the Bianchi identities (Eq. (2:13) or (3-16)),

kVo=0C=A%=v¥=0 or K!Fz ol=k"¥=0 ¥=0, (4-10)

corresponding to the notations for the NP formalism or the GHP formalism, re-
spectively. Since ¥:+0, we have
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k=0=A=v=0 or k=o0=K=0=0. (4-11)

Or inversely, if Eq. (4-11) is satisfied, then it can be proved that Eq. (4:9) is satisfied
and that the space-time is type D. This is a part of the Goldberg-Sachs theorem [cf.
Chandrasekar (1983)].

If &= ¥,= ¥;= ¥,=0 in the background, perturbations of ¥ and ¥, are invariant
under the transformations of the tetrad (Eqs. (4:1)~(4-3)). Perturbations of ¥ and
¥, are also gauge invariant quantities. In fact, they correspond to the ingoing and
outgoing radiation field of gravitational waves.

We derive the perturbation equation for ¥ and ¥. At first, the Bianchi iden-
tities (3:16a, b) become

[0+ ]W—[ D +4p] Ui+ [38:]xk=[8+ T/]@Poo—[ D +20] D01, (4-12a)
[ D'+ 0]~ [3+4c] Ui+ [38:]o=[8+2T]Po1—[ D + 0] Doz, ~ (4-12b)

where quantities within the square bracket in the above equations are all unperturbed
quantities and others ¥, «, etc., are first order perturbed quantities. Quantities of
higher order are of course neglected.

The perturbation equation corresponding to Eq. (3-15e) becomes

[D+ot+plo—[d+r+ T k=. (4-13)
Unperturbed equations of Egs. (3-15a, b) and (3-16¢, d) are

do+(e—p)r=0, br+(r—7)o=0,

(D +30) =0, (3+37)8=0. (4-14)

Using these equations (Eqs. (4:12)~(4-14)) and commutation relations (3-17)
concerning ¥, quantities %3, ¥ and ¢ can be eliminated

(D +10+ o) b+ )= S Bl +{@+ar+ Y- 5~ 0) S0l |

={(D +40+ 8)(3+27)Po1—( D + ) Doz)}
+{(8+4c+ 7)( D +25) 00— ( D + 7) Do)} . (4-15)

This equation can be rewritten in a symmetric form because terms in curly brackets
both on the L.h.s. and on the r.h.s. are star conjugate to each other. This will be done
later after the derivation of the perturbation equation for ¥;. The derivation is
similar to that for & because ¥ is prime conjugation to %. From the prime version
of above equations, that is, Egs. (3-15a’,b’,¢’) and (3-16a’,b’, ¢/, d’), we have the
results,

H( b’'+40+ o )( D +p)—%%}+{(6'+4r’+ f)(—é—z-)—%wz}]m

={( b 40+ PN +27)Pu—( D'+ 5") Do)}
+{(+4+ D) D'+28)Pu—( D'+ 7)D2)} . (4-16)
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Let define A: and B: and their star conjugate versions as

5

=( B +4p+8)( D'+ )= B,

F=@ it ON-F— )~ T,

—47Be=(8+47t+ 7){( D +20)Do1—( D'+ ") Doo}
=—4n(d+4c+ F)Y( D +20)Tin—( D'+ 7)Tu},
—47By*=( b +40+ p){(3+27) P —( D + 5) Doz}
=—47( D +4p+ o){(3+27)Tin—( D + @) Trn}, (4-17)
then Eqs. (4:15) and (4+16) reduce to
(Ae+ A*) W= —47(B:+ Bo*) ,
(A7 + A*) U= —4n(By + B¥) . (4-18)

In Eq. (4-17), the first order quantities, the Ricci curvatures can be replaced by
energy momentum tensor due to the Einstein equation:

Doo= _%Rwlﬂzvz —47r< T#u—%—g,,uT>l”l“= — A7 Twl*lY=—4nTy,

Qo= — 47T wl*m"=—47xTm , Ooe=—4nTuwm"m"=—47Tmn ,
Q= —4rTwm'm’=—47Ts 7, On=—A4nxTwn"m’=—4xTwm ,
@22:_47TTpu7’l#7’lU:_47ann . (4°19)

In a similar manner, perturbation equations for the wave with spin s can be
written as [cf. Breuer (1975)]

(As+ AX) U= —47(Bs+ Bs*) . (4-20)

The perturbed equation will be written in a particular coordinate system. In the
Boyer-Lindquest coordinates, the Kerr metric is expressed as

2
ds*= —<1 -———21§7 )dtz*——————‘lezsm 9 dide
2 a2
+%a’7’2+2d52+sin26’<72+ az+2—Ml—%Sir—1—ﬂ—)dqo2 , (4-21)
where
XY =r?+a’cos’6 ,
Ad=r*—2Mr+a?, (4-22)

M is the mass of the black hole and aM is its angular momentum.
Following to Kinnersley (1969), we choose a tetrad of [¢, 7, 8, ¢] components as



184 T. Nakamura, K. Oohara and Y. Kojima

"=[(»*+a%/4,1,0, a/4],
n*=[(r*+a?), — 4,0, a]/(22),
m”=[iasind, 0, 1, i/sin8]/(V2(» + iacosB)) . (4-23)

This tetrad satisfies Eqgs. (4+9), (4-11) and e=0. The nonvanishing spin coefficients
and ¥ are

o=(r—iacosf)™!, r=1appsinb/ V2, |
o(=—w=—0pd/2,  (=—n)=iap’sinb/V2,
a=—1iap’sinf/ 2+ pcotb/(2v2),  r=p’pd/2—po(r—M)/2,
B=— oot/ (242), |
b= Mp® . (4-24)

The differential operators are written as

b =%[(72+az)at+dar+aa¢] ,

b'=EE(r*+a)3,— 40, +ado+ H(do—»+ M) +a( 45—+ M)],

5= iasinéa, + oL 0~ 25 Lcotd+apiasing |,

8¢+p_qcot9——ppidsin(9] ) (4-25)

el .. . 7
6“‘/2[ 1asin 00; + s <nd 5

Equation (4+20) reduces to a single master equation

LU =473T , (4-26)
where
_ [GP+ad®) .. } 2 AMay _[a—z_——l—} ’
L= { Y a’sin®@ | o Y 0¢0¢ 7 en’a Op
A0, A53,) + Sii - ao(sineao)+zs[ “(72 M) | Zsjz?g ]a¢,
2__ 2
+23[MZZL)— y— Z'dCOS(9:|at_S(SCOt20_1) ) (4-27)

If we deal with ¥ =¥, putting s=2 and 7' =2(B:+ B,*), then Eq. (4-26) becomes Eq.
(4-15). If we deal with ¥=p"*¥, putting s=—2 and T =20"%(By + B,*), then Eq.
(4-26) becomes Eq. (4-16).

Furthermore this equation describes the perturbation for scalar field (s=0),
neutrino field s=1/2 and electromagnetic field (s=1) [Teukolsky (1973)].

The master equation (4-26) can be separated as -
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=3 [ " doRumu(7):SE(0)e™e " (4-28)

Equations for radial and angular part are

2_ . _
45— (As“ dR) < 223(; MK +4z'sa)r—-/1>R= T, (4-29)
2
sn7 agsin? d9> < a*wsin’0 =i
———2—77-4.?—020L6—szcotzéJ +s+2ama)+/1)S=O , (4-30)
sin®d
where
T——‘,47rfa’ta’.QsS§’rfz"(G)e'i”‘"’e"“”(ZT‘) , (4-31)
K=(r*+a Dw—am. (4-32)

This separated master equation is called the Teukolsky equation. The angular
function «Si»*” is called spin weighted spheroidal function, with an eigenvalue A and
satisfies the normalization conditions,

ﬂsSm“”’(H)lzsinﬁdH=1 . (4-33)

If aw=0 in Eq. (4-30), the spin-weighted spheroidal harmonics are reduced to the
spin weighted spherical harmonics sYm(0)e™ with eigenvalue A=(/—s)({+s+1).
For general case (aw+0), there is no analytic function describing Eq. (4-30), so that
we need to solve eigenvalue equation numerically. As this function tends to spin-
weighted spherical harmonics s Yi» in the limit aw— 0, eigenfunction and eigenvalues
may be obtained by the perturbation due to aw. In this way, eigenvalues for the spin
weighted spheroidal harmonics were calculated numerically and listed in Press and
Teukolsky (1973).

Regular solution should have the following dependence at =0 and 6=r:

$Sim~(1+cosh)* at 0=, (4-34)

sSim~(1—cosf)** at =0, (4-35)
where

li=tm—sl,  k=glm+s|. (4-36)

From these boundary conditions, this function can be solved numerically as the
eigenvalue problem. We adopted this method for actual numerical calculations
[Sasaki and Nakamura (1982)].

With w=cos0, Eq. (4:30) can be written as

(A=u)Sw),utH{@®*u*—2awsu+s+A—(m+su)?/(1—u?)}S=0,
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Aiﬂ—azw?+24mw ) _ (4-37)
Let define a function g(u«) as

S=04+w)"*Q—u)**g(u). (4-38)
Then Eq. (4:37) can be rewritten as

2(2=2)g e+ 20k + e+ 1)2— 22k +1)) 9,c

+{—?w*2(z—2)+2awsz—s— A—(s+ aw)*+ (ki + ko)l + k2 +1)} g=0 ,
(4-39)

where z=u+1.
Next we examine homogeneous radial part for the Teukolsky equation, that is,

AR+ 2(s +1)(» —M)R,,+ VR=0, (4-40)

V=[{(r*+aw—am)®—2is(r — M){(r*+ a>)w— am}) A+ 4iswr —A. (4-41)
We introduce a new function y as for radial part,

R=(y — ) s+iCHor—amib(, _, Y=s—i@Mori—am)iby(y ) (4-42)

re=M*+/M*—d*, b=2/M’—4d. (4-43)
Equation (4-40) can be written as

x(x - b)Y+ {20 —s—2Mwi)x+(s—1+4Mwi)b—4dwMrii+2iam}y, »

+{*x(x—b)+2Q2wM +is)w(x— b)
+UMr.—a®)0*+2iwM(2s —1)+ iswb—2s— A}y=0, (4-44)

where x=7—7-.
The type of Egs. (4-39) and (4-44) is called generalized spheroidal wave equation,

(X — 20)Y,22+ (Bi+ Bax)y,2 +{w’x(x — 20) — 290(x — 20) + Bs}y =0, (4-45)

where B, B2, Bs, w, 7 and xo are constants. Recently solutions for this spheroidal
wave equation are extensively discussed by Leaver (1985,1986). Especially he
obtained analytic representation for eigen-solutions to the radiative boundary condi-
tions, which are used to determine quasi-normal modes.

There are identities in the perturbations of the radiation fields as follows
[Starobinsky and Churilov (1974); Teukolsky and Press (1974)]. Let us write the
perturbations as

%:R+2(7’)+251m(6)e_iwt+im¢ y (4'46)
(r —1acos0)' Wy= CR-_o(#)-2Sm(Q) et +ime (4-47)

then the radial parts (R-s, R2) and angular parts (-2Su, +2Sm) are related to each
other,
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2] ] J TR =5 8R.z,
L]-J-J- T4 R)=4|CIR -,

Lo LoLyLy(42Sim)=(C—12iwM)-2Swn
LY L oL LY 2(-2Sim)=(C—12iwM)+2Sim ,

where Ls, L*s and J. are operators defined as

Le=0s+—2—— qwsinf+scotd ,

siné
L s=0s— m +aa)sin6+scot8
siné -
- and
_ a4 K
]i ar—- A .

C is a complex number given by
C=[(Q*+4awm—4a2 0 ){(Q—2)*+ 36awm—36a*w?}
+(2Q —1)(964*w® — 48awm) — 144 a° w?*]'* +12iwM
where
Q=A+s(s+1).

§ 5. Radial equation

(4

(4-
(4-

(4-

(4-

(4

(4

(4-
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-48)

49)
50)

51)

52)

-53)

-54)

55)

In this section we consider radial equation for the perturbations of Kerr metric.

The basic equation is

d2 12 2 2\1/2 AS/2+1
[dr*z + V}<As (7’ +d) R):T (72+—“az‘)"3/2 »
where
K2 —2is(r —M)K+Aldirws—A) _ ~o_ dG
V= G*———
(r2+a*)* dr*’
_s(r—M) 24|
G= (r*+a®) + (724 a?)*
and

ar* _r’+a’
dr 4
As -7y, (r*> —00), the potential V becomes

Vgt 2is(re— M)k s*(ri—M)*
2MT+ (2M7’+)2 ’

where

(5-1)

(5-2)

(5:3)

(5-4)

(5-5)
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— —_a .
k=w maws , W+ oMy, (5 6)

The asymptotic solutions for »*— —co are

] -5 20

,\_,Aislzeiik‘r* . (5.7)
that is,
R~ ™™ and R~ sg7%*

One of the solutions on the horizon becomes singular because the tetrad (4-23) and
Boyer-Lindquist coordinate are singular there. We use ingoing Kerr coordinates v,
# and the Hawking-Hartle (1972) basis to avoid this singularity. The new tetrad of
components [v, 7, 8, @] is given by

I+ 1 4 a
Zﬂ_[l’ 2 72+a2’0’ 72+a2}’

n”:[O, —(r*+a?)/3, 0, o} ,

m":[z'asinﬁ, 0.1, —S}’F}/{ﬁ(w iacosd)) (5-8)
where
2 2
dv=dt+-~ Za dr, a’qb':a’go-l-%a’r. (5-9)

This basis can be obtained by transforming the basis (4+23) under the transformation
of class (iii) in § 4 with the magnitude of boost A™'=2(»*+a*)/4 and using ingoing
coordinates. In this basis, the Weyl tensor transforms as

so that Weyl tensor becomes corresponding asymptotic solutions of Eq. (5:7),
P~ A5 or ek (5-11)

This is nonsingular at the horizon.

As the boundary condition at the horizon, we demand the radial group velocity of
a wave packet should be negative to an observer in any local frame. Thus ingoing
waves at the horizon are

R~ fe %, (5-12)
The group and phase velocities of this solution are
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While the group velocity is always negative, the phase velocity is positive if mw/w
>1. To an observer at infinity, the wave satisfying this condition will appear out of
the black hole, or superradiance occurs. Detailed discussions on scalar (s=0),
electro-magnetic (s=1), gravitational (s=2) superradiance are given in Press and
Teukolsky (1973), Teukolsky and Press (1974), Starobinskii (1973) and Starobinskii
and Churilov (1974).

Next we consider asymptotic solutions at infinity. For »—co, (#*—0c0), the
potential V becomes

V—>w2+2—zj)i. (5-14)

Asymptotic solutions for homogeneous equation of Eq. (5:1) are
7s+1RNriseTLiwr* , (5,15)

that is, R~e ™" [ and ™" [»*5*!,
b

Corresponding behaviours of the Weyl tensors are
Yy~e™ |y and ¥,~e™"/r® for outgoing waves,
Ty~e ™ [r and UYi~e *""[r® for ingoing waves. (5-16)

In general for vacuum case, the asymptotic behaviour of the Weyl tensors is given in
the absence of ingoing radiation as

U,=0(r°*"), n=0,1, 4. (5-17)

This property is called the “peeling off theorem” [Newman and Penrose (1962)].
We use usual linearized theory about the flat Minkowski space-time in order to
evaluate the gravitational waves. The metric becomes in the harmonic gauge,

ds®?=—dt*+dr*+ 1+ h)r*d0?+(1— hy)¥*sin®0de® + 2 hx r*sindfde , (5-18)

where %4+ and %« are two independent polarizations of gravitational wave. The first
order perturbation of the Riemann tensor is given by

&R#u&p :é—(h;zp,wl + huk,,u,o - h;t/l,up - hup,,wl) . (5 * 19)

The tetrad (4:23) becomes at infinity

lﬂ:[lﬁ 1’ 07 0] b
1 ’
n _—7[1) ——l! 0) O] )
mﬂ:—l—[o 0,1 —1—} (5+20)
27 L7777 sinf |

The Weyl tensor becomes for ingoing waves,
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Uy=2(l++ihx),
¥,=0 (5-21a)
and for outgoing waves,

T=0,
q&:é-( Wi — k). (5-21b)

When » oo for outgoing waves, we have from Eq. (5:15) with s=—2,
7/4 %:sz_)ROUtV?’eiwr* , ) (5.22)

where R is a constant. Two independent polarizations of metric are given in terms
Of Rout ’
y

R

o ite=—2 [ don R e, (g)giur—ommer. (5-23)
VJ-co Lm @

In dealing with the perturbation of ¥; in Eq. (5-1) the coefficients of 4%¢~*"" at the
horizon and 7*¢’”" at infinity correspond to the physical meaning, that is, ingoing and
outgoing waves. Other modes, e” at the horizon and e *"*/» at infinity should be
vanished. We impose these boundary conditions for such waves in the actual numer-
ical problems as the gravitational waves produced by the motion of a light object
around a black hole. In the actual numerical calculation, however, such a task
makes it difficult to solve Eq. (5:1) because of a long range potential and divergent
source terms. We need to find suitable transformation to make Eq. (5-1) to a short
range potential and a convergent source term. This procedure will be explained in

§7.

Another method is done by Detweiler (1978) for calculation of the gravitational
radiation emitted by a particle in circular orbits around black holes. Let R: and R
be two solutions to the homogeneous form of Eq. (5-1), which satisfy the following
boundary conditions: '

Reo—7re™™

Ri- Aowr3e™™ + Ay te™ ™" for r-co, (5-24)
Roo_)Bouteikr*"*_Bindze*ik‘T* s
R.—- A*c™ ™ for r—-r.. (5-25)

In the inhomogeneous erm of Eq. (5-1), the solution which satisfies the condition
of purely ingoing wave at the horizon and purely outgoing wave at infinity is given by

L (T “Tatar) .
R W{Rw f TR.47dr + R, f TR.47dr}, (5+26)
where W is the Wronskian of R+ and R

. -1 dR+_ dRoo .
W= (Rm B g4 ) (5-27)
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As » approaches infinity,

R—»(—%V :TR+A‘2dr>73e"“”*=R°“‘r3e""’”. (5-28)

This integral is rather easy to estimate for the circular orbit because the source term
T is proportional to the delta function and its derivative. As a result, the integral
can be estimated only at this point. On the other hand, the integration in Eq. (5-28)
is difficult for more general cases, e.g., the case a particle falls from infinity. The
difficulty comes from the divergence of the integral of Eq. (5-28) at infinity. To
obtain physical results, the integrations by parts should be done and all surface terms
should be dropped.

§ 6. Quasi-normal mode of a Kerr black hole

Similarly to a Schwarzschild black hole, a rotating black hole has a complex
resonant frequencies (quasi-normal modes). If we consider the scattering problem of
the gravitational waves incident from infinity by a Kerr black hole, we should solve
the Teukolsky equation (4:29) in §4 with s=—2 and 7'=0 under the boundary
condition

{Aout73ei“”*+Am7f“le"i“”* for »*-> +oo
R(»)- -
Bind*e™ ™" for »*—> —oo, (6-1)
The amplitude of the incident wave A will vanish for certain complex frequency,
which corresponds to the resonance of the Kerr black hole. Detweiler (1980) first
obtained the resonant frequencies wres for @ from zero to M. - In numerical calcula-
tion he transformed the Teukolsky equation and his method can be summarized as
follows. He calculated the amplitude Am(w) for several values of w. If the imagi-
nary part of the resonant frequency is close to zero, the plot of | Ai|~* versus w exhibits
a clear Lorentzian form. The center of the peak gives the real part of wres and the
half-width at half-maximum gives its imaginary part. However this method does not
yield good estimates of wres for a<0.9M. Therefore he used a polynomial fit of
Am(w) for some number of real values of @ near the peak of the above plot. Then the
complex root of the polynomial is a good estimate of wres. This improved method
yields the fundamental frequencies, wres of the smallest imaginary part, to 3.5 digits.

Recently Leaver (1985) has obtained a semi-analytic representation of a quasi-
normal mode of a Kerr black hole and has calculated wres with good accuracy even
for non-fundamental frequencies. He made use of the fact that both the radial and
the angular part of the Teukolsy equations (4-29) and (4:30) in § 4 are belong to a
class of differential equations known as generalized spheroidal wave equations.

For s=—2, (4-30) in § 4 can be expressed as

_ 2
Fi“[(l—uz)g—g]+[a?w2u2+4awu—2+ﬂ~%}szo, (6+2)

where u=cosf. Because of the regularity at «==*1, S(«) should have asymptotic
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behaviour
(14 2)* at u=-—1
S= 6-3
{(1—z¢)’z2 at u=+1, (6-3a)
where
_1 1 ’
kl—7lm+2! and kz—7|m-—2| ) (6-3b)
Then S(#) may be expanded as
S()= e (1+u)" (1= o) 3 an(1+ )" . (6-4)
The expansion coefficients are related by a three-term recurrence relation
a’ai+ Bo’ar=0 , (6'53)
anean+1+ﬂnodn+ 7’noan——1:0 , %:1, 2, ey (6'5b)
where
a’=—2n+1)(n+2k+1),
Bl=n(n—1)+2n(ki+k+1—2aw)
—[2aw(2k1—1)~(k1+kz)(k1+kz+1)]*[a2w2+2+/1] ,
vil=2aw(n+k+k+2). ‘ ' (6+6)

If the recurrence relations (6-5a, b) have a minimal solution, the summation in Eq.
(6-4) converges uniformly and the boundary condition (6-3) is satisfied. Therefore
the eigenvalue A is a root of the continued fraction equation

6., 0
— R0 _ Ao 71
0 /3)0 0 a’107ze
Bl - 6., 0
,820* a2 Vs
lgaﬁﬁ...
6., 6 ,6.,6 . 0, 0
—po_ Qo Oy Qz7s .
—BO Blo_ 626__ ,836—‘ . (6 7)

The boundary condition (6:1) with An=0 can be expressed as

73+2:'a)ez'wr for ¥ — 0O

(r—r)¥%  for r-ry,

R(?f)%{ (6-8)

where
re=M*J/M*—a*,

a=<m+——§—ﬁ’%)/b " (6+9)
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with
b=wri—r-.

Then R(») may be expanded as

R(r)=e® (r—ryaiwssio(y —y e 5 g (LTe)' (6-10)
where the expansion coefficients satisfy a three-term recursion felation

a"dv+ Bo"do=0, | (6-11a)

@ dnirt Ba'dnt ¥y dn=0,  n=1,2,-, (6-11b)
where

an =n*+(cot+ ) n+co,

B =—2n+(c1+2)n+cs,

v =n?+(co—3)n+cs—c2+2 (6-12)
with

00:3—2z'w~2’<2w—b_“m),
01=4+22'w(4+b)+ma%i@,

62:1_62-60__2.2_(,2_607)@_%%),

cs=w*(16+4b—a®)—2amw+1+{A+b)iw— A+

i

Bw+2)2w—am)
b

co= — 180"+ 2i0— B0 ¥ 2NZ0—am) (6-13)

The summation in Eq. (6:10) converges and the boundary condition (6-8) is satisfied
if the frequency w is a root of the equation

— T a’n” 'y 'y . .
0 BO Blr___ Bzr_ 537__ . (6 14)

The eigenvalue A of the spin-weighted spheroidal harmonics and the resonant frequen-
cy wres Will be obtained if Eqgs. (6+7) and (6-14) are solved simultaneously.

Although the resonant frequencies wres are independent of the value of m for a
given /, they are the function of » and / as well as of . The numerical calculation
of both Leaver (1985) and Detweiler (1980) revealed that the imaginary part of the
resonant frequencies for a given /, m decreases with the increase of @ and is likely to
become zero as a—1.
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§7. Transformation of the Teukolsky equation—— Sasaki-Nakamura equation ——

We have shown in § 4 that the radial function R(#) for s=—2 should satisfy the
Teukolsky equation,

2L BNy () R(=T(r), (7-1)

where

K*+4i(r —M)K
A

V(r)=— +8iwr+A. (7-2)
When we consider the gravitational radiation by a test particle falling from infinity,
we must face the divergent integral in solving Eq. (7-1). That is because the source
term 7 (#) will diverge for » - co and the potential V(_r) is of the long-range nature.
(See Part 1I § 2.) As shown Part I § 3 Eq. (7-1) for =0 can be transformed into the
one dimensional wave equation

2
[ﬁ+wz_ V(t)(r)}X(i):S(i)(r) , (7+3)

where V® is the Regge-Wheeler(—) or the Zerilli(+) potential and the function X
is related with R(») as

2 ,
R=A/I+7/7A+7X(*) (7-4a)
or
7| 7? )
Here
_d 1K .
A= = * 2 (7-5)
and
d7*=L2dr ‘ (7-6)
ar.
In the case 7'=0 (or S=0), Eqs. (7-4a,b) are rewritten as
(+),.4 2(E)\/ 2
x(i’:fTr[/l_/LR +742*<ln i >/1_R +%A‘i’R} , (7-7)
where
X(i)zérX(i) ’ (7-8)
FE=[AA+2)£12i0M]", (7-9)
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6T v (1£1)/2
(£) _ .
A v Ay +6M} ’ (7-10)
w_ 1 7 }‘ﬂ '.
B r* L Ar+6M , (7-11)
and ’ denotes the derivative with respect to ». x'* can be expressed as
v + (i)rz 2 + +
Xu:_gj'?i)h(i')A—“a‘“h(“)/l—g(")fe ) (7'12)
where ¢© and 2™ are the function satisfying the following equations:
+ + + + 1 +)7 7, (£)y
BE =[g®]2p* and AL)ZW(Q(‘) ) (7-13)
or explicitly
GI=lr b, HO=[r29 ] (7-142)
and
g =[p1#®+ p(Ar +6M)*] ", WO =[r(Ar+6M)g™]2 (7-14b)

with integration constants p: and pe.
Now we shall search the transformation of the Teukolsky equation for a#0 into
an equation such as

4 d
| L= F) = U | X()=50). (7-15)
Here »* is defined, instead of Eq. (7+6), by
2 2
dr* =TT gr (7-16)

and 7* ranges from —co to +© as » from »+=M ++ M?*—a*(the horizon) to +<0. In
addition, we shall impose the condition on the functions /' and U being of the
short-range nature, that is, for »*—» xoo
_ K \? _
F=0(»*") and U:<272> +O0(r* 7). (n=2) (7-17)
r+a

First consider the case 77=0. In the manner of Eq. (7-12), we shall introduce a

new function x(#») related with R(») via

e :
r=2 A hAgR . (7-18)

Eliminating the second derivative of R with respect to » with the aid of Eq. (7-1), this
is rewritten as '

r=aRA+E R (), (7-19)

where
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K s
—"27,8+f[3zK +A+4A7, (7-20)

p—1d| ~2iK+ 4+ B | (7-21)

with A and B defined by Egs. (7-10) and (7:11), respectively. Taking the first and
second derivative of Eq. (7-19) with respect to » and using Eq. (7-1), we find that x
should satisfy the equation

o d (g0 dX\ g dX  qr._ }
4 dr(d dr) 4T~z =o, | (7-22)
where

5[:77', | (7-23a)

e ) o) -

U=V -+ ,6’[<2a/+d ” a+A (7-23b)
with

e BB+ ), =
Moreover if we define X(7) by |

2 2
x="rrd, (7-24)

then we obtain Eq. (7-15) with

F_?%‘, (7-25a)

U=yt Ot (7:250)
and

G=——2 4 (7-25¢)

B 72+a2+ (r2+a*)* -

Now let us impose the extra condition that F =0 when a—0 like the Regge-
Wheeler or the Zerilli equation. Then it can be proven that the functions ¢g(7) and
h(7) should become those given by Eq. (7-14a) or (7-14b) for a—0, assuming they are
real functions independent of w and f(#) is a constant.

In general case a+0, it is now straightforward though a bit tedious to show that
F(») and U(7) will be of the short-range property if 7, ¢ and % are regular functions
with no zero-points and :

f=const + O(%) , Az%[l + O<%>]



Part IIl Gravitational Radiation from a Kerr Black Hole 197
and
_ 1 1 ' .
B="% [1+O< Tﬂ (7-26)
for » >0, as well as f=0(1), A=0(1) and B=0(Q) for »— r+ [Sasaki-Nakamura

(1982)].
Next we shall consider 7#0. Substituting Eq. (7-22) into Eq. (7-15), we have

A d‘f/ <A“1 ZX ) AEI%—~‘UX=(72+QZ)3/ZS. (7-27)

When ¢=0 and 7 +0, Eq. (7:7) can be rewritten as

R=%{<a+g>x——~§-x’}+r35. (7-28)

On the other hand, when ¢#+0 and 7 =0, Eq. (7-19) can be rewritten as

R:iy{<a+~§,i)x—§x} . (7-29)

Then in general case a+0 and 7 #0, we shall assume that R is related with x and S
as

R= £{<a+’i’>x—*§-x }+QS , (7-30)

where Q(#) is a certain function to be determined later. Inserting Eq. (7-30) into Eq.
(7-1), with the aid of Eq. (7-27) we obtain

T= AZ<A(Q5)>+AZ('88> (%— VQ)S, (7-31)
where
8 =(r*+a)"s.

Since Egs. (7-20) and (7-21) can be expressed as

a2 r’g*h 7? 1 J )
a=fV — 14 [{ L } NS (7-322)
and
_ o] 7ok 1 r’g _1J )
B—fd[ R e Nl (7-32b)
then if we choose @=(7%+a***fly, Eq. (7-31) reduces to
) 7*ho, fS .

Note that for a—0, since ¥~ 7, @~ »° and therefore Eq. (7-30) reduces to Eq. (7-28).
Moreover introducing a new function W(») defined by
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£S ( ‘K ) | .34
W= gl &P Z/A dr), | (7-34)
we can simplify Eq. (7-33) further into
(hW’y = *Zz—gexp(z'f}ja@f) . (7-35)

This can be integrated numerically to obtain W and the source term of Eq. (7-15) will
be calculated from

s—geiypee( =i [ ). (730

When T ~ »"?exp(iwt(7)) and ¢(»)~ »** for » —» oo, which is the case of a test particle
falling from rest at infinity, then S decreases as ~ »~*? at infinity and therefore we can
avoid the divergent integral in solving Eq. (7-15).

In actual numerical calculation, it is the simplest to choose f, ¢ and % as

f=h=1 and g=r""2 (7-37) °

(here we set =0 and p:=1 in Eq. (7-14a)), and therefore A=6/»* and B=7*. Then
substituting these into Eq. (7-23c) through Eqs. (7-20) and (7-21), we obtain

y=cotc1rH+cr Pt csr+cr™, (7-38)
where

co=—12iwM + X(A+2)—12awaw—m) ,

ci=8ia{3aw—Alaw—m)},

2= —241’aM(aw —m)+12a*{1—2(aw—m)?},

cs=241a*(aw—m)— 24 Ma*
and

ca=12a*. ‘ (7-39)

The short range property of these potential terms is shown in Fig.k7-1. It is straight-
forward to calculate F and U in Eq. (7-15). When we examine the gravitational
radiation by a test particle travelling in the Kerr geometry, we should solve Eq. (7-15)
under the boundary condition that only the outgoing wave exists at infinity (#*— + o)
and only the ingoing wave at the horizon (#*— —o0). Owing to the short-range
property of F' and U, the asymptotic forms of the solution X become

X expl & iwr¥] for »*-> +oo

in +,,__Ma ) *} *_
X exp[_z<a) 5 Mre 7 for »r*—>—co.

X (7'40)

Inserting this into Eq. (7-30), we obtain the relation of the amplitude X°** with R
appearing in Eq. (7:22),
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4C()2XOUt
co

R'= (7-41)

§ 8. Geodesics in Kerr geometry

In this section we discuss geodesics in the Kerr geometry. In the Boyer-
Lindquest coordinates, the Kerr metric is given by

* .2
ds?=— (1= 217 ) gpo - AM@ S0 g,
2 * 2
+§d72+2d92+sin25(72+a2+%“g§lﬂﬁ>d¢2 , (8-1)
2 =7*+a’cos?l (8-2)
A=r*—oMr+a®. (8-3)

In a stationary axisymmetric space-time, there exist two constants of motion: the
energy #F and the angular momentum about the axis of symmetry, ¢l.. The
particle’s rest mass x is also a constant of motion. In general we need four constants
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of motion to specify uniquely the orbit of the particle throughout four-dimensional
space-time. There is another constant for a test particle motion in the Kerr geometry
except above three obvious constants. The fourth constant of the motion C was
discovered by Cater. As a result, we obtain equations governing the orbital trajectory
[Misner, Thorne and Wheeler (1973)]:

Bl (8-4)
2£_+m » g.
dz. - = 3 ( .5>
(3 -
2 2
Z%:—a(aEsin26~Lz)+%Q~P, (8-7)
where
2
@(H)ZC—coszﬁ{az(l—Ez)-F si[;z@}’ (8-8)
P(r)=E(r*+a*)—al., (8-9)
R(»)=P*—A4{r*+(L.—aE)*+ C}. . (8-10)

The plus and minus signs in Eq. (8-5) correspond to approaching and receding orbits,
respectively. There are motions for #-direction in general orbits unlike orbits
around the Schwarzschild black hole.

- We consider the condition that an orbit is always located in a constant §=¢6,
plane. This condition can be written as

_ do|  _ )

Olo=6,=0, 20 loos™ (8-11)
Equation (8-11) is written explicitly as

C—coszﬁ{az(l—EZH— L }

0 Sil’lzeo ’
Ozcosﬁ{az(l—Ez) iné +-—Li} (8-12)
0 Sm &% sin*@ ) - ‘

We have

cosbo=0 ‘ (8-13)
or

L 2
a*(1—EHsinb+——5+=0. (8-14)

Sil’l3 50

In both cases C can be written as,
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C=a*(1— E?*cos?6,(1+sin’6) . (8-15)

We consider orbits in the equatorial plane 6=x/2. In this case C=0 is a
necessary and sufficient condition for the motion to remain in this plane for all times.
We consider a circular orbit in this plane to examine how the rotating black hole
affects the orbit. The energy and angular momentum for the circular orbit at » can
be determined by solving the following equations:

— dar _ :
R=0, -5-=0. (8-16)

We have [cf. Bardeen, Press and Teukolsky (1973)]

7o — My E aM

) E: 7/3/4(7’3/2_BMVI/ZiZCZMUz)UZ ’
iM”Z 212 MI/Z 1/2+ 2
L.= 7,3/4(73/§zBMfl/zi_zVaMl/g)gz ) : (8'17)

where the upper sign refers to the orbit with L.>0 (corotating orbits) and the lower
sign refers to the orbit with L.<0 (counterrotating orbits). In order for circular
orbits to exist, we have a condition from the denominator in Eq. (8:17),

P23 M 20 MY 20 (8-18)

The case of equality gives an orbit with infinite energy per unit mass, i.e.,, a photon
orbit, 7on,

m,zZM[l -I—cos{—%cos‘l(?%)ﬂ ) (8-19)

If £>1, the orbit is unbounded, that is, a particle in such an orbit will escape to
infinity along an asymptotically hyperbolic trajectory if it is perturbed outwardly.
On the other hand, the orbits with £ <1 are bounded. Thus bound orbits exist for »
> 7mb, Where 7mp is the radius of the marginally bound orbit. #7m» can be obtained by
putting £=1 in Eq. (8-17) and solving for » as

ran=2M Fa+2MV*(MTF a)'?. (8-20)
The corresponding angular momenta to these orbits are given by

LAi=+2MQA+V1Fa/M) . (8-21)

When a particle with £E=1 and L.<|L:| falls from infinity, it will be absorbed in the
black hole. On the other hand, it will be scattered hy the black hole when E=1 and
L.>|L1).

The bound circular orbit is not always stable. Stability condition d*R/d»*<0
yields

¥ > 7ms, » (8'22)

where 7ms is the radius of the marginally stable orbit given by
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9. § e Ty Vms:M{S'f‘Zz
5.0 T FVB—-2)3+Zi+22) ),
b 7 ]
ror 7 E Zi=1+Q1—a*/M*)"?
Y - < {(1+a/M)"*+1—a/M)"™}
T r e 1
5.0 u ///// -
L o ] Zzzv 3@2/M2+le . (823)
4.0 : //l'mb 7_.—-——-—'_':
P T ] These three radius concerning to
3.0 - Leb E photon’s circular orbit, bound orbit and
2.0 F 3 stable orbit are shown as a function of
10-‘..‘?(,1.‘.,1.‘.,1..1 Kerr parameter « in Fig. 8-1. It also
0.0 0.2 0. 4 /Mo. 6 0.8 1.0 shows the outer event horizon 7: given
a
by

Fig. 8-1. Radii of circular equatorial orbits around
a Kerr black hole as functions of the parameter re=M-+vVM*—a* . (8-24)

a. Solid and dashed curves denote the corotat- .
ing orbits and counterrotating orbits, re- These radii tend to M as a—M.

spectively. #ms, 7mv and 7pn correspond to This coincidence comes from the subtle

marginally stable, marginally bound and nature of the Boyer.Lindquest COoOor-

photon orbit‘s, respectively. The horizon 7+ is dinate at »=M for a=M. More gen-

also shown in the figure. eral orbits including 7- and #-directional
motions are discussed in detail in Chan-
drasekar’s book (1983).

§9. Source terms

In this section we show the explicit form of the source term. The energy
momentum tensor for a test particle of mass ¢ is given by

T#(x)= e 6= 2()

= A e e o= T2 2(r)), (9-1)

where 7'(») and 2(») expreés the trajectory of the particle. The source term 7 for
the Teukolsky equation (4-31) is given by

T—87 f dQdio™® 5N (By + By*)e ™™ _,SE(0) ™" | : (9-2)

where

By = “%psﬁL-l{‘o“‘Lo(pwz o7 Ton)}

fp i SV O A o Tmn)}
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By*' = —%ps o4 ] {07 (072 0 Tin)}

g PP o L0 A o)
o=(»—1iacos8)™", ‘ 9:3)
where Ls and J+ are operators defined by

Le=0s+—2 — qwsinf+scotf ,
sind

]+=ar+l§—. (9-4)

Using the equations of motion (Eqgs. (8-4)~(8-7)) and tetrad basis (4:23), the tetrad
components for the energy momentum tensor (9-1) are given by

Ton=L 00 VR (- F1) 8t = T()69(2 - 2(r),

Tmzzi_j%pz 5(%1 1)(ak -l )sino(t— T ()2 —2(r)),

) 2__1__< __L. )2 i 2 _ @(0_ .
Trm 5 0 B aFk sinzg ) Sin 05(t— T(r)6®(R2—R2(r)), (9:5)
where upper sign and lower sign correspond to approaching and receding orbits,
respectively.

We consider the case that a particle falls into the black hole in the equatorial
plane. From the source terms for the Teukolsky equation, we have the source term
S for the Sasaki-Nakamura equation (7:15) by solving Eq. (7:35) under boundary
condition, which guarantees purely outgoing waves,

S:#WWGXD —17 rﬁdr ) _ (9-6)
(7*+ a®)®*y Wi

W is divided into three parts, which are related to Twn, Tw# and Tws in Eq. (9+5).
Results are explicitly written in units of c=G=M=1.

W= Wan~+ Wan+ Wam . ‘ (9-7)

Whn is given by

%Wnn=foexp(l~x)+frwd71f1exp(z'x)+£wdrl‘/:dyzfzexp(ix) ’ - (9-8)
where
1 #»*/R =& : .
fo=—02 (72+622)ZS’ (9-9)
_Jo _ via | s 2d—7*) | R . .
h 5 [{SH—(CZGJ m) So} L + S{ '+ &) -+ R —I-Z?;H , (9-10)
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_ i R [, _ .
fo= g +42)A\1 F)[{Sl—k(aw m)So} 2

< 2a° 27 _(PHVR) | .
+S{7(72+a2)+rz+([,z—a)2 P+J/R +l77}],

(aw—m)a—Lz) am/l_ P )
JR 4\ VR

77:

and

S :<aa)— m—i—a>(Sl+(aw—m)So)—§So .
7
So and Si in Eq. (9-13) stand for

SOZ—ZS%)(W/Z) R S1= dﬁ ~— St (7f/2>

W is given by

%an—=goexp(ix)+£ drigiexp(iy) ,

where

Jo=— a—a)Lz (SH—(aa) m)So)

2+2

and

g —‘QOI: 2a” Z'W;]
1 .
r(7?+a?)

Wem is given by

J—WﬁﬁZhoeXp(z'x)+/wd71h1exp(z‘x)+/wa’71/wdrzhzexp(ix) ,
# r T 71

where

— 2 2
——SO(“JFLJ ==k and k=T

The phase x in the exponential function is given by

hz:

x:a)z‘——mgp-l-/rK/Aa’?f

=wv—meo ,

where v and ¢ are ingoing Kerr coordinates defined by

2 2
dv=dt+~ Z‘l dr,  dp=dptdr.

(9:

(9

(9-

(9

(9-

(9

(9

o

(9

9

11)

12)

13)

14)

15)

16)

17)

-18)

19)

20)

21)
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Next we consider the scattering orbits. We denote the periastron as 7. We
obtain the source term W by adding receding part of the trajectory to the above
source. We have explicitly

W= Whnn+ War+ Wan . (9-22)

Wnr is given by

Lme=fo(”ex1:)(z')a)—I—'/‘ma’mﬁ“)exp(z')a)+/ma’m/ma’rzfz“’exp(z')a)
/l r T 71

+fo(2’exp(ix2)+frma’hfl(”exp(z'xz)+£mdh/rmd7fzf2(2)exp(ixz) . (9:23)
where

foPV=£/(2=£0(r —70), (9-24)

JAREE S fo 8(7—70)[{51-%(620) m)So} zaz S{ 72}(? +a2)) +277(1)}'] (9-25)

AD— f0(r — ro>[{sl+<aw m)So}—+ s{

h_t_r*JR _
= e +a2)d\1 m)ﬁ(r )

ia 2 4 (P—JR),. ,
{{Sﬁr(aa) M)So] 2 5{7(7’2—1—@2) 1 P*\/]T +Z77(1)}},(9 27)

20a*—7r") :
7’(a2+az) + R + 277(2)}] , (9-26)

n__ i VR (1 _
P = " <72+a2)d\1 m)@(?’ 7o)

za 2a’ 4 (P+VR) .
<[5+ (a0 —ms 4+ 5 B TR ing ||, 028)

’(9-29)

ﬂ(l):(aa)—m)(a——l,z) _am(, P >
JR A\ JR
and
(aw—m)a—L.) am/( P
=- —am(y By 9-3
7 /R ANTUR ) (9-30)
War-is given by
%Wm=goﬁ(r — ro)(exp(zxay) —exp(ix®))
+ﬁwdrlgl(l)exp(ix<1>)"91<2)6XD(Z'X(2>) , (9-31)

where
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2
91(1):\(]0(9(7’_7’0)[—7(722?}_*67‘2)‘4-2'77(1)} : (9~32)
and
91(2>=got9(7”—7’0)[;2*&2—?%77(2)} . (9-33)
r(r*+a?)

Wi is given by

%Wm:ho(exp(l'Xm)+exp(ix@>))0(7—70)

+ [ " dri(exp(irm) +exp(ixe) 0(r — 1)

+jwd71[md72h2(exp(zk(1))+exp(iX(z)))t9(7“ %) . (9-34)

2 and xe are given by Eq. (9:20), corresponding to ingoing and receding part of the
orbit, respectively.

From these explicit source terms, W is apparently divergent at #, for the scatter-
ing orbits like Woc(»—#) "2, As the results the contribution to the gravitational
radiation is large there, although the contribution of this divergent W at the perias-
tron to the wave amplitude R is finite. The gravitational wave emitted by a particle
in these orbits has a characteristic frequency w=m{% where £ is angular frequency
at 7o.

§ 10. Numerical results for gravitational radiations

In this section we examine the gravitational radiation induced by a test particle
moving in the Kerr geometry. At first we consider the case that a particle falls into
the black hole without orbital angular momentum [Nakamura and Sasaki (1982);
Sasaki and Nakamura (1982b); Nakamura and Haugan (1983); Kojima and Nakamura
(1983a)]. In this case, the differences due to the central black hole will appear clearly
and we will be able to answer the question; how does rotation of the black hole affect
the gravitational radiation? Next we consider the effect of the particle’s orbital
angular momentum [Kojima and Nakamura (1983b), (1984a)]. When the particle’s
angular momentum is larger than a critical value, it does not fall into the black hole
but is scattered to infinity. We consider scattering case finally [Kojima and Naka-
mura (1984b)].

10.1.  Gravitational radiation from a particle without angular momentum falling into
a Kerr black hole

We consider the case that a particle falls into a Kerr black hole in an equatorial
plane without orbital angular momentum [Kojima and Nakamura (1983a)]. Figure
10-1 shows the differences between the Kerr black hole case (¢=0.99) (solid lines) and
the Schwarzschild case (a=0) (dashed lines) in terms of the energy spectrum for
/=2,3and 4. Several peaks appear for each multipole / in the Kerr black hole case.
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This is due to the frequency of quasi-normal modes which depends on m. Since the
Schwarzschild metric is spherically symmetric, there is no essential difference among
the different m modes for the same /. In this case, there is a unique characteristic
frequency of the quasi-normal mode for each multipole. The energy spectrum has a
maximum value at the real part of the complex quasi-normal mode. On the other
hand, since the Kerr metric is axisymmetric, the frequency depends on the value of m -
for a given /. This fact causes several peaks in the energy spectrum as shown in Fig.
10-2, which shows the energy spectrum for each m of /=2 multipole for ¢=0.99 case.

Next we show this difference in terms of the gravitational wave form. In Fig.
10-3, we show the wave forms for various m modes of /=2. There is a characteristic

0O 02 04 06 08

' . ¢ . . Jw
10 12 14 1618 20

s ) P SIS S ; ; . A
0O 02 04 06 08 LO 12 14 6 18 20

Fig. 10-1. The energy spectra for the multipole / Fig. 10-2. The energy spectra for each m mode in

(1=2,3,4). Solid and dashed lines correspond quadrupole mode (/=2). The outer lines
to the @=0.99 and ¢=0 cases, respectively. denote the sum of these m modes.
her/ "
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Fig. 10-3. The comparison for different » mode of Fig. 10-4. The gravitational wave form (4.) for /
quadrupole mode (/=2) in the gravitational =m=2. Solid line and dashed line correspond
wave form. Especially a part of the ringing to the ¢=0.99 and ¢=0 cases, respectively.

tail is enlarged in the figure.
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frequency corresponding to each m mode at the ringing tail. The maxima of the
energy spectrum are located at these frequencies for each m mode. Since the mode
with m=1 is the most important as shown in Fig. 10-2, we show the difference between
a=0 and 2=0.99 in the wave form of /=m=2 in Fig. 10-4. The wave form consists
of three different parts, a precursor, a sharp burst and a ringing tail. This property
is common for both the Schwarzschild and Kerr cases. In general the ringing tail is
related to the quasi-normal mode. Real and imaginary parts of the quasi-normal
mode correspond to the frequency and the decaying rate of the ringing tail. As
known from the figure of the energy spectrum, this part dominates the wave. From
the wave form, we can determine the complex frequency of the quasi-normal modes.
They  are consistent with results obtained by different methods [Detweiler (1980);
Leaver (1985)]. (See §6.) As the Kerr parameter increases, the frequency of the
ringing tail increases and the damping rate decreases. This means that the
gravitational wave with higher frequency is emitted longer for the Kerr black hole
case once it is perturbed by the particle.

In Fig. 10-5, we show the total energy, the total linear momentum and the total
angular momentum emitted as functions of the Kerr parameter a. Total energy of
the gravitational wave increases with the increase of @ because the frequency of the
ringing tail increases and the decaying rate decreases. The energy for ¢=0.99 is 4.27
times larger than that for 2=0. In this figure, we also show the total energy and the
linear momentum of the gravitational wave when a particle falls into a Kerr black
hole along z axis [Nakamura and Sasaki (1982); Sasaki and Nakamura (1932b);
Nakamura and Haugan (1983)]. In this case the total energy for ¢=0.99 is 1.65 times
larger than that for =0 case. Since the system is axisymmetric, gravitational wave
with =0 mode is radiated. The quasi-normal mode for m=0 does not change so
much as that for m=2, so that the increase of the energy is not large.

We also show the linear momenta emitted both by a particle falling at equatorial

plane and by a particle falling along z
L — —— axis. In the former case, it increases
g ] with @, while it decreases in the latter
case. This fact seems to be strange, but
the linear momentum is radiated due to
the interference among different multi-
poles and it can be larger only when the
gravitational wave is produced coherent-
ly among different modes.

AP (0) 7~ _ In this figure we also show the total

- AN angular momentum of the gravitational

v :)0 B T >z.o waves. The gravitational waves carry
a away the angular momentum of the sys-

Fig. 10-5. The total energy [F, total linear tem as well as the energy. When a
momentum £ and total angular momentum J particle falls into a Schwarzschild black

of the gravitational radiation as functions of . C 1 .
the Kerr parameter. Values of 0 and 7/2 hole without a particle’s orbital angular

denote orbits along z-axis and orbits in an momentum, the angular momentum of
equatorial plane, respectively. ' the gravitational waves is exactly zero,
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because there is no angular momentum to be extracted from this system. However
the amount of the angular momentum of the waves increases with @ because the Kerr
black hole has an angular momentum. The minimum of a for calculating / is chosen
at @=0.35 in the figure.

10.2. Gravitational radiation from a particle with angular momentum plunging into
a Kerr black hole

As shown in §10.1 the gravitational wave is characterized by the quasi-normal
“mode. In this subsection we consider the effect of the orbital angular momentum of
the particle, that is, how does the orbital angular momentum enhance the
gravitational radiation? Figure 10-6 shows the total energy of the gravitational wave
as functions of L; for various Kerr parameters by solid lines. For ¢=0, the minimum
is located at L:=0. For the Schwarzschild case, the orbital angular momentum
always enhances the gravitational radiation. On the other hand, the minimum is
located at small negative value of L. for the Kerr case. This means the particles
with small negative L. weaken the radiation. The particle with small negative L.
counterrotates at infinity, but it falls corotating due to the dragging by the rotating
black hole. The motion for such a particle becomes slow near the black hole so that
L. works on the gravitational radiation destructively. On the other hand, the
partcile with positive angular momentum always corotates and the motion becomes
fast near the black hole so that the total energy of the gravitational waves increases
with the angular momentum. For sufficiently large |L:|, the effect of the particle’s
orbital angular momentum dominates so that the energy increases with the increase
of |L.l.

AE Dashed lines show the energy only

—JJIT for m=0 mode. This can be considered
as the energy of the radiation when a

rotating ring falls into the black hole.
From Eq. (8:5) we see there is a spin-
orbit coupling force between the spin of
the black hole and the orbital angular
momentum of the particle. It is repul-
sive for L->0 and attractive for L.<0.
The repulsive force makes the falling
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L.<0. This is also the reason why the

3Lz energy from the ring for a¢+0 is smaller

Fig. 10-6. The total energy E and its contribution than that for ¢=0 when L:.>0. This
from m=0 mode as functions of L for various suggests an axisymmetric collapse may
a. Solid lines correspond to the former and be a poor emitter of the gravitational
dashed lines latter. In the figure, the values of wave

a=0.99, 0.85, 0.7 and 0 are indicated by dots, . .
crosses, triangles and squares, respectively. Next we consider the differences
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(dE/dw) /u’

(dE/dw) /u®_

2 LK IRBAEEEE BN LA AL N LR AL ) """‘E § m:‘—l ';
o | 172 o, ] o fm=-2 ]
10 4 10 E 3
-4 ] -4 :‘1 .
N 0 PN S
10 1 1

(a) .
Fig. 10-7. (a) The energy spectra in the case of corotating orbit with ¢=0.85 and L.=2.6. Dashed
lines show the energy spectra for different » mode with /=2. The modes with negative m are so
small that they do not appear in this figure. (b) The same as (a), but for the case of counterrotat-

ing case with ¢=0.85 and L.=—4.5.

" N between corotating and counterrotating
: orbit in the energy spectrum. We show
the energy spectrum for L.=2.6 with «a
=0.85 (Fig. 10-7(a)) and that for L:
= —4.5with a=0.85 (Fig. 10-7(b)). While
the mode with /=2 and m=2 is dominat-
ed for L:>0, the contributions from
different m to the energy are almost the
same for L-<0. Since the damping rate
0 T of quasi-normal mode is the smallest in
RETARDED TIME .
m=[ mode and the largest in m=—/
Fig. 10-8. The gravitational wave form (%.) of / mode for given multipole / (Fig. 10-3),

=2 for a corotating case and a counterrotating the enhancement becomes large as m

case. A solid line corresponds to the former increases. As for the excitation of each

with ¢=0.85 and L.=2.6 and a dashed line to . .

the latter with a=085 and L.=-2.05, re. duasi-normal mode by the particle, the

spectively. mode with » >0 is more excited for the

particle with L:>0 and less excited for
the particle with L.<0. From these two effects, m=/ dominance is exaggerated for
L:>0 and the contributions from different » are almost the same for L.<0.

In Fig. 10-8, we show the difference between corotating and counterrotating cases
in terms of the wave form. Solid line corresponds to the case L:=2.6 with ¢=0.85
and the dashed line corresponds to the case L.=—2.25 with a=0.85. As seen from
Fig. 10-6, in spite of roughly the same L:, the energy of the radiation differs by factor
15. Although in the burst part the amplitude for the corotating case is only 1.5 times
larger than the counterrotating one, the energy is completely different in the
magnitude because the damping rate of the quasi-normal mode is slower and the
frequency is higher.

Figure 10-9 shows the total angular momentum as a function of L.. When a
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AN particle falls into a Kerr black hole even .
AP/ without orbital angular momentum, the
gravitational waves carry away the an-
gular momentum from the black hole
(Fig. 10-5). When the particle plunges
into a Schwarzschild black hole with
orbital angular momentum, the
gravitational waves carry away the an-
gular momentum of the particle (Part
II). For a#0 and L.#0, the angular
momentum of the waves can be under-
stood by considering that it consists of
two' origins, that is, the spin angular
momentum of the black hole and the
orbital angular momentum of the parti-
cle. The angular momentum of the
) i waves increases with the increase of «

total linear momentum P as functions of L.. . .
Solid lines and dashed lines correspond to /. for the same L. It also increases with
The former denotes that />0 and the latter /  the increase of L for the same @. The
<0. A dash-dotted line corresponds to P. total angular momentum radiated from
Symbols in the figure denote values of a. the system of the rotating black hole and
the rotating particle becomes zero at a
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Fig. 10-9. The total angular momentum J and

negative L. for each a.

In Fig. 10-9 we also show the linear momentum of the gravitational waves. The
linear momentum for positive L: is smaller than that for negative L.. There is a
minimum at a positive L.. However there is no clear difference among =0.7, 0.85
and 0.99 cases. Even ¢=0 case is not so much different from these three cases. This
means that the linear momentum does not depend on the black hole’s angular
momentum.

10.3.  Gravitational radiation from a particle scattered by a Kerr black hole

When L. is larger than a critical value, the particle does not fall into a black hole,
but is scattered to infinity. In this case, the gravitational wave does not show the
properties related to the quasi-normal modes of the black hole, in the case the central
black hole is a Schwarzschild one (Part II). We consider what happens when the
black hole is rotating. We may restrict our calculation to @=0.99 case because
smaller a case should be similar to =0 case. The critical angular momentum is L.
= —4.8213 for couterrotating case and L.=2.2 for corotating case from Eq. (8-21).

We consider four orbits, that is, L:=2.21, 2.6 for corotating cases and L.
=—4.8214, —4.9 for counterrotating cases. The smaller value of |L.| in each case is
chosen to be nearly the same as the critical value. These orbits are shown in Fig.
10-10. Figure 10-11 shows energy spectra for these orbits. It is found that the peak
in the energy spectra for each multipole / is determined not by the quasi-normal mode,
but by w=1£, where £ is the angular frequency at the periastron 7.
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(a)
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Lz=-4. 8214

(b)

Fig. 10-10. Orbits of a test particle around a Kerr black hole (¢=0.99) in an equatorial plane. The

inner dashed circle is the event horizon.

The orbits are drawn up to the periastrons. The

trajectory after this point can be obtained by symmetry. (a) and (b) correspond to corotating

cases and counterrotating cases, respéctively.
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Fig. 10-11.

(dE/dw) /u *

LALARL L B0 B S S B S 2 e e 2e mnan

Lz=-4.8214

10 °
10 7
-4
10 ||||||||||||||| A IR I IS ON A ST OT I )
0.1 0.3 0.5 0.7
[}
(b)
(dE/do) /u ?
101 MR SMARAAALE BLALUL A S ARY T T T T
Lz=2.6
10 7!
-3 ...:(‘\“;1...\1 L L 1l
10 02 0.6  LO L4
w
(@)

The energy spectra for various L. with a=0.99.
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do 2
520:(—) _ . 10-1

dt /r=ro  2a+ L% ( )
The reason is as follows. (See also Part II). As the source term has a steep peak at
the periastron 7 so that we can estimate the radial function around 7. Then we
have the following dependence:

dE | sin(w—m&)t |? (10-2)
do | wo—mQ |’

where £ is a characteristic time spent at ». The peaks and valleys correspond to @
~mt2n+1)n/2t and w~ m* nx/ts, respectively (n=1,2,--). The width of
each peak decreases with the decrease of L. for both corotating cases and counter-
rotating cases, because the particle spends much more time around 7o, that is, %
increases. It is easier to excite m=/ mode for corotating case and m= —/ mode for
counterrotating case, respectively. As the result the frequency of the maximum peak
is determined by £

In this figure, it is not clear whether the particle excite the quasi-normal mode of
the black hole. In order to examine the differences for the excitation of the quasi-
normal mode due to these orbits, we show the wave forms in Fig. 10-12. For counter-
rotating cases, there is no ringing tail in any case unlike the cases in which a particle
falls into a black hole. For the corotating case, the ringing tail appears for L.=2.21,
while no ringing tail appears for L.=2.6. The reason for this difference is as follows.
In order for the quasi-normal mode of the black hole to appear, the existence of waves
with frequency near the real part of the quasi-normal mode is needed. The value of
the quasi-normal mode for /=2 and m=2 is 0.84 and that of /=2 and m=—2 is about
0.24 for a=0.99. For the counterrotating cases, we have 2£<0.24. For the corotat-
ing cases, 242 is 0.51 for L.=2.6, while 25 is about 0.83 for L.=2.21, which is large
enough to be resonant with the quasi-normal modes of the black hole. Thus the
ringing tail appears for L.=2.21. We do not consider the back reaction due to
gravitational radiation in these calculations. If we take the effect into account, the
particle with L:=2.21 may not be scattered to infinity but absorbed by the black hole.

The non-damped oscillations in the middle of Fig. 10-12 are due to the circulations
of the particle near the periastron. This part is very similar to the gravitational
radiation from circular orbits, which is calculated by Detweiler (1978). From this
similarity and the validity of approximation (10-2), it is found that the gravitational
radiation for the scattering orbits is essentially determined by the behaviour near the
periastron. :

In Fig. 10-13, we show the total energy as a function of the orbital angular
momentum. For the same |L:/(>5), a counterrotating particle emits more energy
than corotating one. The gravitational radiation in this case is determined almost by
the angular frequency at the periastron (£). £ for counterrotating particle is larger
than that for corotating one for the same |L.|. This causes the difference about the
total energy E of the radiation, that is, since

|~QO|corotating< IQ010=0< Ifg()lcounterrotating )
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Fig. 10-12. The gravitational wave form (%+) of /=2 for various L. with ¢=0.99.

L L1z=2.6

a=0.99

we have
(AE )eoroating < (AE)amo < (AE eomerrotaing
On the contrary, for the plunging cases, we have
(AE)corotating > (AE) a=0 > (AE ) counterrotating ,

which is due to the dependences of the frequency of the quasi-normal modes.

The above difference disappears as the absolute value of the angular momentum
increases. In this case the orbit is far away from the black hole.

The dashed lines in Fig. 10-13 show the energy of m=0 component, which
corresponds to the energy radiated by a rotating ring. There is a large gap in the
energy between falling cases and scattering cases for counterroting cases. This is
because the energy radiated during the fall of the particle from the periastron to the
horizon is large. In the counterrotating case the periastron is farther than that for
the corotating case. This causes the large gap in counterrotating cases.

In Fig. 10-14 we show total linear momentum and angular momentum of the
gravitational waves as functions of the angular momentum .. They have similar
dependence as the total energy. Because the waves for the scattering orbit are
essentially determined by a characteristic frequency £, the difference for corotating
~orbit and counterrotating orbits comes from the difference in £ between L.>0 and
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2 ,
AE/u AT/t ‘
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Fig. 10-13. The total energy E and its contribution  Fig. 10-14." The total angular momentum J and
from m=0 mode as functions of L for various total linear momentum P as functions of L..
a. Solid lines correspond to the former and Solid lines correspond to the former and da-
dashed lines latter. In the figure, circulars, shed lines latter. Symbols in the figure have
crosses and squares correspond to orbits with the same meaning as in Fig. 10-13.
L:>0 and =099, orbits with L.<0 and «
=0.99 and orbits with ¢=0.
L..<0 for the same value of a.
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