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Various IR issues
IR divergence coming from k-integral 
Secular growth in time ∝(Ht)n

Adiabatic perturbation,
which can be locally absorbed by the choice of time slicing. 

Isocurvature perturbation
≈ field theory on a fixed curved background

Tensor perturbation
Background trajectory

in field space
isocurvature
perturbation

adiabatic 
perturbation



potential

Summing up only long wavelength modes beyond the Horizon scale

distribution
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m2⇒0
Large vacuum fluctuation

Subtle issue arises in the small mass limit.

If the field fluctuation is too large, it 
is easy to imagine that  a naïve 
perturbative analysis will break 
down once interaction is turned on. 

De Sitter inv. vac. state does not exist in the massless limit.
Allen & Folacci(1987)
Kirsten & Garriga(1993)

Isocurvature perturbation



Stochastic interpretation

∫=
aH i

kekd
0

3 kxφφ

Let’s consider local average of φ :

Equation of motion for
φ : ( ) fV

dt
dH

dt
d

+′−=+ φφφ 2
2

2

3

More and more short wavelength modes 
participate in φ as time goes on.

Newly participating modes 
act as random fluctuation

32 kHkk ≈−φφ

( ) ( ) ( )ttHtftf ′−≈′ δ

In the case of massless λφ4 : 〈φ 2〉 → 
λ

2H

Namely, in the end, thermal 
equilibrium is realized : V ≈ T 4≈ H 4

(Starobinsky & Yokoyama (1994))



Wave function of the universe
~parallel universes

• Distant universe is quite different from ours.

• Each small region in the above picture 
gives one representation of many parallel universes. 

• However: wave function of the universe
= “a superposition of all the possible parallel universes”

• Do “simple expectation values give really observables for us?” 

Our observable 
universe

must be so to keep translational invariance of the wave fn. of the universe

No!



§IR divergence in single field inflation

( ) ( ) ( ) ( )∫ ≈≈ min
3 /log kaHkPkdyy ζζ

Factor coming from this loop: 

scale invariant spectrum 

31 k∝
curvature perturbation in 

co-moving gauge. - no typical mass scale 

0=δφ Transverse 
traceless

( )ijij he exp22 ζργ +=

Setup: 4D Einstein gravity + minimally coupled scalar field
Single field case is special because broadening of averaged field 
can be absorbed by an appropriate choice of the time coordinate.

But naively we still have IR problem. 



Gauge issue in single field inflation

– In conventional cosmological gauge invariant 
perturbation theory, gauge is not completely fixed.

Yuko Urakawa and T.T., PTP122: 779 arXiv:0902.3209

Time slicing can be uniquely specified: δφ =0    OK!

but spatial coordinates are not.
j

ji
j
j hh ,0 ==

ijjiijgh ,, ξξδ +=
Residual gauge:

Elliptic-type differential     
equation for ξ i.

Not unique locally!

 To solve the equation for ξ i, by 
imposing boundary condition at 
infinity, we need information about 
un-observable region.

=∆ iξ

observable 
region time

direction



Complete gauge fixing vs.
Genuine gauge-invariant quantities

• Local gauge conditions. 
=∆ iξ Imposing boundary 

conditions on the boundary 
of the observable region

But unsatisfactory?
The results depend on 
the choice of boundary 

conditions.
Translation invariance of 

the initial state is lost.

 Genuine coordinate-independent quantities. 

No influence from outside
Complete gauge fixing☺

Correlation functions for 3-d scalar curvature on φ =constant slice. 
〈R(x1) R(x2)〉 Coordinates do not have gauge invariant meaning.

x origin

x(XA, λ=1) =XA + δ xA
x

Specify the position by solving geodesic eq. 022 =λdxD i

ii XdDx =
=0λ

λwith initial condition 

XA

gR(XA) := R(x(XA, λ=1)) = R(XA) +δ xA∇ R(XA) + …
〈gR(X1) gR(X2)〉 should be truly coordinate independent.

(Giddings & Sloth 1005.1056)
(Byrnes et al. 1005.33307)Use of geodesic coordinates:



Extra requirement for IR regularity

( ) ( ) ( ) ( ) ( ) ( )1
21

1
212

21 22 xxxxxx xx III
gg eeRR ζζζ ρρ ∂⋅+∆∆×∂⋅+∆∆ −−−− LL

If we compute two point correlation to one-loop order, we obtain 

IR divergent factor
∋

( )
k

i
kkk veDvek kφρ =− −− 2122 L

We can eliminate such IR singular terms by choosing the mode 
function to satisfy

with L-1 being the formal  inverse of the linearised EOM    
( ) ∆−∂++∂= − ρρε 2

2
2 3 ett L

where
( ) ( )kk φφ ii

k ek
kd

dekD 2/32/3

log
−−≡

ζΙ ≡ ∫ d 3k (eikx vk(t) ak + h.c.), 
and 



What is the physical meaning of these conditions?

2222 xdedtds ρ+−=
Background gauge: 

[ ] [ ]ζζ int0 HHH +=
•Quadratic part in ζ and s is identical to s = 0 case. 
•Interaction Hamiltonian is obtained just by replacing 

the argument ζ with ζ − s.

kkkk vDvek =− −− ρ2122 L
In addition to considering gR, we need additional conditions

Physical meaning of IR regularity condition

and its higher order extension. 

22222 ~~ xdedtsd s−+−= ρ
xx se=~

[ ] [ ]sHHH −+= ζζ ~~~
int0

( ) ( )xx ζζ =~~

~

~

Therefore, one can use 
1) common mode functions for ζΙ and ζΙ

~

[ ]II ζδζζζ += [ ]sII −+= ζδζζζ ~~~

ζΙ ≡ ∫ d 3k (eikx vk(t) ak + h.c.)            ζΙ ≡ ∫ d 3k (eikx vk(t) ak + h.c.) ~ ~

2) common iteration scheme. 



However, the Euclidean vacuum state (defined by the regularity η0

→±i ∞ ) satisfies this condition. 

It looks quite non-trivial to find consistent IR regular states.

kkkk vDvek =− −− ρ2122 L

We may require
( ) ( ) ( ) ( ) ( ) ( )0~~~~~~~0~00 2121 nn xxxxxx ζζζζζζ  =

the previous condition for the absence of IR divergence

( ) ( )kk φφ ii
k ek

kd
dekD 2/32/3

log
−−≡

“Wave function must be homogeneous in the 
direction of background scale transformation”



However, after fixing the gauge imposing local gauge conditions, we 
are left with finite residual gauge transformation. 

Nambu-Goldstone’s theorem:
When global symmetry is spontaneously broken, a 

massless degree of freedom appears. 

Gauge symmetry (functional d.o.f.)
≠ Global symmetry (finite parameters)

The reduced Lagrangian after gauge fixing still has the 
symmetry under such residual gauge transformations, 
which can be understood as global gauge transformation. 

= “Large gauge transformation”

0, =j
jih

Global dilatation transformation is one of such residual gauge dof.  
xexx s=′→



Physics should be invariant under the action of dilatation

( )
( )

31 ( . .)
2 s sQ d x h cα

ζ α
α

ζ π ϕ π = ∆ + ∆ + 
 

∑∫
( ) ( )( ) ( )ζζζζ xx ∂⋅+−≈+−=∆ − 1,, sxtsxets s

s

( ) ( ) ( ) ( ) ( ) ( ), ,s
ss t e x t x sα α α αϕ ϕ ϕ ϕ−∆ = − ≈ − ⋅∂ xx

, 0Q Hζ  = 

0=δφ Transverse 
traceless

( )ijij he exp22 ζργ +=

--- dilatation charge conservation

14



Averaged field:  
0Qζ Ψ =

( )L dζ ζ−= ∫ x x3 3

ccc ζζζζ =( ) c
cccd

ζ
ζζψζ Ψ=Ψ ∫

eigenstate  

Real wave-function

--- ☆

☆⇒
( ) ( )∫ 








Ψ








−+Ψ−= cc c

ccc
c

c
c

d
diQ

d
dd

ζζζ ζ
ζζψζ

ζ
ζψζ0

c
c

c

d
diQ ζ
ζ

ζζ =

⇒ ( ) 0=c
cd

d ζψ
ζ

cc cd
diQ

ζζζ ζ
Ψ=Ψ

---(1)

---(2)

What does this condition imply?

Flatness of wave fn. in the ζ direction

Effect of the change of ζ to other modes 
= Action of large gauge transformation
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We also request the invariance of the quantum state 

-

-



( )
( )

( )[ ]
3 3

3:
2 2

W c
s

L dQ Wζ ζ π
π ′

′
′= − ∆ +∫ k

kk k k 

( )
( )

( ) ( )
3

3:
2
dt W tζ ζ

π
′

′
′= −∫

k k
k k k ( ) ( )( )

3
1

1

2 c i
i

W L kθ −

=

= −∏k

( ) ,,
L L L

W
LiQζ ζ δ −  ≈ 



p k pk

Introduce discrete Fourier modes by focusing on finite size box:

( ) ( ),
S S S L

W
L SiQζ ζ ζ +  ≈ ∂ p p p kk p

cL

12 −
ckπ

Inhomogeneous extension of dilatation charge:
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We do not care about large scales beyond the  
observable region. 

( ) , 0W
LiQ Hζ  ≈ k

Extension of charge conservation:

This is not trivial, once the system is reduced by eliminating spatial 
derivative constraints. 

( )( ) 0N fδ ζ∆ − =
When the constraint equation is like

0 0kNδ = = ( )00
lim k kk

N fδ ζ=→
=

discontinuity 



L L

c c c
L Lζ ζ ζ ζ=   

k k ( ) c
L

c
L

c
L

c
LD

ζ
ζζψζ ~
~~~

Ψ=Ψ ∫
Eigenstate of soft modes 

( ) c
L

L

c
L cL

WiQ
ζζζ ζ
~~ ~ Ψ

∂
∂

=Ψ
k

k

Locality condition

Decomposition of wave function 

cc cd
diQ

ζζζ ζ
Ψ=Ψ ---(2)

Effect of the change of soft modes  to hard modes 
= Action of the inhomogeneous extension of dilatation

17

( ) ( )
3

2: L L

L

iW W
L L

c c

Q e Q
k Lζ ζ

π 
=  

 
∑ k x

k
x k

( ) ( )∑







=

L

LL

L LL
i

cc

xe
Lk

t
x

xk
k ζπζ

3
2~( ) ( )
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dx e t e tζ ζ ζ
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( ) ( )

3
2

L L
c c c
L L L

L L

iW
L c c

c c L L

iQ e
k Lζ ζ ζ ζ

π
ζ ζ

  ∂ ∂
Ψ = Ψ = Ψ  ∂ ∂ 

∑ k x

k k

x
x  

 

Locality condition= “Local action of dilatation to the short wavelength modes is 
identical to the change of embedding in the wave function of the whole universe”

( ) 0≠ΨL
WiQ kζ completely different from the dilatation symmetry.



 Dilatation invariant quantities
Correlation functions for 3-d scalar curvature on φ =constant slice. 

〈R(x1) R(x2)… R(xn) 〉
Coordinates do not have dilatation invariance.

〈(g)O 〉 should be invariant under dilatation.

Use of rescaled coordinates:

conventional consistency relations
( ) ( )( ) ( )

S LL S S S L S S LP O Oζ ζ− Ψ ∂ + Ψ = Ψ + Ψp kk p p k p k

More accurate consistency relation:

If we expand (g)OS({xi}), setting                         ,
we recover the conventional consistency relations.

( ) ( ) { }( ) ( ) ( ){ } : { } { }Lg
S i S i S i L j j S i

j
O O e O Oζ ζ= = + ⋅∇∑x x x x x



{ }( ) ( ) ( ) { }( ) ( ) ( ){ } { }g g
L S i L S if O f Oζ ζ=x x 

{ }( ) LLf ζ ζ= k
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( )W
L L SQ Q Qζ = +k

long wavelength part

Below, we suppress other isocurvature modes, ϕ(a) , for simplicity.

Locality condition          Consistency relations
( ) ( )( ) ( )

( ),
, , ac

L L

a a ac c c
L L L L L LD D

ζ ϕ
ζ ϕ ψ ζ ϕ ζ ϕΨ = Ψ∫ 

  

{ }( ) ( ) ( ) { }( ) ( ) ( )2{ } c c
L L

g gc c c c c c
L S i L L L L S Lf O D f O

ζ ζ
ζ ζ ζ ψ ζ ζ ζ= Ψ Ψ∫  

     x

(        ) ( ) ( ) ( ),c cc c
L LL L

L

g gc c c W c
L S L L S L Lc O O iQζζ ζζ ζ

ζ ζ ζ ζ
ζ
∂  Ψ Ψ = Ψ Ψ ∂   

   



k

k

≈0
(        ) If                                                                        holds for arbitrary f and (g)OS{ }( ) ( ) ( ) { }( ) ( ) ( ){ } { }g gc c

L S i L S if O f Oζ ζ= x x

( )di 0c c
L L

L

c c
L S Lc O

ζ ζ
ζ ζ

ζ
∂

Ψ Ψ =
∂  

 



k

-★

∵ Substitute                          to obtain  ( )
2

L

L

c

c

b
f

δ ζ

ψ ζ

∂ −
=

∂





k

k
( ) ( )di 0c cL L L

c c c c
L L S LD b O

ζ ζ
ζ δ ζ ζ ζ′ − Ψ Ψ =∫  

   

k

★ˆ
c c
L L

L

Sc iQ
ζ ζζ

∂
Ψ ≡ Ψ

∂  



k Unknown Hermitian op.
( )0 ,gc c

L S L SO i Qζ ζ = ∆ 
 

short wavelength part

( ) ( )ˆ, 0c c
L L

gc c
L S L S LO iQ iQ

ζ ζ
ζ ζ Ψ + Ψ =  

 

If ∆QS≠λI, . , 0S SO i Q∃ ∆ ≠ 
Then one can show                                              , 
which is a contradiction.  So, ∆QS=0.                             

ˆ :S S SiQ iQ i Q= − = ∆
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( ) , 0gc c
L S L SO i Qζ ζ ∆ ≠ 
 



( ) ( ), 0gW
L SiQ Oζ

  = x
as long as (g)O is an localized operator

IR divergent factor is 
completely factorized.
Notice that IR wave 
function is infinitely broad. 

“Wave function must be homogeneous in the 
direction of background scale transformation”

( ) c
L

L

c
L cL

WiQ
ζζζ ζ
~~ ~ Ψ

∂
∂

=Ψ
k

k

Genuine gauge invariant operator: (g)O
( ), 0giQ Oζ

  = 

( )
( ) ( ) ( ), 0c cc c

L LL L

g gW
S L Sc

L

O iQ Oζζ ζζ ζζ
∂  Ψ Ψ = − Ψ Ψ = ∂

x
x   



( ) ( ) ( )2
cc
LL

g gc c
S L L SO D O

ζζ
ζ ψ ζΨ Ψ = Ψ Ψ∫ 

 

( ) ( )2
00 cc

LL

g c c
S L LO D

ζζ
ζ ψ ζ

==
= Ψ Ψ ∫

 

which was nothing but the locality conditions.



Dilatation 
invariance , 0Q Hζ  = 

Locality
condition

Assumption

( ) ( ) c
L

c
L

L
c
L

L
WiQ

ζζζ ζ
~~ Ψ

∂
∂

=Ψ
x

x

Consistency
relation

for arbitrary dilatation invariant short mode excitations.

{ }( ) ( ) ( ) { }( ) ( ) ( ){ } { }g g
L S i L S if O f Oζ ζ= x x

Existence of
Constant ζ

solution

If         is a solution,Ψ

c c
L L sζ ζ→ +

Ψ
 

is also a solution.

IR 
regularity

IR divergence and/or 
secular growth owing to the 

growth of the variance of 
Is factorized.Lζ

Ex. of DI violation: Solid inflation

Ex. of LC violation: Sudden turn-on of interaction

for one particular quantum state

21

DI of 
effective 

action
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