概アーベルリー群を用いたアインシュタイン方程式の 真空解の構成

小研究会「一般相対論と幾何」(GRGeo)

佐藤 雄一郎 (工学院大学 学習支援センター)

j.w. w/ 露木 孝尚 (工学院大学 学習支援センター)

Abstract

Today, we deal with spatially homogeneous spacetimes

$$(M, g_M) = \left(I \times G, -N(t)^2 dt^2 + g_G(t)\right),\,$$

where I, G denote an open interval and a Lie group, resp. Given G, we find solutions $N(t), g_G(t)$ which give Ricci-flat metrics.

This talk is based on the preprint arXiv:2304.10193v3.

Contents

- 1. Preparation
- 2. Vacuum Einstein equations
- 3. Spatially homogeneous solutions
- 4. Discussions

1. Preparation

 (M,g_M) : an n-dim. Lorentzian mfd. (\leftarrow we call it a spacetime)

The Einstein equations are

$$\operatorname{Ric} - \frac{\operatorname{Scal}}{2} g_M + \Lambda g_M = T.$$

In this talk, the vacuum Einstein equations are

$$Ric - \frac{Scal}{2}g_M = 0.$$

Namely, in case $T=0, \ \Lambda=0.$

If (M, g_M) satisfies the vacuum Einstein equations, then we call it a *vacuum solution*.

 (M,g_M) : vacuum solution $\iff (M,g_M)$: Ricci-flat (Ric = 0).

 (M,g_M) : globally hyperbolic : \iff if $\exists~(n-1)$ -dim. mfd. $\Sigma \otimes \exists$ a function N>0 on M s.t. the spacetime (M,g_M) is isometric to

$$(\mathbb{R} \times \Sigma, -N^2 dt^2 + h_t),$$

where t: the coordinate of \mathbb{R} ,

 h_t : a Riemannian metric on Σ for $\forall t \in \mathbb{R}$.

Moreover, for each $t \in \mathbb{R}$,

$$\Sigma_t := \{t\} \times \Sigma$$
: a Cauchy hypersurface

In other words,

a globally hyperbolic spacetime admits a trivial foliation structure

$$\mathcal{F} = \{\Sigma_t\}_{t \in \mathbb{R}}$$

whose leaves consist of Cauchy hypersurfaces.

 $I \subset \mathbb{R}$: an open interval.

A globally hyperbolic spacetime

$$(M, g_M) = (I \times \Sigma, -N^2 dt^2 + h_t), \quad \mathcal{F} = \{\Sigma_t\}_{t \in I}$$

is *spatially homogeneous* :←⇒

$$\forall t \in I \otimes \forall x, y \in \Sigma_t, \exists f \in \text{Isom}(M, g_M) \cap \text{Aut}(\mathcal{F}) \text{ s.t. } f(x) = y.$$

Also, it is *spatially isotropic* :←⇒

$$\forall (t,x) \in I \times \Sigma \ \& \ \forall v,w \in T_x \Sigma_t \ \mathsf{w}/\ g_M(v,v) = g_M(w,w) > 0,$$

$$\exists f \in \mathrm{Isom}(M,g_M) \cap \mathrm{Aut}(\mathcal{F}) \ \mathsf{s.t.} \ f_*(v) = w.$$

By definition, spatially homogeneous or spatially isotropic, $\rightsquigarrow N>0$ is a function on I, and we call it the *lapse function*.

 $I \subset \mathbb{R}$: an open interval,

G: a 1-connected Lie group.

From now on, we consider the case $\Sigma = G$, that is,

$$(M, g_M) = (I \times G, -N^2 dt^2 + g_G(t)),$$

where N>0: a function on I, $g_G(t)$: a left-invariant Riemannian metric on G for $\forall t\in I$.

By definition, the globally hyperbolic spacetime is spatially homogeneous, but not necessarily spatially isotropic.

Remark

When $\dim G = 3$, the globally hyperbolic spacetime is called the *Bianchi spacetime*.

Type I, Type II, Type IV, Type V, Type VI_h , Type VII_h , Type VII_h , Type $VIII_h$, Type IX.

2. Vacuum Einstein equations

G: a 1-connected n-dim. Lie group, $\{X_1,\ldots,X_n\}$: left-invariant vector fields on G, $\{\omega^1,\ldots,\omega^n\}$: left-invariant 1-forms on G, $\{C_{ij}^k\}_{1\leq i,j,k\leq n}$: the structure constants w.r.t. $\{X_1,\ldots,X_n\}$.

Then a left-invariant Riemannian metric g_G on G can be expressed as

$$g_G = \sum_{1 \le i, j \le n} s_{ij} \, \omega^i \otimes \omega^j.$$

In addition, we identify the metric g_G with a matrix as follows:

$$g_G \mapsto [s_{ij}] \in \operatorname{Sym}_n^+ \mathbb{R},$$

where $\operatorname{Sym}_n^+\mathbb{R}$: the set of $n\times n$ positive definite symmetric matrices.

A spatially homogeneous spacetime can be expressed as

$$(M, g_M) = \left(I \times G, -N(t)^2 dt^2 + \sum_{1 \le i, j \le n} s_{ij}(t) \omega^i \otimes \omega^j\right)$$

in general.

 N, a_1, \ldots, a_n : positive functions on an open interval $I \subset \mathbb{R}$.

Consider a spacetime with the following diagonal metric

$$(M, g_M) = (I \times G, -N^2 dt^2 + a_1^2 (\omega^1)^2 + \dots + a_n^2 (\omega^n)^2),$$

where a_1, \ldots, a_n are called *scale factors* of the space.

By the way, the universe is expanding.

We consider higher-dimensional spacetimes, and would like to observe the behavior of the expansion and contraction of space by time evolution.

Proposition 1 [S.-Tsuyuki '23]

Let $1 \leq i, j \leq n$. Then

$$\begin{split} \operatorname{Ric}(X_0,X_0) &= \sum_{k=1}^n \left(\frac{\dot{N}}{N} \frac{\dot{a}_k}{a_k} - \frac{\ddot{a}_k}{a_k} \right), \quad \operatorname{Ric}(X_0,X_i) = \frac{d}{dt} \log \left[\prod_{k=1}^n \left(\frac{a_k}{a_i} \right)^{C_{ik}^k} \right] \\ \operatorname{Ric}(X_i,X_j) &= \frac{a_i^2}{N^2} \left[\left(\sum_{k=1}^n \frac{\dot{a}_k}{a_k} - \frac{\dot{N}}{N} \right) \frac{\dot{a}_i}{a_i} + \frac{\ddot{a}_i}{a_i} \right] \delta_{ij} \\ &+ \frac{1}{4} \sum_{k,l=1}^n \left[2C_{il}^k C_{kj}^l + 2 \frac{C_{lk}^k (C_{jl}^i a_i^2 + C_{il}^j a_j^2)}{a_l^2} \right. \\ &+ \frac{(C_{kl}^i a_i^2 + C_{il}^k a_k^2)(C_{kl}^j a_j^2 + C_{jl}^k a_k^2)}{a_k^2 a_l^2} + \frac{C_{kl}^i C_{jk}^l a_i^2 + C_{kl}^j C_{ik}^l a_j^2 - 3C_{ki}^l C_{kj}^l a_l^2}{a_k^2} \right], \end{split}$$

where for a function F on I

$$X_0 := \frac{d}{dt}, \quad \dot{F} := \frac{dF}{dt}, \quad \ddot{F} := \frac{d^2F}{dt^2}.$$

G: a 1-connected n-dim. Lie group.

We define the moduli space of left-invariant Riemannian metric on G as

$$\mathfrak{PM} := \mathbb{R}_{>0} \operatorname{Aut}(G) \backslash \operatorname{GL}_n \mathbb{R} / \operatorname{O}(n) \cong \mathbb{R}_{>0} \operatorname{Aut}(G) \backslash \operatorname{Sym}_n^+ \mathbb{R},$$

where Aut(G): the automorphism group of the Lie group G.

- \$PM is connected and Hausdorff.
- The points corresponding to principal orbits form a smooth mfd.
- $\dim \mathfrak{PM} = 0 \iff \mathfrak{PM} = \{*\} \text{ (singleton)}$

Theorem 1 [Lauret '03, Kodama-Takahara-Tamaru '11]

 $\dim \mathfrak{PM} = 0$ if and only if G is isomorphic to one of

$$\mathbb{R}^n \ (n \ge 1), \quad \mathbb{R}H^n \ (n \ge 2), \quad H_3 \times \mathbb{R}^{n-3} \ (n \ge 3),$$

where $\mathbb{R}\mathrm{H}^n$: n-dim. real hyperbolic space w/ a Lie group structure, H_3 : 3-dim. Heisenberg group.

G: a 1-connected n-dim. Lie group.

 $G: almost \ abelian : \iff \exists A \lhd G: codim. \ 1 \ abelian \ normal \ subgroup.$

By definition, we have

G: almost abelian Lie group/iso. $\stackrel{1:1}{\longleftrightarrow} A$: real square matrix/equiv. Note that A is an $(n-1)\times (n-1)$ real square matrix.

Here A is equivalent to B if A is similar to B up to scaling. We call the equivalence class of A the associated matrix of G.

Remark

- ullet G is isomorphic to \mathbb{R}^n w/ a suitable Lie group structure.
- ullet almost abelian \Longrightarrow two-step solvable.
- $n=2 \Longrightarrow$ almost abelian.
- $n=3 \Longrightarrow \text{almost abelian, or semisimple.}$
- $\dim \mathfrak{PM} = 0 \Longrightarrow \mathsf{almost} \mathsf{abelian}$.

Corollary 1 [S.-Tsuyuki '23]

When G is almost abelian, the Ricci tensor is reduced as follows:

$$\begin{aligned} \operatorname{Ric}(X_{0}, X_{0}) &= \sum_{k=1}^{n} \left(\frac{\dot{N}}{N} \frac{\dot{a}_{k}}{a_{k}} - \frac{\ddot{a}_{k}}{a_{k}} \right), \\ \operatorname{Ric}(X_{0}, X_{n}) &= \frac{d}{dt} \log \left[\prod_{k=1}^{n-1} \left(\frac{a_{k}}{a_{n}} \right)^{A_{k}k} \right], \\ \operatorname{Ric}(X_{n}, X_{n}) &= \frac{a_{n}^{2}}{N^{2}} \left[\left(\sum_{k=1}^{n-1} \frac{\dot{a}_{k}}{a_{k}} - \frac{\dot{N}}{N} \right) \frac{\dot{a}_{n}}{a_{n}} + \frac{\ddot{a}_{n}}{a_{n}} \right] - \frac{1}{2} \sum_{k,l=1}^{n-1} \left\{ A_{lk} A_{kl} + (A_{kl})^{2} \frac{a_{k}^{2}}{a_{l}^{2}} \right\}, \\ \operatorname{Ric}(X_{i}, X_{j}) &= \frac{a_{i}^{2}}{N^{2}} \left[\left(\sum_{k=1}^{n} \frac{\dot{a}_{k}}{a_{k}} - \frac{\dot{N}}{N} \right) \frac{\dot{a}_{i}}{a_{i}} + \frac{\ddot{a}_{i}}{a_{i}} \right] \delta_{ij} \\ &- \frac{\operatorname{tr} A}{2} \frac{A_{ij} a_{i}^{2} + A_{ji} a_{j}^{2}}{a_{n}^{2}} + \frac{1}{2} \sum_{k=1}^{n-1} \frac{A_{ki} A_{kj} a_{i}^{2} a_{j}^{2} - A_{ik} A_{jk} a_{k}^{4}}{a_{n}^{2} a_{k}^{2}}, \end{aligned}$$

where $A = [A_{ij}]_{1 \le i,j \le n-1}$: the associated matrix.

The remaining components identically vanish.

3. Spatially homogeneous solutions

We generalize the Taub solutions in the following sense:

$$G^3 = H_3 \longleftrightarrow A = J(0,2)$$

 $G^n = H_3 \times \mathbb{R}^{n-3} \longleftrightarrow A = J(0,2) \oplus O_{n-3}$

Namely, we consider all nilpotent matrices of rank one.

$G^n =$	\mathbb{R}^n	$\mathbb{R}\mathrm{H}^n$	$H_3 \times \mathbb{R}^{n-3}$
A =	O_{n-1}	I_{n-1}	$J(0,2) \oplus O_{n-3}$
n=3	Kasner, Type I	Joseph, Type V	Taub, Type II
Bianchi spacetime	(1921)	(1969)	(1951)
$n \ge 4$	Chodos–Detweiler	Demaret–Hanquin	S.–Tsuyuki
	(1980)	(1985)	(2023)

Table1: Vacuum solutions of spatially homogeneous spacetimes

Theorem 2 [S.-Tsuyuki '23]

In case $G = H_3 \times \mathbb{R}^{n-3}$, the spatially homogeneous spacetime

$$(M, g_M) = (I \times G, -N^2 dt^2 + g_G(t)),$$

is Ricci-flat if and only if

$$g_{M} = \cosh(kt)(-c_{0}^{2}e^{2(\operatorname{tr}h)t}dt^{2} + c_{2}^{2}e^{2h_{2}t}dx_{2}^{2} + c_{n}^{2}e^{2h_{n}t}dx_{n}^{2})$$

$$+ \frac{c_{1}^{2}e^{2h_{1}t}}{\cosh(kt)}(dx_{1} - x_{n}dx_{2})^{2} + \sum_{i=3}^{n-1}c_{i}^{2}e^{2h_{i}t}dx_{i}^{2},$$

$$k = \frac{c_{0}c_{1}}{c_{2}c_{n}}, \ 2h_{1} = -\sum_{i=2}^{n-1}h_{i}, \ (\operatorname{tr}h)^{2} - (\operatorname{tr}h^{2}) = \frac{k^{2}}{2},$$

where $h = diag(h_1, h_2, \dots, h_n)$.

When n=3, these solutions induce the Taub solutions.

Corollary 2 [S.-Tsuyuki '23]

The exact vacuum solutions for $G=H_3\times\mathbb{R}^{n-3}$ are spatially homogeneous but not spatially isotropic. Moreover, each of the spatial dimensions cannot expand or contract simultaneously in the late-time limit.

Proposition 2 [S.-Tsuyuki '23]

$$A = J(0,2) \oplus I_{n-2} (n > 2).$$

G: the almost abelian Lie group corresponding to A.

Then there is no vacuum solution for $I \times G$.

Remark [Taketomi-Tamaru '18]

The above moduli space is one-dimensional, i.e. $\dim \mathfrak{PM} = 1$.

$$\mathfrak{PM} \approx \{ \operatorname{diag}(\lambda, 1, \dots, 1) \mid \lambda > 0 \}.$$

Proposition 3 [Igawa '24]

A: an arbitrary nilpotent matrix.

G: the almost abelian Lie group corresponding to A.

Then there exist vacuum solutions for $I \times G$.

Igawa found particular solutions of the vacuum Einstein equations in his master's thesis.

4. Discussions

- Can one construct a Ricci-flat Lorentzian mfd. using other Lie group?
 - → For example, compact Lie groups.
 - $\leadsto SO(n) \subset Aut(G) \Longrightarrow \mathfrak{PM} \approx \{ diag(k_1, \ldots, k_n) \}.$
- Can one consider the case of homogeneous spaces in the same way?
 - → For example, symmetric spaces.
 - → Structure of the moduli space of invariant Riemannian metric.
- Can one classify Ricci-flat Lorentzian homogeneous spaces?
 - → Symmetric case is completed (Cahen–Wallach spaces).
 - → Almost abelian case is in preparation by S.–Tsuyuki.