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Abstract We solve the modified Kazdan–Warner problem of finding metrics with
prescribed scalar curvature and unit total volume.
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1 Introduction

Kazdan and Warner [4] completely solved the prescribed scalar curvature problem on
closed manifolds. In particular, they proved the following theorem.

Theorem 1 ([4, Theorem C]) Let X be a closed manifold of dimension ≥ 3. Every
function on X is the scalar curvature of some metric if and only if X admits a metric
of positive scalar curvature.

Kobayashi [6] considered the modified problem of finding metrics with prescribed
scalar curvature and total volume 1. Before describing his result in detail, we recall
the Yamabe invariant. Let X be a closed manifold of dim X = m ≥ 3 and M(X) the
space of all smooth Riemannian metrics on X . We denote by Rg or R(g) the scalar
curvature, by dμg the volume form, and by vol(X, g) the volume for each metric
g ∈ M(X). Then the normalised Einstein-Hilbert functional EX : M(X) → R is
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defined as

EX : g �→
∫

X Rg dμg

(vol(X, g))
m−2

m

.

The classical Yamabe problem is to find a metric ǧ in a given conformal class C such
that the normalised Einstein-Hilbert functional attains its minimum on C : EX (ǧ) =
infg∈C EX (g) =: μ(X, C). This minimising metric ǧ is called a Yamabe metric,
and the conformal invariant μ(X, C) the Yamabe constant. Each Yamabe metric has
constant scalar curvature. We define the topological invariant μ(X) by the supremum
of μ(X, C) of all the conformal classes C on X :

μ(X) := sup
C

μ(X, C) = sup
C

inf
g

∫
X Rg dμg

(vol(X, g))
m−2

m

We call this the Yamabe invariant of X ; it is also referred to as the σ -invariant. See [6]
and [10].

A conformal class C contains a metric g ∈ C with positive scalar curvature if and
only if μ(X, C) > 0, so the Yamabe invariant μ(X) is positive if and only if X admits
a metric of positive scalar curvature. We can therefore rephrase the positive-scalar-
curvature assumption in Theorem 1 as the Yamabe invariant of X is positive.

Now we return to the modified prescribed scalar curvature problem for metrics with
total volume 1. In the case where the Yamabe invariant of a manifold is not positive,
Kobayashi [6, Theorem 1] solved the modified problem: If X is a closed manifold of
dimension ≥ 3 with μ(X) ≤ 0, then a function f is the scalar curvature of some metric
with total volume 1 if and only if f < μ(X) somewhere, unless μ(X) = μ(X, C)

for some conformal class C , in which case the constant function f ≡ μ(X) is also
attained. In the positive Yamabe invariant case, he obtained the following result. See [7]
for the case of even dimensional spheres.

Theorem 2 ([6, Theorem 3]) Let X be a closed manifold of dimension ≥ 3, and
assume that μ(X) > 0. Any function that is not a constant larger than or equal to
μ(X) is the scalar curvature of some metric with total volume 1.

The goal of this paper is to establish the remaining cases.

Theorem 3 Let X be a closed manifold of dimension ≥ 3, and assume that μ(X) > 0.
Any constant larger than or equal to μ(X) is the scalar curvature of some metric with
total volume 1.

Corollory 1 Every function on a closed manifold of dimension ≥ 3 with positive
Yamabe invariant is the scalar curvature of some metric with total volume 1.

We have thus completely resolved the modified Kazdan-Warner problem of finding
metrics with prescribed scalar curvature and total volume 1.
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2 Proof

2.1 Outline

We first outline the proof. Here and subsequently, X denotes a closed manifold of
dim X = m ≥ 3 with positive Yamabe invariant. We emphasise that we can not directly
apply the Yamabe problem because every Yamabe metric has constant scalar curvature
less than or equal to that of the standard sphere when the volume is normalised [1].
Instead, we glue an appropriately chosen number of copies of a suitable constant
positive scalar curvature metric on the sphere Sm to a suitable constant positive scalar
curvature metric of total volume 1 on X , to obtain a metric on X with constant positive
scalar curvature; we then normalise the volume. The main difficulty in carrying out
this construction is that the linearization of the scalar curvature map at a metric of
constant positive scalar curvature may not be surjective. We make this point more
precise in the following subsections.

2.2 V -static metrics

We introduce the notion of V -static metrics following Corvino et al. [3]. Let us denote
by R : M(X) → C∞(X) the scalar curvature map and by V : M(X) → (0,∞) the
volume map. The linearization Lg of R at a metric g is

Lg(h) = �g(trgh) + divgdivgh − h · Ric(g),

where h is a symmetric (0, 2)-tensor on X , and its formal L2-adjoint is

L∗
g( f ) = (�g f )g + ∇2

g f − f Ric(g).

Our convention is that �g f = −trg(∇2
g f ). The linearization of V is DVg(h) =

1
2

∫
X trgh dμg . Let �(g) := (R(g), V (g)). We denote by Sg its linearization

D�g(h) = (Lg(h), DVg(h)). Its formal L2-adjoint is then S∗
g ( f, a) = L∗

g f + a
2 g.

We say that a smooth metric g on X is V-static if the equation

S∗
g( f, a) = 0

admits a non-trivial solution ( f, a) ∈ C∞(X) × R. Note that the V -static condition
for a metric is invariant under constant rescaling of the metric.

We have the following characterisation of non-V -static metrics [3, Example 1.3].

Lemma 1 Let X be a closed manifold of dim X = m, and g be a metric with positive
constant scalar curvature. If g is not Einstein and does not admit Rg/(m − 1) in the
positive spectrum of the Laplacian �g, then it is not V -static.
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Proof Let ( f, a) ∈ C∞(X) × R be a solution of S∗
g( f, a) = 0. By taking trace of the

equation and rearranging it, we obtain

�g

(

f − ma

2Rg

)

= Rg

m − 1

(

f − ma

2Rg

)

.

Recall that Rg is a positive constant by assumption. Since �g does not admit Rg/(m −
1) in the positive spectrum, we have f −ma/2Rg = 0. Then, the equation S∗

g( f, a) = 0
again yields that maRicg = ag. Since g is not Einstein, it implies that a = 0. We have
thus shown that ( f, a) = (0, 0) and g is not V -static. ��

2.3 Non-V -static metrics with small positive scalar curvature

We construct a family of small constant positive scalar curvature metrics with total
volume 1, each of which is not V -static. In summary, we will show the existence of
non-Ricci-flat scalar-flat metrics on a manifold with positive Yamabe invariant, and
consider an appropriate deformation around them (cf. [2]).

Koiso [8] has established a local Yamabe theorem. We will use the following version
of his theorem in the proof of Lemma 2 for an explicitly constructed path g̃t of smooth
metrics, which turns out to be “smooth” in the sense of ILH-manifolds and satisfies
the assumption of Theorem 4. Note that, if a path of smooth metrics is smooth in the
sense of ILH-manifolds, then the scalar curvature, the Ricci curvature, and the first
positive eigenvalue of the Laplacian vary continously along the path.

Theorem 4 ([8, Corollary 2.9]) Let X be a closed manifold and M(X) denote the
ILH-manifold of all smooth Riemannian metrics on X. Let g̃t be a smooth path in
M(X). Assume that g̃0 is conformal to a metric g0 with zero scalar curvature. Then,
for |t | 
 1, there exists a smooth path gt in M(X) such that each gt is conformal to
g̃t , and has constant scalar curvature and total volume 1.

We now construct the desired family of small constant positive scalar curvature
metrics with total volume 1, each of which is not V -static.

Lemma 2 Let X be a closed manifold of dimension ≥ 3 with μ(X) > 0. There exists
a constant ρ = ρ(X) > 0 with the following property. For any r ∈ (0, ρ], there exists
a metric g on X with total volume 1 that is not V-static and has the scalar curvature
Rg = r .

Proof We will construct a path gt of non-V -static constant-scalar-curvature unit-total-
volume metrics such that R(g0) = 0 and R(gt ) > 0 for t > 0.

Since X has positive Yamabe invariant, there exists a metric g̃+1 with positive
scalar curvature. On the other hand, there always exists a metric g̃−1 with negative
scalar curvature. Let g̃t = t+1

2 g̃+1 + −t+1
2 g̃−1 for −1 ≤ t ≤ 1. The path g̃t in

M(X) is smooth in the sense of ILH-manifolds. Then, since the first eigenvalue of
the conformal Laplacian depends continuously on t and those of g̃−1 and g̃+1 are
negative and positive respectively, we can find g̃t0 for some t0 ∈ (−1, 1) with the
first eigenvalue of the conformal Laplacian equal to zero, so that g̃t0 is conformal to a
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metric with zero scalar curvature [5, Theorem 3.9]. We have thus shown that the path
g̃t and the metric g̃t0 satisfy the assumption of Theorem 4.

We now apply Theorem 4 to the path g̃t and the metric g̃t0 to obtain a new smooth
path gt of constant scalar curvature smooth metrics with total volume 1 that satisfies
R(g0) = 0 and R(gt ) > 0 for t > 0; furthermore, we can assume gt does not admit
R(gt )/(m − 1) in the positive spectrum of the Laplacian �gt for t ≥ 0 because the
first positive eigenvalue of the Laplacian and the scalar curvature vary continuously
along the path.

If g0 is not Einstein, then gt is not Einstein for any 0 < t 
 1. Consequently, we
have shown, by Lemma 1, that there exists a constant τ > 0 such that gt is not V -static
for any t ∈ (0, τ ]. Set ρ := R(gτ ).

Assume g0 is Einstein. The smooth diffeomorphism group of X acts on the space
of all smooth Riemannian metrics with constant scalar curvature and total volume
1; its slice around g0 is denoted by �g0 . The construction of g0 guarantees that the
slice �g0 contains both positive and negative constant scalar curvature metrics. The
slice �g0 itself is infinite dimensional, but Koiso [9, Theorem 3.1] has shown that
there exists a finite dimensional real analytic submanifold of �g0 that contains all
the Einstein metrics in �g0 . We can find, therefore, a non-Einstein negative-scalar-
curvature smooth metric g−, a non-Einstein positive-scalar-curvature smooth metric
g+ in �g0 , and a smooth path of non-Einstein smooth metrics in �g0 from g− to
g+ Since the scalar curvature varies continuously along the path, there exists a non-
Einstein zero-scalar-curvature smooth metric on this path. Now the rest of the proof
runs as above. ��
Corollory 2 There exists a non-Ricci-flat scalar-flat metric on any closed manifold
of dimension ≥ 3 with positive Yamabe invariant.

2.4 Gluing

Corvino et al. [3] have established a fundamental gluing result for constant scalar
curvature metrics. We will use the following “non-local” version of their theorem.

Theorem 5 ([3, Theorem 1.6]) Let (M1, g1) and (M2, g2) be two closed m-
dimensional Riemannian manifolds such that Rg1 = Rg2 = m(m − 1). Assume that
both g1 and g2 are not V -static. Then, there exists a smooth metric g on the connected
sum M1#M2 such that Rg = m(m − 1) and vol(M, g) = vol(M1, g1) + vol(M2, g2).

Rescaling metrics, we obtain the following corollary.

Corollory 3 Let (M1, g1) and (M2, g2) be two closed m-dimensional Riemannian
manifolds with constant positive scalar curvature such that vol(M1, g1) = vol(M2, g2)

= 1. Assume that both g1 and g2 are not V -static. Then, there exists a con-
stant positive scalar curvature metric g on the connected sum M1#M2 such that
Rm/2

g = Rm/2
g1 + Rm/2

g2 and vol(M, g) = 1.

Now we prove our main Theorem 3.
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Proof of Theorem 3 Define r1 := min{ρ(X), ρ(Sm)}, where ρ is introduced in
Lemma 2. Let r > 0 be given. We express rm/2 = rm/2

0 + (k2/mr1)
m/2 in terms

of k ∈ {0, 1, 2, . . .} and r0 ∈ (0, r1].
By Lemma 2, there exist a metric gr0 on X and a metric gr1 on Sm such that

R(gr0) = r0, R(gr1) = r1, vol(X, gr0) = vol(Sm, gr1) = 1, and both metrics are not
V -static. In case k > 0, let (M2, g2) be the k-disjoint union (Sm, k−2/m gr1) � · · · �
(Sm, k−2/m gr1). Note that R(g2) = k2/mr1, vol(M2, g2) = 1, and g2 is not V -static.
We now apply Corollary 3 for (M1, g1) = (X, gr0) and (M2, g2) to obtain a metric g

on X = X#Sm# . . . #Sm such that Rm/2
g = Rm/2

g1 + Rm/2
g2 = rm/2 and vol(X, g) = 1.

We have therefore constructed a metric g on X with Rg = r and vol(X, g) = 1 for
any given r > 0. ��
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