全スカラー曲率の極限定理
 小研究会「一般相対論と幾何」

Shota Hamanaka
（Mitsubishi Electric Corporation／OCAMI）
February 8th， 2024

Table of contents

（1）Backgrounds

（2）Main Results

（3）Counterexamples
（4）Questions

Weak notions of $R \geq K$

Gromov（and Bamler）proved the following．

Gromov（2014［G1］），Bamler（2016［B］）

Let M be a smooth manifold and g a C^{2}－Riemannian metric on M ．Suppose that a sequence of C^{2}－Riemannian metrics g_{i} on M that converges to g in the local C^{0}－sense．Assume that for all $i=1,2, \cdots R\left(g_{i}\right) \geq \kappa$ on M for some $\kappa \in C^{0}(M)$ ．Then $R(g) \geq \kappa$ on M ．

Definition［G］

For a C^{0}－met．g and a conti．fct．κ ，we say＂$R(g) \geq \kappa$ in the Gromov sense＂if $\exists C^{2}$－Riem． met＇s $\left(g_{i}\right)$ s．t．$R\left(g_{i}\right) \geq \kappa$ and $g_{i} \xrightarrow{C^{0}} g$ ．

Gromov type theorem in even weaker topology

Recently，Lee and Topping proved that non－negativity of scalar curvature is NOT preserved on the sphere in dimension at least four in the sense of uniform convergence of Riemannian distance．More precisely，

Lee－Topping（2022［LTo］）

Let $n \geq 4, f \in C^{0}\left(S^{n}\right)$ ．Then $\exists\left(g_{i}\right) \subset \mathcal{M}\left(S^{n}\right)$ s．t．$R\left(g_{i}\right)>0$ and $d_{g_{i}} \rightarrow d_{f}$ uniformly on $S^{n} \times S^{n}$ ，where d_{f} is the Riemannian distance of the met．$e^{f} g_{s t d}$ ． In paticular，$\left(S^{n}, d_{g_{i}}\right) \rightarrow\left(S^{n}, d_{f}\right)$ in the Gromov－Hausdorff sense as $i \rightarrow \infty$ ．
Moreover，$\exists C>\infty$ s．t．

$$
C^{-1} g_{s t d} \leq g_{i} \leq C g_{s t d}
$$

on S^{n} for all i ．
Note：We can always choose the function $f \in C^{2}\left(S^{n}\right)$ s．t．$e^{f} g_{s t d}$ has negative scalar curvature at some point on S^{n} ．Q．：$n=3$ ？

Weak notions of $R \geq K$

－［Bamler 2016 ［B］］An alternative proof using Ricci（－DeTurck）flow．
－［Burkhardt－Guim 2019 ［BG］］Gave a definition of scalar curvature lower bounds of metric tensors with only C^{0}－regularity on a closed mfd using Ricci（－DeTurck）flow． Note：$[B G] \Leftrightarrow[G]$ ．
－［D．Lee and P．G．LeFloch 2015 ［LL］］Defined＂scalar curvature lower bounds in the distributional sense＂for $g \in L_{\text {loc }}^{\infty} \cap W_{\text {loc }}^{1,2}$ with $g^{-1} \in L_{\text {loc }}^{\infty}$ ．
－［W．Jiang，W．Sheng and H．Zhang 2021 ［JSZ］］For $g \in W^{1, p}(M)(\operatorname{dim}(M)<p \leq \infty)$ ， （ g can be flowed by a RF $\left((g(t))_{t \in(0, \exists T)}\right.$ a smooth RF and $\left.\left(M, d_{g(t)}\right) \xrightarrow{G H}\left(M, d_{g}\right)\right)$ and） ＂$R(g) \geq \kappa(\kappa \in \mathbb{R})$ in the distributional sense＂is preserved under the RF ．
Note：As a corollary，
＂$R(g) \geq \kappa(\kappa \in \mathbb{R})$ in the distributional sense＂$\Rightarrow R(g) \geq \kappa$ in the sense of $[\mathrm{BG}](\Leftrightarrow[\mathrm{G}])$ ．
－［T．Lamm and M．Simon 2021 ［LS］］For $g \in L^{\infty} \cap W^{2,2}\left(M^{4}\right)$（ M^{4} ：closed 4－mfd）with $a^{-1} h \leq G \leq a h$ for some $a>0$ ，the following are equivalent．
－$R(g) \geq \kappa(\kappa \in \mathbb{R})$ in the distributional sense
－$\exists\left(g_{i, 0}\right) \in \mathcal{M}\left(M^{4}\right)$ with $b^{-1} h \leq g_{i, 0} \leq b h$ for some $1<b<\infty$ ，s．t．$R\left(g_{i, 0}\right) \geq \kappa$ and $g_{i, 0} \rightarrow g \in W^{2,2}\left(M^{4}\right)$
－the RDF $(g(t))_{t \in(0, T)}$ of g constructed in［LS］has $R(g(t)) \geq \kappa$ for all $t \in(0, T)$ ．
－［Tian and Wang 2023 ［TW］］
A precompactness theorem for warped product metrics on $S^{2} \times S^{1}$ ．
－［Gromov 2014 ［G1］］
A characterization of $R \geq 0$ on cube－type polyhedrons．（Rigidity $+\alpha \cdots$ C．Li［L1，L2］）

Main Theorem 1 （H． 2022 ［H1］arXiv：2208．01865）

M^{n} ：a closed（i．e．，cpt without boundary）n－mfd $(n \geq 3)$ and g ：a C^{2} Riem．met．on M ． $\left(g_{i}\right)$ ：a sequence of Ricci solitons on M（i．e．，$-2 \operatorname{Ric}\left(g_{i}\right)=\mathcal{L}_{Y_{i}} g_{i}-2 \lambda_{i} g_{i}$ for some constant $\lambda_{i} \in \mathbb{R}$ and a vector field $\left.Y_{i} \in \Gamma(T M)\right)$ with s．t．$g_{i} \xrightarrow{C^{0}} g$ on M as $i \rightarrow \infty$ ．Assume

$$
(*) \quad \int_{M} R\left(g_{i}\right) d \mathrm{vol}_{g_{i}} \geq \kappa \quad \text { for some constant } \kappa \in \mathbb{R} .
$$

Moreover，assume $\lambda_{i} \leq C_{+}(i=1,2, \cdots)$ for some constant $C_{+} \in \mathbb{R}$ if $\kappa \geq 0$（resp． $\lambda_{i} \geq C_{-}, C_{-} \in \mathbb{R}$ if $\left.\kappa<0\right)$ ．
Then $\int_{M} R(g) d \mathrm{vol}_{g} \geq \kappa$ ．

Main Theorem 2 （H． 2022 ［H1］）

Let $p>n$ ．Let $M^{n}(n \geq 3)$ be a closed mfd．Suppose that a sequence of C^{2}－Riem．met＇s g_{i} converges to g in the $W^{1, p}$－sense．Assume that for all $i, R\left(g_{i}\right) \geq 0$ and（＊）as above．
Then $\int_{M} R(g) d \mathrm{vol}_{g} \geq \kappa$ ．
Moreover，in dimension 3，the assumption＂$R\left(g_{i}\right) \geq 0$＂is not needed．
Q．：Is＂$R\left(g_{i}\right) \geq 0$＂necessary（in dim．$\geq 4$ ）？

Direct Corollary（H． 2022 ［H1］）

Let $p>n$ ．Let \mathcal{M} be the space of all C^{2}－Riem．met．s on a closed $\mathrm{mfd} M$ ． For any nonnegative conti．fct．$\sigma: M \rightarrow[0, \infty)$ and $\kappa \in \mathbb{R}$ ，the space

$$
\left\{g \in \mathcal{M} \mid \int_{M} R(g) d \operatorname{vol}_{g} \geq \kappa, R(g) \geq \sigma \text { on } M\right\}
$$

is $W^{1, p}$－closed in \mathcal{M} ．

Corollary

－$p>n$ ．
－M^{n} ：closed n－mfd．
－$g: C^{2}$－Riem．metric on M ．
$\left(g_{i}\right)$ ：a sequence of C^{2}－Riem．metrics on M s．t．$g_{i} \xrightarrow{W^{1, p}} g$ on M and $\operatorname{Vol}\left(M, g_{i}\right)=1$ ． Assume that g is a Yamabe metric of $[g]$（i．e．，$\left.Y(M, g)=\inf _{h \in[g]_{1}} \int_{M} R(h) d \mathrm{vol}_{h}=R(g)\right)$ ， and $\exists \kappa \in \mathbb{R}, \exists \sigma \in C^{0}(M)$ s．t．$\forall i$ ，

$$
Y\left(M, g_{i}\right) \geq \kappa \text { and } R\left(g_{i}\right) \geq \sigma \text { on } M .
$$

Then $Y(M, g) \geq \kappa$ ．

More generally，we can also show the following．

Main Theorem 3 （H． 2022 ［H1］）

Let $p>n^{2} / 2$ ．Let M^{n} be a closed n－manifold（ $n \geq 2$ ），g a C^{2} Riem．met．on M ，and $\left(g_{i}\right)$ a sequence of C^{2} Riem．met．s on M s．t．g_{i} converges to g on M in the $W^{1, p}$－sense as $i \rightarrow \infty$ ． Let m be a measure on M and set $e^{-f} d \operatorname{vol}_{g}:=d m=: e^{-f_{i}} d \mathrm{vol}_{g_{i}}$ ．Assume the followings．
（1）$\exists \Lambda>0$ s．t．f and $f_{i}(i \geq 0)$ are Λ－Lipschitz functions on M ，
（2）$f_{i} \xrightarrow{C^{0}} f$ uniformly on M ，
（3）$R\left(g_{i}\right) \geq 0$ on M for all i ，
（4） $\int_{M} R\left(g_{i}\right) d m \geq \kappa(\kappa \in \mathbb{R})$ ．
Then

$$
\int_{M} R(g) d m \geq \kappa
$$

Corollary of Main thm 3

Let $p>n^{2} / 2$ ．Let M be a closed n－manifold $(n \geq 2)$ and g a C^{2} Riemannian metric on M ． Let κ be a positive continuous function on M ．Let $\left(g_{i}\right)$ be a sequence of metrics such that $g_{i} \in W^{1, p}, R\left(g_{i}\right) \geq \kappa$ in the distributional sense，and g_{i} converges to g in the $W^{1, p}$－sense． Then $R(g) \geq \kappa$ in the distributional sense．

Rem：
Since the limiting metric g is C^{2} ，for any test function $\phi \in C^{\infty}(M),\left\langle R_{g}, \phi\right\rangle=\int_{M} R_{g} \phi d \mathrm{vol}_{g}$ ． Therefore，$R(g) \geq \kappa$ in the distributional sense $\Leftrightarrow R(g) \geq \kappa$ in the classical sense．

A Gromov type of definition

Let M^{n} be a closed n－manifold $(n \geq 2)$ and g_{0} a $W^{1, p}\left(p>n^{2} / 2\right)$ metric on M ．Let κ be a positive continuous function on M ．We say that g_{0} is of $R\left(g_{0}\right) \geq \kappa$ if there exists a sequence of $W^{1, p}$ merics $\left(g_{i}\right)$ on M such that
－$R\left(g_{i}\right) \geq \kappa$ in the distributional sense，and
－$g_{i} \rightarrow g_{0}$ with respect to the $W^{1, q}\left(q>n^{2} / 2\right)$ topology．

［G］and this definition

A difference of Gromov＇s definition and this one is that in this definition each metric in the approximate sequence can have some singularities．For example，on tori，there is NO metric g with $R(g) \geq \kappa>0$ in the Gromov＇s sense（ $\Leftrightarrow[\mathrm{BG}]$ ）from the resolution of Geroch＇s conjecture．In contrast，a metric g with $R(g) \geq \kappa>0$ in the sense of this definition might exist on a torus．（ \rightsquigarrow Schoen＇s conjecture）

NOTE：The Morrey embedding says

$$
C^{1} \hookrightarrow W^{1, p} \hookrightarrow C^{0,1-\frac{n}{p}} \hookrightarrow C^{0} \quad \text { if } p>n .
$$

Therefore the same statement of Main Theorem 2 still holds even though one replace $W^{1, p}(p>n)$ with $C^{0, \alpha}$ for all $\alpha \in(0,1]$ ．

On the other hand，in Main Theorem 2，if we weaken the assumption from $W^{1, p}$ to C^{0} ，then the same statement（without the assumption $R\left(g_{i}\right) \geq 0$ ）does NOT hold in general．Indeed， we will give some examples in the appendix．
All metrics g_{i} in such examples have sign－changing scalar curvatures，i．e．，for each i ，there are some points $x_{i}, y_{i} \in M$ s．t．$R\left(g_{i}\right)\left(x_{i}\right)<0<R\left(g_{i}\right)\left(y_{i}\right)$ ．

Questions

In dim 3，Main thm 2 follows from the fact that every orientable closed 3－mfd is papallelizable， and the Bochner identity for 1 －forms．（As far as I know，the original idea is due to Lohkamp．）

Questions

－What is the relation between parallelizability and $W^{1,2}$－convergence of metric tensors？
Fact M is closed，parallelizable $\Rightarrow \int_{M} R\left(g_{i}\right) d \operatorname{vol}_{g_{i}} \rightarrow \int_{M} R(g) d \operatorname{vol}_{g}$ as $g_{i} \xrightarrow{W^{1,2}} g$
（Rem．Every oriented closed 3 －mfd is parallelizable）
－Define $\int_{M} R(g) d \operatorname{vol}_{g} \geq \kappa$ for g with only $W^{1, p}(p>n)$－regularity using a geometric flow and investigate its properties（cf．Burkhardt－Guim＇s work［BG］and［JSZ］）．
－＂ $\int_{M} R(g) d \mathrm{vol}_{g} \geq \kappa$ in a dstributional sense＂by Lee－LeFloch［LL］\Rightarrow in the weaker sense defined as in the sense of［G］from Main thm 2 （for $g \in W^{1, p}(p>n)$ with＂$R(g) \geq 0$＂in the sense of［G］）？
－Is $p>n^{2} / 2$ sharp in Main thm 3？（i．e．，ヨcounterexample for $p=n^{2} / 2$ ？），$R(g) \rightsquigarrow$ ＂weighted scal．＂（in the integrand）？

References

［ABK］B．Allen，E．Bryden and D．Kazaras，On the stability of Llarull＇s theorem in dimension three，arXiv： 2305.18567 （2023）．
［B］R．H．Bamler，A Ricci flow proof of a result by Gromov on lower bounds for scalar curvature，Math．Res．Letters 23 （2016），325－337．
［BLPP］G．Besson，J．Lohkamp，P．Pansu and P．Petersen，Riemannian geometry，Fields institute monographs 4，American Mathematical Society， 1996.
［BG］P．Burkhardt－Guim，Pointwise lower scalar curvature bounds for C^{0} metrics via regularizing Ricci flow，Geom．Funct．Anal． 29 （2019），1703－1772．
［G1］M．Gromov，Dirac and Plateau billiards in domains with corners，Cent．Eur．J．Math． 12 （2014），1109－1156．
［Gr］L．W．Green，Ann．of Math． 78 （1963），289－299．
［GT］J．D．Grant and N．Tassotti，A positive mass theorem for low－regularity Riemannian metrics，arXiv：1408．6425（2014）．
［H1］S．Hamanaka，Limit theorems for the total scalar curvature，（old version；C^{0}, C^{1}－limit theorems for total scalar curvatures），preprint arXiv：2208．01865．

References

［JSZ］W．Jiang，W．Sheng and H．Zhang，Weak scalar curvature lower bounds along Ricci flow， Sci．China Math． 66 （2023），1141－1160．
［LL］D．A．Lee and P．G．LeFloch，The positive mass theorem for manifolds with distributional curvature，Comm．Math．Phys． 339 （2015），99－120．
［LS］M．－C．Lee and M．Simon，Ricci flow of $W^{2,2}$－metrics in four dimensions，arXiv preprint arXiv：2109．08541（2021）．
［LT］M．－C．Lee and L．－F．Tam，Rigidity of Lipschitz map using harmonic map heat flow， preprint arXiv：2207．11017（2022）．
［LTo］M．－C．Lee and P．M．Topping，Metric limits of manifolds with positive scalar curvature， preprint arXiv：2203．01223（2022）．
［L1］C．Li，A polyhedron comparison theorem for 3－manifolds with positive scalar curvature， Invent．Math． 219 （2020），1－37．
［L1］C．Li，Correction to：A polyhedron comparison theorem for 3－manifolds with positive scalar curvature，Invent．Math． 228 （2022），535－538．
［L2］C．Li，The dihedral rigidity conjecture for n－prisms，preprint arXiv：1907．03855（2019）．

References

［LI］M．Llarull，Sharp estimates and the Dirac operator，Math．Ann． 310 （1998），55－71． ［ST］Y．Shi and L．－F．Tam，Scalar curvature and singular metrics，Pacific J．Math． 293 （2018），427－470．
［STW］C．Sormani，W．Tian and C．Wang，An extreme limit with nonnegative scalar，preprint arXiv：2304．07000（2023）．
［TW］W．Tian and C．Wang，Compactness of sequences of warped product circles over spheres with nonnegative scalar curvature，arXiv： 2307.04126 （2023）．

Fix a smooth background metric g_{0} and denote the Levi－Civita connection $\bar{\nabla}$ of g_{0} ．

Definition（Lee－LeFloch，［LL］）

For $g \in L_{l o c}^{\infty} \cap W_{l o c}^{1,2}$ with $g^{-1} \in L_{l o c}^{\infty}$ ，for every test function $u \in C_{0}^{\infty}(M)$ ，the scalar curvature distribution R_{g} is defined as

$$
\left\langle R_{g}, u\right\rangle:=\int_{M}\left(-V \cdot \bar{\nabla}\left(u \frac{d \mathrm{vol}_{g}}{d \operatorname{vol}_{g_{0}}}\right)+F u \frac{d \operatorname{vol}_{g}}{d \operatorname{vol}_{g_{0}}}\right) d \operatorname{vol}_{g_{0}}
$$

where $V=\left(V^{k}\right) \in \Gamma(M)$ is given by $V^{k}:=g^{i j} \Gamma_{i j}^{k}-g^{i k} \Gamma_{j i}^{j}, F$ is a function as

$$
F:=R_{g_{0}}-\bar{\nabla}_{k} g^{i j} \Gamma_{i j}^{k}+\bar{\nabla}_{k} g^{i k} \Gamma_{j i}^{j}+g^{i j}\left(\Gamma_{k l}^{k} \Gamma_{i j}^{l}-\Gamma_{j l}^{k} \Gamma_{i k}^{l}\right)
$$

and $\Gamma_{i j}^{k}:=\frac{1}{2} g^{k l}\left(\bar{\nabla}_{i} g_{j l}+\bar{\nabla}_{j} g_{i l}-\bar{\nabla}_{l} g_{i j}\right)$ ．
For $\kappa \in \mathbb{R}$ ，＂$R(g) \geq \kappa$ in the distributional sense＂if for any nonnegative test function $u \in C_{0}^{\infty}(M),\left\langle R_{g}, u\right\rangle-\kappa \int_{M} u d \operatorname{vol}_{g} \geq 0$.

Def（Sormani－Tian－Wang，［STW］）

The total distributional scalar curvature of metric g is defined as $\left\langle R_{g}, 1\right\rangle$ ．
Remark：
－$\left\langle R_{g}, u\right\rangle$ is independent of the choice of g_{0} ，as long as g is in $C^{0} \cap W_{\text {loc }}^{1,2}$ ．
－For a metric g with the above regularity，one has

$$
\Gamma_{i j}^{k} \in L_{l o c}^{2}, V \in L_{l o c}^{2}, F \in L_{l o c}^{1} \text { and } \frac{d \operatorname{vol}_{g}}{d \operatorname{vol}_{g_{0}}} \in L_{l o c}^{\infty} \cap W_{l o c}^{1,2}
$$

Therefore

$$
\int_{M}\left(-V \cdot \bar{\nabla}\left(\frac{d \operatorname{vol}_{g}}{d \operatorname{vol}_{g_{0}}}\right)\right) d \operatorname{vol}_{g_{0}} \text { and } \int_{M}\left(F u \frac{d \operatorname{vol}_{g}}{d \operatorname{vol}_{g_{0}}}\right) d \operatorname{vol}_{g_{0}}
$$

are both finite．
－BUT the total distributional scalar curvature $\left\langle R_{g}, 1\right\rangle$ may be infinite．

Approximation lemma 1 （［GL，Lemma 4．1］）

Let M^{n} be a cpt smooth mfd and g a $C^{0} \cap W^{1, p}(1 \leq p \leq \infty)$ metric on M ，then $\exists\left(g_{\delta}\right)_{\delta>0}$ s．t．g_{δ} converges to g both in the C^{0}－norm and in the $W^{1, p}$－norm as $\delta \rightarrow 0^{+}$．

Approximation lemma 2 （［JSZ，Lemma 2．2］）

Let M^{n} be a cpt smooth mfd and g a $C^{0} \cap W^{1, n}$ metric on M ．Let $\left(g_{\delta}\right)$ be the approximation in the previous lemma．Then，$\exists \varepsilon>0, \exists \delta_{0}=\delta_{0}(g)>0$ s．t．

$$
\left|\left\langle R_{g_{\delta}}, u\right\rangle-\left\langle R_{g}, u\right\rangle\right| \leq \varepsilon\|u\|_{W^{1, \frac{n}{n-1}}(M)}, \quad \forall u \in C^{\infty}(M), \forall \delta \in\left(0, \delta_{0}\right) .
$$

－When M is open，we can construct the following counterexamples．
Fix $r_{0}>0$ ．Consider $\left(\mathbb{R}^{n}, g_{i}:=u_{i}^{\frac{4}{n-2}} \cdot g_{\text {Eucl }}\right)(n \geq 3, i=2,3, \cdots)$ ．Here，$u_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by

$$
u_{i}:=\phi\left(i^{-1} \sin \left(i r^{2}\right)\right)+1,
$$

where $r(\cdot):=|o-\cdot|_{\text {Eucl }}$ and $\phi: \mathbb{R}^{n} \rightarrow[0,1]$ is a smooth cut－off fct．s．t．$\phi \equiv 1$ on $\overline{B_{r_{0}}}:=\left\{x \in \mathbb{R}^{n} \mid r(x) \leq r_{0}\right\}$ and $\phi \equiv 0$ outside of $B_{2 r_{0}}$ ．Then，
－u_{i} is smooth positive，$u_{i}-1$ is compactly supported，and g_{i} is complete smooth $(i=2,3, \cdots)$ ，
－$g_{i} \xrightarrow{C^{0}} g_{\text {Eucl．}}$ on \mathbb{R}^{n} uniformly．BUT $g_{i} \xrightarrow{C^{1}} g_{\text {Eucl．}}$ ，
－ $\int_{\mathbb{R}^{n}} R\left(g_{i}\right) d \operatorname{vol}_{g_{i}} \geq \exists \kappa(n)>0=\int_{\mathbb{R}^{n}} R\left(g_{\text {Eucl．}}\right) d \mathrm{vol}_{g_{\text {Eucl }}}$.
－In the same manner，we can also construct the following example on a closed manifold：
$\underline{\text { When }\left(M, g_{0}\right) \text { is closed，} \exists g_{i} \in \mathcal{M}(M)(n \geq 3) \text { s．t．} g_{i} \xrightarrow{C^{0}} g_{0} \text { on } M \text { ．BUT } g_{i} \xrightarrow{C^{1}} g_{0} \text { and }, ~}$

$$
\int_{M} R\left(g_{i}\right) d \operatorname{vol}_{g_{i}} \geq \kappa+\int_{M} R\left(g_{0}\right) d \operatorname{vol}_{g_{0}} \text { for some } \kappa=\kappa(n)>0
$$

Counterexamples（Continuation）

Consider $\left(\mathbb{R}^{n}, g_{i}:=u_{i}^{\frac{4}{n-2}} \cdot g_{\text {Eucl }}\right) \quad(n \geq 3, i=2,3, \cdots)$ ．Here，$u_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by

$$
u_{i}:=\phi_{i}\left(i^{-2} \sin \left(i r^{2}\right)\right)+1
$$

where $\phi_{i}: \mathbb{R}^{n} \rightarrow[0,1]$ is a smooth cut－off fct．s．t．$\phi_{i} \equiv 1$ on $\overline{B_{r_{i}}}\left(r_{i}:=i^{\frac{2}{n+2}}\right)$ and $\phi_{i} \equiv 0$ outside of $B_{2 r_{i}}$ ．Then，
－u_{i} is positive smooth $(i=2,3, \cdots)$ ，and $r_{i} \rightarrow \infty$ ，
－g_{i} complete smooth $(i=2,3, \cdots)$ ，
－$g_{i} \xrightarrow{C^{1}} g_{\text {Eucl．}}$ on \mathbb{R}^{n} uniformly．BUT $g_{i} \xrightarrow{C^{2}} g_{\text {Eucl．}}$ ，
－ $\int_{\mathbb{R}^{n}} R\left(g_{i}\right) d \operatorname{vol}_{g_{i}} \geq \exists \kappa(n)>0=\int_{\mathbb{R}^{n}} R\left(g_{\text {Eucl．}}\right) d \operatorname{vol}_{g_{\text {Eucl．}}}$ ．

Counterexamples（Continuation）

Consider $\left(\mathbb{R}^{2}, e^{u_{i}} g_{\text {Eucl }}\right)$ ，where

$$
u_{i}:=e^{-i r^{2}} \sin \left(-\frac{i}{2} r^{2}\right) \quad(i=1,2, \cdots) .
$$

Then，
－g_{i} complete smooth $(i=1,2, \cdots)$ ，
－$g_{i} \xrightarrow{C^{1}} g_{\text {Eucl．}}$ on \mathbb{R}^{n} uniformly．BUT $g_{i} \xrightarrow{C^{2}} g_{\text {Eucl．}}$ ，
－ $\int_{\mathbb{R}^{2}} R\left(g_{i}\right) d \mathrm{vol}_{g_{i}}=\frac{128 \pi}{25}>0=\int_{\mathbb{R}^{2}} R\left(g_{\text {Eucl．}}\right) d \mathrm{vol}_{g_{\text {Eucl．}}}$ ．
Note：All metrics g_{i} in the above examples have sign－changing scalar curvatures，i．e．，for each i ，there are points $x_{i}, y_{i} \in M$ s．t．$R\left(g_{i}\right)\left(x_{i}\right)<0<R\left(g_{i}\right)\left(y_{i}\right)$ ．

Further Questions

Llarull＇s Sphere Rigidity Theorem（1998［LI］）

$\left(M^{n}, g\right)$ ：a closed spin Riemannian mfd．If $f:(M, g) \rightarrow\left(S^{n}, g_{\mathrm{std}}\right)$ is a dist．decreasing map of non－zero degree and if $R(g) \geq n(n-1)$ ，then f must be a Riemannian isometry．

Lee－Tam（2022［LT］）（A weak top．ver．of Llarull＇s thm）

M^{n} ：a closed spin mfd and g_{0} a C^{0}－met．on M with $R\left(g_{0}\right) \geq n(n-1)$ in the＂Gromov sense＂．Suppose there is a 1－Lip．conti．map $f:\left(M, d_{g_{0}}\right) \rightarrow\left(S^{n}, d_{\text {std }}\right)$ with non－zero degree， then f is a dist．isometry．
－Recall：For a C^{0}－met．g and a conti．fct．κ ，we say＂$R(g) \geq \kappa$ in the Gromov sense＂if $\exists C^{2}$－Riem．met＇s $\left(g_{i}\right)$ s．t．$R\left(g_{i}\right) \geq \kappa$ and $g_{i} \xrightarrow{C^{0}} g$ ．
－A stability version of Llarull＇s theorem（Allen－Bryden－Kazaras［ABK］）．

Further Questions

For example，the following is known．
Green（1963［Gr］）
Let $\left(M^{n}, g\right)$ be a closed Riem． $\mathrm{mfd} \mathrm{w} /(\operatorname{Vol}(M, g))^{-1} \int_{M} R(g) d \mathrm{vol}_{g}$ is at least $n(n-1)$ ． Then the conjugate radius $\operatorname{conj}(M, g)$ of (M, g) is $\leq \pi$ ．If＂$=$＂，then (M, g) has sec $\equiv 1$ ．

Very Rough Question

Does a weaker topology version of this hold？（This question，of course，also includes what the appropriate statement is．）

About the new definition

（Shi－Tam，［ST］Corollary 4．11）

Let $\left(M^{n}, g\right)$ be a compact manifold s．t．M is the topological torus and g is smooth away from some compact set $\Sigma \subset M$ with codimension at least 2 ．Here，＂codimension at least 2 ＂means that $\operatorname{Vol}\left(\Sigma_{\varepsilon}, g\right)=O\left(\varepsilon^{2}\right)$ ，where $\Sigma_{\varepsilon}:=\left\{x \in M \mid d_{g}(x, \Sigma)\right\}$ ．Moreover，assume $g \in W_{\text {loc }}^{1, p}(M)$ for some $p>n$ ．Suppose $R(g) \geq 0$ in $M \backslash \Sigma$ ，then g must be flat．

（Jiang－Sheng－Zhang，［JSZ］Lemma A．1）

Let M^{n} be a smooth manifold and $g \in L^{\infty} \cap W_{\mathrm{loc}}^{1, p}(M)(n \leq p \leq \infty)$ a metric on M ．Let Σ be a closed subset of M ．Assume that $g \in C^{\infty}\left(M \backslash \Sigma\right.$ ）（or $g \in C^{2}(M \backslash \Sigma)$ ）．Suppose $\mathcal{H}^{n-\frac{p}{p-1}}(\Sigma)<+\infty$ if $n<p<\infty, \mathcal{H}^{n-1}(\Sigma)=0$ if $p=\infty$ ，and $R(g) \geq \kappa$ on $M \backslash \Sigma$ ．Here，κ is a constant $\kappa \in \mathbb{R}$ ．Then，$R(g) \geq \kappa$ on M in the distributional sense．

Q．How do we know that a metric g is of $R(g) \geq \kappa$ in the distributional sense in general？

About the new definition

（Lee－LeFloch，［LL］Proposition 5．1）

Let $M_{i}(i=1,2)$ be smooth n－manifolds with boundaries，carrying C^{2}（up to boundaries） merics $g_{i}(i=1,2)$ respectively．Assume $\exists \Phi:\left(\partial M_{1}, g_{1}\right) \rightarrow\left(\partial M_{2}, g_{2}\right)$ an isometry．Let $\left(M, g:=g_{1} \sqcup g_{2}\right)$ be tha manifold obtained by gluing these along Φ ．Let Σ be athe identification of these boundaries in M ．Let $H_{i}(i=1,2)$ be the（scalar）mean curvatures computed w．r．t．$g_{i}(i=1,2)$ respectively．（Locally，for a Fermi coordinates $\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)$ where $x_{0}<0$ corresponds to $M_{1}, H_{1}=g_{1}\left(\nabla_{\partial_{i}} \partial_{i},-\partial_{0}\right)$ and $H_{2}=g_{2}\left(\nabla_{\partial_{i}} \partial_{i}, \partial_{0}\right)$ ．）Assume that $R\left(g_{1}\right), R\left(g_{2}\right) \geq \kappa$ ，and that at each point $\Sigma, H_{1} \geq H_{2}$ ．
Then，$R(g) \geq \kappa$ on M in the distributional sense．
（cf．P．Miao，Positive mass theorem on manifolds admitting corners along a hypersurface，Adv． Theor．Math．Phys． 6 （2002），1163－1182．）
NOTE：Conversely，if there exists a point $p \in \Sigma$ at which $H_{1}(p)<H_{2}(p)$ ，then we can show that $R(g) \not \equiv \kappa$ in the distributional sense．

About the new definition

－Burkhardt－Guim［BG］suggested a sequence of metrics such as the one in the definition of Gromov can be taken along a Ricci flow．Roughly speaking，this is based on the fact that Ricci flows preserve the minimum of the scalar curvatures．
－Jiang－Sheng－Zhang［JSZ］proved that such property is also true for every $W^{1, p}(p>\operatorname{dim})$ metric，and thereby proved that
$R(g) \geq \kappa$ in the distributional sense $\Rightarrow R(g) \geq \kappa$ in the sense of $[\mathrm{G}](\Leftrightarrow[\mathrm{BG}])$ ．
－BUT，such a Ricci flow $g(t)$ is smooth for $t>0$ ．Therefore，it CANNOT be used to construct a NONTRIVIAL example of the new definition．

About the new definition

－For example，in the above situation of Lee－LeFloch（or Miao），it is conceivable to use a Ricci flow with boundary．However，some convexities of the boundary are required to obtain the above scal－preservation－property．（i．e．，Such converxities are necessary to apply a maximum principle．）
－Unfortunately，as far as I know，such convexities are stronger than the Bartnik＇s boundary condition（i．e．，the condition in the above statement of Lee－LeFloch）．
－Hence，at least on a torus，this method cannot be used because there is no psc metric on the torus．（i．e．，If one can construct a sequence of psc C^{2}－metric on $[0,1] \times \mathbb{T}^{n-1}$ with Bartnik＇s boundary conditions，then from the result of Miao，one can also construct a psc metric on the whole torus \mathbb{T}^{n} by gluing them．However，such a metric cannot exist from the resolution of Geroch＇s conjecture．）

About the new definition

－RF on mfds with boundary（related literatures）
－T．－K．A．Chow，T．－K．A．Chow，Ricci flow on manifolds with boundary with arbitrary initial metric，J．Reine Angew．Math．（Crelles Journal）， 2022 （2022），159－216．
－J．C．Cortissoz，On the Ricci flow in rotationally symmetric manifolds with boundary， Dissertation（Cornell University）， 2004.
－J．C．Cortissoz，The Ricci flow on the two ball with a rotationally symmetirc metric， arXiv：0509128v2（2007）．
－J．C．Cortissoz，Three－manifolds of positive Ricci curvature and convex weakly umbilic boundary，arXiv：0704．2081（2007）．
－J．C．Cortissoz and A．Murcia，The Ricci flow on surfaces with boundary，arXiv：1209．2386 （2012）．
－J．C．Cortssoz and J．J．Villamarín，Singular Ricci Flows on surfaces with boundary and positive scalar curvature，arXiv：2310．20555（2023）．
－P．Gianniotis，The Ricci flow on manifolds with boundary，J．Differential Geom． 104 （2016）， 291－324．
－A．Pulemotov，Quasilinear parabolic equations and the Ricci flow on manifolds with boundary，J．Reine Angew．Math． 683 （2013），97－118．

About the new definition

Q．：\exists PSC metrics on a torus with prescribed singular set of non－integer dim．？
－PSC metrics with prescribed singularities on \mathbb{R}^{n} or \mathbb{S}^{n}（related literatures）
－T．Ju and J．Viaclovsky，Conformally prescribed scalar curvature on orbifolds，Commun． Math．Phys． 398 （2023），877－923．
－R．Mazzeo and F．Pacard，A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis，J．Differential Geom． 44 （1996），331－370．
－R．Mazzeo and F．Pacard，Constant scalar curvature metrics with isolated singularities，Duke Math．J． 99 （1999），353－418．
－F．Pacard，Solutions with high dimensional singular set，to a conformally invariant elliptic equation in \mathbb{R}^{4} and \mathbb{R}^{6} ，Commun．Math．Phys． 159 （1994），423－432．
－R．Schoen and S．－T．Yau，Conformally flat manifolds，Kleinian groups and scalar curvature， Invent Math． 92 （1988），47－71．
－J．Viaclovsky，Monopole metrics and the orbifold Yamabe problem，Ann．Inst．Fourier 60 （2010），2503－2543．

