全スカラー曲率の極限定理 小研究会「一般相対論と幾何」

Shota Hamanaka

(Mitsubishi Electric Corporation /OCAMI)

February 8th, 2024

S. Hamanaka (Mitsubishi Electric Corp./OCAMI)

全スカラー曲率の極限定理

Table of contents

1 Backgrounds

2 Main Results

3 Counterexamples

4 Questions

Weak notions of $R \ge K$

Gromov (and Bamler) proved the following.

Gromov (2014 [G1]), Bamler (2016 [B])

Let M be a smooth manifold and g a C^2 -Riemannian metric on M. Suppose that a sequence of C^2 -Riemannian metrics g_i on M that converges to g in the local C^0 -sense. Assume that for all $i = 1, 2, \cdots R(g_i) \ge \kappa$ on M for some $\kappa \in C^0(M)$. Then $R(g) \ge \kappa$ on M.

Definition [G]

For a C^0 -met. g and a conti. fct. κ , we say " $R(g) \ge \kappa$ <u>in the Gromov sense</u>" if $\exists C^2$ -Riem. met's (g_i) s.t. $R(g_i) \ge \kappa$ and $g_i \xrightarrow{C^0} g$.

Gromov type theorem in even weaker topology

Recently, Lee and Topping proved that non-negativity of scalar curvature is **NOT** preserved on the sphere in dimension at least four in the sense of uniform convergence of <u>Riemannian</u> <u>distance</u>. More precisely,

Lee–Topping (2022 [LTo])

Let $n \geq 4, f \in C^0(S^n)$. Then $\exists (g_i) \subset \mathcal{M}(S^n)$ s.t. $R(g_i) > 0$ and $d_{g_i} \to d_f$ uniformly on $S^n \times S^n$, where d_f is the Riemannian distance of the met. $e^f g_{std}$. In paticular, $(S^n, d_{g_i}) \to (S^n, d_f)$ in the Gromov-Hausdorff sense as $i \to \infty$. Moreover, $\exists C > \infty$ s.t.

$$C^{-1}g_{std} \le g_i \le Cg_{std}$$

on S^n for all i.

<u>Note</u>: We can always choose the function $f \in C^2(S^n)$ s.t. $e^f g_{std}$ has negative scalar curvature at some point on S^n . Q.: n = 3?

Weak notions of $R \ge K$

- [Bamler 2016 [B]] An alternative proof using Ricci(-DeTurck) flow.
- [Burkhardt-Guim 2019 [BG]] Gave a definition of scalar curvature lower bounds of metric tensors with only C⁰-regularity on a closed mfd using Ricci(-DeTurck) flow.
 <u>Note</u>: [BG] ⇔ [G].
- [D.Lee and P. G. LeFloch 2015 [LL]] Defined "scalar curvature lower bounds in the distributional sense" for $g \in L^{\infty}_{loc} \cap W^{1,2}_{loc}$ with $g^{-1} \in L^{\infty}_{loc}$.
- [W.Jiang, W.Sheng and H.Zhang 2021 [JSZ]] For $g \in W^{1,p}(M)$ (dim(M)), $(g can be flowed by a RF (<math>(g(t))_{t \in (0,\exists T)}$ a smooth RF and $(M, d_{g(t)}) \xrightarrow{GH} (M, d_g)$) and) " $R(g) \ge \kappa$ ($\kappa \in \mathbb{R}$) in the distributional sense" is preserved under the RF. <u>Note</u>: As a corollary, " $R(q) \ge \kappa$ ($\kappa \in \mathbb{R}$) in the distributional sense" $\Rightarrow R(q) \ge \kappa$ in the sense of [BG] (\Leftrightarrow [G]).

Backgrounds

- **[T.Lamm and M.Simon 2021 [LS]]** For $g \in L^{\infty} \cap W^{2,2}(M^4)$ (M^4 : closed 4-mfd) with $a^{-1}h \leq G \leq ah$ for some a > 0, the following are equivalent.
 - $R(g) \ge \kappa \ (\kappa \in \mathbb{R})$ in the distributional sense
 - ► $\exists (g_{i,0}) \in \mathcal{M}(M^4)$ with $b^{-1}h \leq g_{i,0} \leq bh$ for some $1 < b < \infty$, s.t. $R(g_{i,0}) \geq \kappa$ and $g_{i,0} \rightarrow g \in W^{2,2}(M^4)$
 - ▶ the RDF $(g(t))_{t \in (0,T)}$ of g constructed in [LS] has $R(g(t)) \ge \kappa$ for all $t \in (0,T)$.
- [Tian and Wang 2023 [TW]]

A precompactness theorem for warped product metrics on $S^2 \times S^1$.

• [Gromov 2014 [G1]]

A characterization of $R \ge 0$ on cube-type polyhedrons. (Rigidity $+\alpha \cdots$ C. Li [L1, L2])

Main Theorem 1 (H. 2022 [H1] arXiv:2208.01865)

 M^n : a closed (i.e., cpt without boundary) *n*-mfd $(n \ge 3)$ and g: a C^2 Riem. met. on M. (g_i) : a sequence of Ricci solitons on M (i.e., $-2 \operatorname{Ric}(g_i) = \mathcal{L}_{Y_i} g_i - 2\lambda_i g_i$ for some constant $\lambda_i \in \mathbb{R}$ and a vector field $Y_i \in \Gamma(TM)$) with s.t. $g_i \xrightarrow{C^0} g$ on M as $i \to \infty$. Assume

(*)
$$\int_M R(g_i) \, d\mathrm{vol}_{g_i} \ge \kappa$$
 for some constant $\kappa \in \mathbb{R}$.

Moreover, assume $\lambda_i \leq C_+$ $(i = 1, 2, \cdots)$ for some constant $C_+ \in \mathbb{R}$ if $\kappa \geq 0$ (resp. $\lambda_i \geq C_-, \ C_- \in \mathbb{R}$ if $\kappa < 0$). Then $\int_M R(g) d\operatorname{vol}_g \geq \kappa$.

Main Theorem 2 (H. 2022 [H1])

Let p > n. Let M^n $(n \ge 3)$ be a closed mfd. Suppose that a sequence of C^2 -Riem. met's g_i converges to g in the $W^{1,p}$ -sense. Assume that for all i, $R(g_i) \ge 0$ and (*) as above. Then $\int_M R(g) d\operatorname{vol}_g \ge \kappa$. Moreover, in dimension 3, the assumption " $R(g_i) \ge 0$ " is not needed.

Q.: Is " $R(g_i) \ge 0$ " necessary (in dim. ≥ 4)?

Direct Corollary (H. 2022 [H1])

Let p > n. Let \mathcal{M} be the space of all C^2 -Riem. met.s on a closed mfd M. For any nonnegative conti. fct. $\sigma : M \to [0, \infty)$ and $\kappa \in \mathbb{R}$, the space

$$\left\{g\in\mathcal{M}\; \left|\;\; \int_M R(g)\,d\mathrm{vol}_g\geq\kappa,\; R(g)\geq\sigma\;\mathrm{on}\;M
ight\}
ight\}$$

is $W^{1,p}$ -closed in \mathcal{M} .

<u>Rem</u>: In Main thm 2, " $R_g \ge 0$ " can be replaced with " $R_g \ge \sigma$ and $Vol(M, g_i) \ge Vol(M, g)$ ".

Corollary

- p > n.
- M^n : closed *n*-mfd.
- $g: C^2$ -Riem. metric on M.

 (g_i) : a sequence of C^2 -Riem. metrics on M s.t. $g_i \xrightarrow{W^{1,p}} g$ on M and $\operatorname{Vol}(M, g_i) = 1$. Assume that g is a Yamabe metric of [g] (i.e., $Y(M, g) = \inf_{h \in [g]_1} \int_M R(h) \operatorname{dvol}_h = R(g)$), and $\exists \kappa \in \mathbb{R}, \ \exists \sigma \in C^0(M)$ s.t. $\forall i$,

 $Y(M, g_i) \ge \kappa$ and $R(g_i) \ge \sigma$ on M.

Then $Y(M,g) \ge \kappa$.

More generally, we can also show the following.

Main Theorem 3 (H. 2022 [H1])

Let $p > n^2/2$. Let M^n be a closed n-manifold $(n \ge 2)$, g a C^2 Riem. met. on M, and (g_i) a sequence of C^2 Riem. met.s on M s.t. g_i converges to g on M in the $W^{1,p}$ -sense as $i \to \infty$. Let m be a measure on M and set $e^{-f} dvol_a := dm =: e^{-f_i} dvol_a$. Assume the followings. (1) $\exists \Lambda > 0$ s.t. f and f_i (i > 0) are Λ -Lipschitz functions on M. (2) $f_i \xrightarrow{C^0} f$ uniformly on M, (3) $R(q_i) > 0$ on M for all i. (4) $\int_M R(g_i) dm \ge \kappa \ (\kappa \in \mathbb{R}).$ Then $\int_{M} R(g) \, dm \ge \kappa.$

Corollary of Main thm 3

Let $p > n^2/2$. Let M be a closed n-manifold $(n \ge 2)$ and g a C^2 Riemannian metric on M. Let κ be a positive continuous function on M. Let (g_i) be a sequence of metrics such that $g_i \in W^{1,p}$, $R(g_i) \ge \kappa$ in the distributional sense, and g_i converges to g in the $W^{1,p}$ -sense. Then $R(g) \ge \kappa$ in the distributional sense.

<u>Rem</u>:

Since the limiting metric g is C^2 , for any test function $\phi \in C^{\infty}(M)$, $\langle R_g, \phi \rangle = \int_M R_g \phi \, d\mathrm{vol}_g$. Therefore, $R(g) \ge \kappa$ in the distributional sense $\Leftrightarrow R(g) \ge \kappa$ in the classical sense.

A Gromov type of definition

Let M^n be a closed *n*-manifold $(n \ge 2)$ and g_0 a $W^{1,p}$ $(p > n^2/2)$ metric on M. Let κ be a positive continuous function on M. We say that g_0 is of $R(g_0) \ge \kappa$ if there exists a sequence of $W^{1,p}$ merics (g_i) on M such that

- $R(g_i) \ge \kappa$ in the distributional sense, and
- $g_i
 ightarrow g_0$ with respect to the $W^{1,q} \ (q>n^2/2)$ topology.

[G] and this definition

A difference of Gromov's definition and this one is that in this definition each metric in the approximate sequence can have some singularities. For example, on tori, there is NO metric g with $R(g) \ge \kappa > 0$ in the Gromov's sense (\Leftrightarrow [BG]) from the resolution of Geroch's conjecture. In contrast, a metric g with $R(g) \ge \kappa > 0$ in the sense of this definition might exist on a torus. (\rightsquigarrow Schoen's conjecture)

<u>NOTE</u>: The Morrey embedding says

$$C^1 \hookrightarrow W^{1,p} \hookrightarrow C^{0,1-\frac{n}{p}} \hookrightarrow C^0 \quad \text{if } p > n.$$

Therefore the same statement of Main Theorem 2 still holds even though one replace $W^{1,p}$ (p > n) with $C^{0,\alpha}$ for all $\alpha \in (0, 1]$.

On the other hand, in Main Theorem 2, if we weaken the assumption from $W^{1,p}$ to C^0 , then the same statement (without the assumption $R(g_i) \ge 0$) does NOT hold in general. Indeed, we will give some examples in the appendix.

All metrics g_i in such examples have sign-changing scalar curvatures, i.e., for each i, there are some points $x_i, y_i \in M$ s.t. $R(g_i)(x_i) < 0 < R(g_i)(y_i)$.

Questions

In dim 3, Main thm 2 follows from the fact that every orientable closed 3-mfd is papallelizable, and the Bochner identity for 1-forms. (As far as I know, the original idea is due to Lohkamp.)

Questions

• What is the relation between parallelizability and $W^{1,2}$ -convergence of metric tensors?

<u>Fact</u> M is closed, parallelizable $\Rightarrow \int_M R(g_i) d\operatorname{vol}_{g_i} \to \int_M R(g) d\operatorname{vol}_g$ as $g_i \xrightarrow{W^{1,2}} g$ (<u>Rem.</u> Every oriented closed 3-mfd is parallelizable)

- Define $\int_M R(g) d\operatorname{vol}_g \ge \kappa$ for g with only $W^{1,p}$ (p > n)-regularity using a geometric flow and investigate its properties (cf. Burkhardt-Guim's work [BG] and [JSZ]).
- " $\int_M R(g) \, d\mathrm{vol}_g \ge \kappa$ in a dstributional sense" by Lee–LeFloch [LL] \Rightarrow in the weaker sense defined as in the sense of [G] from Main thm 2 (for $g \in W^{1,p}$ (p > n) with " $R(g) \ge 0$ " in the sense of [G])?
- Is $p > n^2/2$ sharp in Main thm 3? (i.e., \exists counterexample for $p = n^2/2$?), $R(g) \rightsquigarrow$ "weighted scal." (in the integrand)?

References

- [ABK] B. Allen, E. Bryden and D. Kazaras, On the stability of Llarull's theorem in dimension three, arXiv: 2305.18567 (2023).
 - [B] R. H. Bamler, A Ricci flow proof of a result by Gromov on lower bounds for scalar curvature, Math. Res. Letters **23** (2016), 325–337.
- [BLPP] G. Besson, J. Lohkamp, P. Pansu and P. Petersen, Riemannian geometry, Fields institute monographs **4**, American Mathematical Society, 1996.
- [BG] P. Burkhardt-Guim, Pointwise lower scalar curvature bounds for C⁰ metrics via regularizing Ricci flow, Geom. Funct. Anal. **29** (2019), 1703–1772.
- [G1] M. Gromov, Dirac and Plateau billiards in domains with corners, Cent. Eur. J. Math. 12 (2014), 1109–1156.
- [Gr] L. W. Green, Ann. of Math. 78 (1963), 289–299.
- [GT] J. D. Grant and N. Tassotti, A positive mass theorem for low-regularity Riemannian metrics, arXiv:1408.6425 (2014).
- [H1] S. Hamanaka, Limit theorems for the total scalar curvature, (old version; C^0 , C^1 -limit theorems for total scalar curvatures), preprint arXiv:2208.01865.

全スカラー曲率の極限定理

References

- [JSZ] W. Jiang, W. Sheng and H. Zhang, Weak scalar curvature lower bounds along Ricci flow, Sci. China Math. 66 (2023), 1141–1160.
- [LL] D. A. Lee and P. G. LeFloch, The positive mass theorem for manifolds with distributional curvature, Comm. Math. Phys. **339** (2015), 99-120.
- [LS] M.-C. Lee and M. Simon, Ricci flow of $W^{2,2}$ -metrics in four dimensions, arXiv preprint arXiv:2109.08541 (2021).
- [LT] M.-C. Lee and L.-F. Tam, Rigidity of Lipschitz map using harmonic map heat flow, preprint arXiv:2207.11017 (2022).
- [LTo] M.-C. Lee and P. M. Topping, Metric limits of manifolds with positive scalar curvature, preprint arXiv:2203.01223 (2022).
- [L1] C. Li, A polyhedron comparison theorem for 3-manifolds with positive scalar curvature, Invent. Math. 219 (2020), 1–37.
- [L1] C. Li, Correction to: A polyhedron comparison theorem for 3-manifolds with positive scalar curvature, Invent. Math. 228 (2022), 535–538.
- [L2] C. Li, The dihedral rigidity conjecture for *n*-prisms, preprint arXiv:1907.03855 (2019).

References

- [LI] M. Llarull, Sharp estimates and the Dirac operator, Math. Ann. 310 (1998), 55-71.
- [ST] Y. Shi and L.-F. Tam, Scalar curvature and singular metrics, Pacific J. Math. 293 (2018), 427–470.
- [STW] C. Sormani, W. Tian and C. Wang, An extreme limit with nonnegative scalar, preprint arXiv:2304.07000 (2023).
- **[TW]** W. Tian and C. Wang, Compactness of sequences of warped product circles over spheres with nonnegative scalar curvature, arXiv: 2307.04126 (2023).

Fix a smooth background metric g_0 and denote the Levi-Civita connection $\overline{\nabla}$ of g_0 .

Definition (Lee–LeFloch, [LL])

For $g \in L^{\infty}_{loc} \cap W^{1,2}_{loc}$ with $g^{-1} \in L^{\infty}_{loc}$, for every test function $u \in C^{\infty}_0(M)$, the scalar curvature distribution R_g is defined as

$$\langle R_g, u \rangle := \int_M \left(-V \cdot \overline{\nabla} \left(u \frac{d \mathrm{vol}_g}{d \mathrm{vol}_{g_0}} \right) + F u \frac{d \mathrm{vol}_g}{d \mathrm{vol}_{g_0}} \right) \, d \mathrm{vol}_{g_0}$$

where $V=(V^k)\in \Gamma(M)$ is given by $V^k:=g^{ij}\Gamma^k_{ij}-g^{ik}\Gamma^j_{ji},\,F$ is a function as

$$F := R_{g_0} - \overline{\nabla}_k g^{ij} \Gamma^k_{ij} + \overline{\nabla}_k g^{ik} \Gamma^j_{ji} + g^{ij} \left(\Gamma^k_{kl} \Gamma^l_{ij} - \Gamma^k_{jl} \Gamma^l_{ik} \right)$$

and $\Gamma_{ij}^k := \frac{1}{2}g^{kl} \left(\overline{\nabla}_i g_{jl} + \overline{\nabla}_j g_{il} - \overline{\nabla}_l g_{ij}\right)$. For $\kappa \in \mathbb{R}$, " $R(g) \ge \kappa$ in the distributional sense" if for any nonnegative test function $u \in C_0^{\infty}(M), \langle R_g, u \rangle - \kappa \int_M u \, d\mathrm{vol}_g \ge 0$.

Def (Sormani–Tian–Wang, [STW])

The total distributional scalar curvature of metric g is defined as $\langle R_g, 1 \rangle$.

Remark:

- $\langle R_g, u \rangle$ is independent of the choice of g_0 , as long as g is in $C^0 \cap W^{1,2}_{\text{loc}}$.
- For a metric g with the above regularity, one has

$$\Gamma_{ij}^k \in L^2_{loc}, \ V \in L^2_{loc}, \ F \in L^1_{loc} \ \text{and} \ \frac{d \operatorname{vol}_g}{d \operatorname{vol}_{g_0}} \in L^\infty_{loc} \cap W^{1,2}_{loc}.$$

Therefore

$$\int_{M} \left(-V \cdot \overline{\nabla} \left(\frac{d \mathrm{vol}_{g}}{d \mathrm{vol}_{g_{0}}} \right) \right) \, d \mathrm{vol}_{g_{0}} \quad \mathrm{and} \quad \int_{M} \left(Fu \frac{d \mathrm{vol}_{g}}{d \mathrm{vol}_{g_{0}}} \right) \, d \mathrm{vol}_{g_{0}}$$

are both finite.

• BUT the total distributional scalar curvature $\langle R_g,1\rangle$ may be infinite.

Approximation lemma 1 ([GL, Lemma 4.1])

Let M^n be a cpt smooth mfd and $g \in C^0 \cap W^{1,p}$ $(1 \le p \le \infty)$ metric on M, then $\exists (g_\delta)_{\delta>0}$ s.t. g_δ converges to g both in the C^0 -norm and in the $W^{1,p}$ -norm as $\delta \to 0^+$.

Approximation lemma 2 ([JSZ, Lemma 2.2])

Let M^n be a cpt smooth mfd and $g \in C^0 \cap W^{1,n}$ metric on M. Let (g_{δ}) be the approximation in the previous lemma. Then, $\exists \varepsilon > 0, \exists \delta_0 = \delta_0(g) > 0$ s.t.

$$|\langle R_{g_{\delta}}, u \rangle - \langle R_{g}, u \rangle| \le \varepsilon ||u||_{W^{1, \frac{n}{n-1}}(M)}, \quad \forall u \in C^{\infty}(M), \ \forall \delta \in (0, \delta_{0}).$$

• When M is open, we can construct the following counterexamples.

Fix
$$r_0 > 0$$
. Consider $\left(\mathbb{R}^n, g_i := u_i^{\frac{4}{n-2}} \cdot g_{Eucl}\right)$ $(n \ge 3, i = 2, 3, \cdots)$. Here, $u_i : \mathbb{R}^n \to \mathbb{R}$ is defined by

$$u_i := \phi \left(i^{-1} \sin(ir^2) \right) + 1,$$

where $r(\cdot) := |o - \cdot|_{Eucl}$ and $\phi : \mathbb{R}^n \to [0, 1]$ is a smooth cut-off fct. s.t. $\phi \equiv 1$ on $\overline{B_{r_0}} := \{x \in \mathbb{R}^n | r(x) \le r_0\}$ and $\phi \equiv 0$ outside of B_{2r_0} . Then,

- u_i is smooth positive, $u_i 1$ is compactly supported, and g_i is complete smooth $(i = 2, 3, \dots)$,
- $g_i \xrightarrow{C^0} g_{Eucl.}$ on \mathbb{R}^n uniformly. **BUT** $g_i \xrightarrow{C^1} g_{Eucl.}$,
- ► $\int_{\mathbb{R}^n} R(g_i) \, d\mathrm{vol}_{g_i} \ge \exists \kappa(n) > 0 = \int_{\mathbb{R}^n} R(g_{Eucl.}) \, d\mathrm{vol}_{g_{Eucl.}}.$

• In the same manner, we can also construct the following example on a closed manifold: <u>When (M, g_0) is closed,</u> $\exists g_i \in \mathcal{M}(M) \ (n \ge 3)$ s.t. $g_i \xrightarrow{C^0} g_0$ on M. **BUT** $g_i \xrightarrow{C^1} g_0$ and

$$\int_{M} R(g_i) \, d\mathrm{vol}_{g_i} \ge \kappa + \int_{M} R(g_0) \, d\mathrm{vol}_{g_0} \quad \text{for some } \kappa = \kappa(n) > 0.$$

Counterexamples (Continuation)

Consider
$$\left(\mathbb{R}^n, g_i := u_i^{\frac{4}{n-2}} \cdot g_{Eucl}\right)$$
 $(n \ge 3, i = 2, 3, \cdots)$. Here, $u_i : \mathbb{R}^n \to \mathbb{R}$ is defined by $u_i := \phi_i \left(i^{-2} \sin(ir^2)\right) + 1$,

where $\phi_i : \mathbb{R}^n \to [0,1]$ is a smooth cut-off fct. s.t. $\phi_i \equiv 1$ on $\overline{B_{r_i}}$ $(r_i := i^{\frac{2}{n+2}})$ and $\phi_i \equiv 0$ outside of B_{2r_i} . Then,

- u_i is positive smooth $(i = 2, 3, \cdots)$, and $r_i \to \infty$,
- g_i complete smooth $(i = 2, 3, \cdots),$
- $g_i \stackrel{C^1}{\longrightarrow} g_{Eucl.}$ on \mathbb{R}^n uniformly. **BUT** $g_i \stackrel{C^2}{\nrightarrow} g_{Eucl.}$,
- $\int_{\mathbb{R}^n} R(g_i) \, d\mathrm{vol}_{g_i} \ge \exists \kappa(n) > 0 = \int_{\mathbb{R}^n} R(g_{Eucl.}) \, d\mathrm{vol}_{g_{Eucl.}}.$

Counterexamples (Continuation)

Consider $\left(\mathbb{R}^2, e^{u_i}g_{Eucl}\right)$, where

$$u_i := e^{-ir^2} \sin\left(-\frac{i}{2}r^2\right) \quad (i = 1, 2, \cdots).$$

Then,

• g_i complete smooth $(i = 1, 2, \cdots),$

•
$$g_i \xrightarrow{C^1} g_{Eucl.}$$
 on \mathbb{R}^n uniformly. **BUT** $g_i \xrightarrow{C^2} g_{Eucl.}$,

•
$$\int_{\mathbb{R}^2} R(g_i) \, d\mathrm{vol}_{g_i} = \frac{128\pi}{25} > 0 = \int_{\mathbb{R}^2} R(g_{Eucl.}) \, d\mathrm{vol}_{g_{Eucl.}}.$$

<u>Note</u>: All metrics g_i in the above examples have sign-changing scalar curvatures, i.e., for each i, there are points $x_i, y_i \in M$ s.t. $R(g_i)(x_i) < 0 < R(g_i)(y_i)$.

~

Further Questions

Llarull's Sphere Rigidity Theorem (1998 [Ll])

 (M^n,g) : a closed spin Riemannian mfd. If $f:(M,g) \to (S^n,g_{\text{std}})$ is a dist. decreasing map of non-zero degree and if $R(g) \ge n(n-1)$, then f must be a Riemannian isometry.

Lee–Tam (2022 [LT]) (A weak top. ver. of Llarull's thm)

 M^n : a closed spin mfd and $g_0 \in C^0$ -met. on M with $R(g_0) \ge n(n-1)$ in the "Gromov sense". Suppose there is a 1-Lip. conti. map $f: (M, d_{g_0}) \to (S^n, d_{std})$ with non-zero degree, then f is a dist. isometry.

- <u>Recall</u>: For a C^0 -met. g and a conti. fct. κ , we say " $R(g) \ge \kappa$ <u>in the Gromov sense</u>" if $\exists C^2$ -Riem. met's (g_i) s.t. $R(g_i) \ge \kappa$ and $g_i \xrightarrow{C^0} g$.
- A stability version of Llarull's theorem (Allen-Bryden-Kazaras [ABK]).

For example, the following is known.

Green (1963 [Gr])

Let (M^n, g) be a closed Riem. mfd w/ $(\operatorname{Vol}(M, g))^{-1} \int_M R(g) \operatorname{dvol}_g$ is at least n(n-1). Then the conjugate radius $\operatorname{conj}(M, g)$ of (M, g) is $\leq \pi$. If "=", then (M, g) has $\sec \equiv 1$.

Very Rough Question

Does a weaker topology version of this hold? (This question, of course, also includes what the appropriate statement is.)

(Shi–Tam, [ST] Corollary 4.11)

Let (M^n, g) be a compact manifold s.t. M is the topological torus and g is smooth away from some compact set $\Sigma \subset M$ with codimension at least 2. Here, "codimension at least 2" means that $\operatorname{Vol}(\Sigma_{\varepsilon}, g) = O(\varepsilon^2)$, where $\Sigma_{\varepsilon} := \{x \in M \mid d_g(x, \Sigma)\}$. Moreover, assume $g \in W^{1,p}_{\operatorname{loc}}(M)$ for some p > n. Suppose $R(g) \ge 0$ in $M \setminus \Sigma$, then g must be flat.

(Jiang–Sheng–Zhang, [JSZ] Lemma A.1)

Let M^n be a smooth manifold and $g \in L^{\infty} \cap W^{1,p}_{\text{loc}}(M)$ $(n \leq p \leq \infty)$ a metric on M. Let Σ be a closed subset of M. Assume that $g \in C^{\infty}(M \setminus \Sigma)$ (or $g \in C^2(M \setminus \Sigma)$). Suppose $\mathcal{H}^{n-\frac{p}{p-1}}(\Sigma) < +\infty$ if $n , <math>\mathcal{H}^{n-1}(\Sigma) = 0$ if $p = \infty$, and $R(g) \geq \kappa$ on $M \setminus \Sigma$. Here, κ is a constant $\kappa \in \mathbb{R}$. Then, $R(g) \geq \kappa$ on M in the distributional sense.

<u>Q.</u> How do we know that a metric g is of $R(g) \ge \kappa$ in the distributional sense in general?

(Lee–LeFloch, [LL] Proposition 5.1)

Let M_i (i = 1, 2) be smooth *n*-manifolds with boundaries, carrying C^2 (up to boundaries) merics g_i (i = 1, 2) respectively. Assume $\exists \Phi : (\partial M_1, g_1) \rightarrow (\partial M_2, g_2)$ an isometry. Let $(M, g := g_1 \sqcup g_2)$ be tha manifold obtained by gluing these along Φ . Let Σ be athe identification of these boundaries in M. Let H_i (i = 1, 2) be the (scalar) mean curvatures computed w.r.t. g_i (i = 1, 2) respectively. (Locally, for a Fermi coordinates $(x_0, x_1, \cdots, x_{n-1})$ where $x_0 < 0$ corresponds to M_1 , $H_1 = g_1 (\nabla_{\partial_i} \partial_i, -\partial_0)$ and $H_2 = g_2 (\nabla_{\partial_i} \partial_i, \partial_0)$.) Assume that $R(g_1)$, $R(g_2) \ge \kappa$, and that at each point Σ , $H_1 \ge H_2$. Then, $R(g) \ge \kappa$ on M in the distributional sense.

(cf. P. Miao, Positive mass theorem on manifolds admitting corners along a hypersurface, Adv. Theor. Math. Phys. **6** (2002), 1163–1182.) <u>NOTE</u>: Conversely, if there exists a point $p \in \Sigma$ at which $H_1(p) < H_2(p)$, then we can show that $R(g) \nleq \kappa$ in the distributional sense.

- Burkhardt-Guim [BG] suggested a sequence of metrics such as the one in the definition of Gromov can be taken along a Ricci flow. Roughly speaking, this is based on the fact that Ricci flows preserve the minimum of the scalar curvatures.
- Jiang–Sheng–Zhang [JSZ] proved that such property is also true for every $W^{1,p}$ $(p > \dim)$ metric, and thereby proved that $R(g) \ge \kappa$ in the distributional sense $\Rightarrow R(g) \ge \kappa$ in the sense of [G](\Leftrightarrow [BG]).
- BUT, such a Ricci flow g(t) is smooth for t > 0. Therefore, it CANNOT be used to construct a NONTRIVIAL example of the new definition.

About the new definition

- For example, in the above situation of Lee–LeFloch (or Miao), it is conceivable to use a Ricci flow *with boundary*. However, some convexities of the boundary are required to obtain the above scal-preservation-property. (i.e., Such converxities are necessary to apply a maximum principle.)
- Unfortunately, as far as I know, such convexities are stronger than the Bartnik's boundary condition (i.e., the condition in the above statement of Lee–LeFloch).
- Hence, at least on a torus, this method cannot be used because there is no psc metric on the torus. (i.e., If one can construct a sequence of psc C^2 -metric on $[0,1] \times \mathbb{T}^{n-1}$ with Bartnik's boundary conditions, then from the result of Miao, one can also construct a psc metric on the whole torus \mathbb{T}^n by gluing them. However, such a metric cannot exist from the resolution of Geroch's conjecture.)

About the new definition

- RF on mfds with boundary (related literatures)
 - T.-K. A. Chow, T.-K.A.Chow, Ricci flow on manifolds with boundary with arbitrary initial metric, J. Reine Angew. Math. (Crelles Journal), 2022 (2022), 159–216.
 - ► J. C. Cortissoz, On the Ricci flow in rotationally symmetric manifolds with boundary, Dissertation (Cornell University), 2004.
 - ► J. C. Cortissoz, The Ricci flow on the two ball with a rotationally symmetric metric, arXiv:0509128v2 (2007).
 - ▶ J. C. Cortissoz, Three-manifolds of positive Ricci curvature and convex weakly umbilic boundary, arXiv:0704.2081 (2007).
 - ► J. C. Cortissoz and A. Murcia, The Ricci flow on surfaces with boundary, arXiv:1209.2386 (2012).
 - J. C. Cortssoz and J. J. Villamarín, Singular Ricci Flows on surfaces with boundary and positive scalar curvature, arXiv:2310.20555 (2023).
 - ▶ P. Gianniotis, The Ricci flow on manifolds with boundary, J. Differential Geom. **104** (2016), 291–324.
 - ► A. Pulemotov, Quasilinear parabolic equations and the Ricci flow on manifolds with boundary, J. Reine Angew. Math. **683** (2013), 97–118.

S. Hamanaka (Mitsubishi Electric Corp./OCAMI)

全スカラー曲率の極限定理

About the new definition

<u>Q.</u>: $\exists PSC \text{ metrics on a torus with prescribed singular set of non-integer dim.?$

- PSC metrics with prescribed singularities on \mathbb{R}^n or \mathbb{S}^n (related literatures)
 - T. Ju and J. Viaclovsky, Conformally prescribed scalar curvature on orbifolds, Commun. Math. Phys. 398 (2023), 877–923.
 - ▶ R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Differential Geom. 44 (1996), 331–370.
 - R. Mazzeo and F. Pacard, Constant scalar curvature metrics with isolated singularities, Duke Math. J. 99 (1999), 353–418.
 - ▶ F. Pacard, Solutions with high dimensional singular set, to a conformally invariant elliptic equation in ℝ⁴ and ℝ⁶, Commun. Math. Phys. **159** (1994), 423–432.
 - R. Schoen and S.-T. Yau, Conformally flat manifolds, Kleinian groups and scalar curvature, Invent Math. 92 (1988), 47–71.
 - J. Viaclovsky, Monopole metrics and the orbifold Yamabe problem, Ann. Inst. Fourier 60 (2010), 2503–2543.