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Today, we deal with spatially homogeneous spacetimes

(M, gu) = (I x G.=N(®)*dt* + go(1))

where I, G denote an open interval and a Lie group, resp.
Given G, we find solutions N (), gg(t) which give Ricci-flat metrics.

This talk i1s based on the preprint arXiv:2304.10193v3.

1. Preparation
2. Vacuum Einstein equations
3. Spatially homogeneous solutions

4. Discussions
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(M, gpr) : an n-dim. Lorentzian mfd. (< we call it a spacetime)

The Einstein equations are

Scal
Ric — %QM +Agy =T.

In this talk, the vacuum Einstein equations are

Scal
Ric — %gM = 0.

Namely, incase T'=0, A = 0.

If (M, gpr) satisfies the vacuum Einstein equations,
then we call it a vacuum solution.

(M, gpr) : vacuum solution <= (M, gas) : Ricci-flat (Ric = 0).
2/16



(M, gnr) - globally hyperbolic
<= if 3 (n — 1)-dim. mfd. ¥ & 3 a function N > 0 on M s.t.
the spacetime (M, gps) is isometric to

(R x X, —=N?dt* + hy),

where t : the coordinate of R,
h: : a Riemannian metric on X for Vit € R.

Moreover, for each t € R,
Yt :={t} x 3 : a Cauchy hypersurface

In other words,
a globally hyperbolic spacetime admits a trivial foliation structure

F = {Et}tER

whose leaves consist of Cauchy hypersurfaces.
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I C R : an open interval.
A globally hyperbolic spacetime

(M, gm) = (I x X, —N?dt* + he), F={St}eer
Is spatially homogeneous <=
Vtel &Vr,y € ¥y, Af € Isom(M, gpr) N Aut(F) s.t. f(x) =y.
Also, it is spatially isotropic <=

Vit,z) € I x X & Yo, w € T, X% w/ gy (v,v) = gy (w,w) > 0,
f € Isom(M, gpr) N Aut(F) s.t. fo(v) = w.

By definition,

spatially homogeneous or spatially isotropic,
~» N > 0 is a function on 1,

and we call it the /apse function.
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I C R : an open interval,
GG : a 1-connected Lie group.
From now on, we consider the case > = @, that is,

(M, gn) = (I x G,—N?dt* 4+ g (t)),

where N > 0 : a function on [,
g (t) : a left-invariant Riemannian metric on G for Vt € 1.

By definition, the globally hyperbolic spacetime is
spatially homogeneous, but not necessarily spatially isotropic.

Remark

When dim G = 3,
the globally hyperbolic spacetime is called the Bianchi spacetime.

Type |, Type ll, Type lll, Type IV, Type V, Type VI, Type Vll;,, Type VI, Type IX.
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GG : a 1-connected n-dim. Lie group,

{X1,...,X,} : left-invariant vector fields on G,

{wl, ..., w™} : left-invariant 1-forms on G,

{C’fj}lgi,j,kgn . the structure constants w.r.t. {X;...., X,}.

Then a left-invariant Riemannian metric g on G can be expressed as

ga = E Sijw' @ w’.
1<z,j<n

In addition, we identify the metric g with a matrix as follows:
gG = [si5] € Sym, R,

where Sym R : the set of n x n positive definite symmetric matrices.

6/16



A spatially homogeneous spacetime can be expressed as

(M,grr) = | I x G, —=N@t)?dt* + D si5(t)w' @ w’

1<z,7<n
in general.
N,aq,...,a, : positive functions on an open interval I C R.

Consider a spacetime with the following diagonal metric
(M, gn) = (I x G,—N?dt* + aj(w')* + -+ a(w")?),
where a1, ..., a, are called scale factors of the space.

By the way, the universe is expanding.

We consider higher-dimensional spacetimes, and would like to observe

the behavior of the expansion and contraction of space by time evolution.
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Proposition 1 [S.—Tsuyuki ‘23]

Let 1 <i,§ <n. Then

. 2 (N oap  ag o [ ag C
Ric(Xg,Xg) = >, | —— - — |, Ric(Xg,X;)=—1log| [] [ —
k=1 \N ap  ag k=1 \ ;
Ric(){,b-,}{j):a’b2 9%k 7 24_2 613
N k:l Cl,k N Cl,i CL,L'
|\ ki _
1 n ck (C? a? + cJ a2-)
Lt QCZCLJJFQ ST 12 il%j
4k i1=1 aj
;2 k 2 J 2 k2 i ~l 2 J ~l 2 l I 2
N (Cprai + Cag)(Cyaf + CFrag) N CriCikai +CxCikaj — 30 CLj 9
agaf ap |
where for a function F on [
¥ d 2 dF d*F
0= —, = — = —.
dt dt dt?
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(GG : a 1-connected n-dim. Lie group.
We define the moduli space of left-invariant Riemannian metric on G as

PN := RogAut(G)\GL,R/O(n) =2 RygAut(G)\Sym, 'R,

where Aut(G) : the automorphism group of the Lie group G.

o ‘I3 is connected and Hausdorff.
e The points corresponding to principal orbits form a smooth mfd.
o dim’PM = 0 <= PN = {*} (singleton)

Theorem 1 [Lauret ‘03, Kodama—Takahara—Tamaru ‘11]

dim PN = 0 if and only if & is isomorphic to one of

R" (n>1), RH" (n>2), H3xR" % (n>3),

where RH™ : n-dim. real hyperbolic space w/ a Lie group structure,
Hs : 3-dim. Heisenberg group.
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(GG : a 1-connected n-dim. Lie group.
G : almost abelian :<—= dA << G : codim. 1 abelian normal subgroup.

By definition, we have

GG . almost abelian Lie group/iso. &L A real square matrix/equiv.
Note that A is an (n — 1) x (n — 1) real square matrix.

Here A is equivalent to B if A is similar to B up to scaling.
We call the equivalence class of A the associated matrix of G.

Remark

e (5 is isomorphic to R™ w/ a suitable Lie group structure.
e almost abelian = two-step solvable.

e n = 2 — almost abelian.

e n = 3 — almost abelian, or semisimple.

o dim‘*PIT = 0 — almost abelian.
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Corollary 1 [S.—Tsuyuki ‘23]

When G is almost abelian, the Ricci tensor is reduced as follows:

ak
d n—1 ar Ak:k
RIC(XO,X )_— og H <_> :
dt Qn
k=1
2 B n—1 . y . e n—1 2
) a ag N an an 1 %
Ric(Xn, Xn) =—% ( ———) —+—] -5 > {AlkAkl+(Akl) —}
2 2 ’
N |\ i1 ak N | ap, an, 2 i1 aj
Ric(X;, X,) a® ak N az_|_a,7, 5
1C ) p) = S — - - ..
’ J N2 e—1 ar N a; a; *J
| \k#1? _
trA Aija? + Ajia n 1 nil Aszkga?a? - Aik:Ajka;Lc
2 a; 2 = a? aj 7

where A = |A;;]1<i j<n—1 : the associated matrix.
The remaining components identically vanish.
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We generalize the Taub solutions in the following sense:

G’n

G? = Hj

— Hy x R*3

«— A=J(0,

«— A=J(0,

2)

2) ® Op_3

Namely, we consider all nilpotent matrices of rank one.

G" = R™ RH™ Hs x R*—3
A= On—1 In_1 J(O,Q) D Op_3
n =23 Kasner, Type | Joseph, Type V Taub, Type Il
Bianchi spacetime (1921) (1969) (1951)
o> 4 Chodos—Detweiler | Demaret—Hanquin S.—Tsuyuki
- (1980) (1985) (2023)

Tablel: Vacuum solutions of spatially homogeneous spacetimes
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Theorem 2 [S.—Tsuyuki ‘23]

In case G = H3 x R" 3, the spatially homogeneous spacetime
(M, gn) = (I x G,—N?dt* + g (t)) ,
is Ricci-flat if and only if

gy = cosh(kt)(—c2eX Mg 4 e 2h2tdx2 + c2e2hnty?)

6162h1t

d . nd 2 2 th‘td 2
—I—COSh(kt)(azl Tndxo) +Zcze xs,

CoCq 2

k
k= 2h hi, (trh)? — (trh?) = —,
cocn’ T Z ' rh7) = 2

where h = diag(hy, ha, ..., hy).

When n = 3, these solutions induce the Taub solutions.
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Corollary 2 [S.—Tsuyuki ‘23]

The exact vacuum solutions for G = H3 x R?~3 are

spatially homogeneous but not spatially isotropic.

Moreover, each of the spatial dimensions cannot expand or contract
simultaneously in the late-time limit.

5¢
4-
3 T aj
S |
i az=dajo
2:’ asz=dasg=das
| ENELLLREEE as=ar=ag=ay
0 , e \
0.0 0.5 1.0 1.5 2.0
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Proposition 2 [S.—Tsuyuki ‘23]

A= J(O,Q) %) In—2 (n > 2)
GG : the almost abelian Lie group corresponding to A.

Then there is no vacuum solution for I x (.

Remark [Taketomi—Tamaru ‘18]

The above moduli space is one-dimensional, i.e. dim ‘B = 1.
PN ~ {diag(A,1,...,1) | X > 0}.

Proposition 3 [Igawa ‘24]

A : an arbitrary nilpotent matrix.
GG : the almost abelian Lie group corresponding to A.

Then there exist vacuum solutions for I x G.
lgawa found particular solutions of the vacuum Einstein equations in his

master’s thesis.
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e Can one construct a Ricci-flat Lorentzian mfd. using other Lie group?
~+ For example, compact Lie groups.
~ SO(n) C Aut(G) = PM ~ {diag(ki,...,kn)}.

e Can one consider the case of homogeneous spaces in the same way?
~+ For example, symmetric spaces.
~+ Structure of the moduli space of invariant Riemannian metric.

e Can one classify Ricci-flat Lorentzian homogeneous spaces?
~+ Symmetric case is completed (Cahen—Wallach spaces).

~+ Almost abelian case is in preparation by S.—Tsuyuki.
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