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Abstract
We show a mathematical relation between the mod-two Atiyah–Patodi–Singer (APS)
index of a massless Dirac operator and massive domain-wall fermion determinant.
The domain-wall fermion is given on a closed manifold, which is extended from the
original manifold with boundary, where we instead give a fermionmass term changing
its sign at the location of the original boundary. This new setup does not need the APS
boundary condition, which is non-local. Amathematical proof of equivalence between
the two different formulations is given by two different evaluations of the same index of
a Dirac operator on a higher-dimensional manifold. The domain-wall fermion allows
us to separate the edge and bulk mode contributions in a natural but not in a gauge
invariant way, which offers a straightforward description of the global anomaly inflow.
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1 Introduction

Anomaly [1, 2] has played an important role in studying the low-energy dynamics of
gauge theories, since it is always caused by (nearly) massless fields that describes the
infra-red physics. As the anomaly is related to topology and thus invariant under the
renormalization group flow, we can obtain non-trivial consequences which cannot be
analyzed by perturbation. For example, ’t Hooft [3] showed that the breaking pattern
of the chiral symmetry in QCD is quite limited. Also, from anomaly in electro-weak
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interaction of quarks, we can determine the coefficient of the Wess–Zumino–Witten
term [4, 5] in pion effective Lagrangian, which agrees well with experiments.

If a theory has anomaly in its gauge invariance, the theory is considered to be
inconsistent, and cannot describe physics. However, the inconsistency may be cured
by extending the theory to higher dimensions. For example, the anomalous four-
dimensional chiral fermion can be embedded to five-dimensional vector-like gauge
theory. In such cases, the anomaly is identified as the gauge current absorbed into
the extra dimensions [6, 7]. This is called the anomaly inflow [8], which is recently
widely studied not only in particle physics [9–15] but also in condensedmatter physics
[16–24].

Let us call the massless fermion on the original (even-dimensional) manifold the
edge mode, and that living in the extra dimension the bulk mode, which is massive or
gapped. The anomaly inflow caused by the edge mode is canceled by the bulk mode.
This phenomenon matches well with the so-called bulk-edge correspondence [25, 26]
of topological insulators. When the bulk fermion has anomaly on the boundary, the
edge mode having the same anomaly with opposite sign must appear. This realization
of the bulk-edge correspondence is valid for interacting fermions.

In [8], the notion of the global anomaly is extended using the anomaly inflow. The
traditional argument on the global anomaly [27] is given by one-parameter family
of gauge fields which connects two gauge equivalent configurations in d dimen-
sions. One can treat this one-parameter as an extra dimension and when the extended
d + 1-dimensional theory has a non-trivial topology, the phase of the chiral fermion
determinant cannot be uniquely determined. From the anomaly inflow point of view,
this standard set-up is limited is limited spacetimes called mapping tori. In [8, 28,
29], it was claimed that the global anomaly should be extended to the case of any
d + 1-dimensional manifold. If the phase of the fermion determinant depends on the
structure of the bulkmanifold, we should regard the theory anomalous in that the phase
cannot be uniquely determined with d-dimensional information alone.

More concretely, the anomaly inflow is generalized by the η invariant of a Dirac
operator on the d + 1-dimensional manifold [30, 31], where a non-trivial boundary
condition known as the APS boundary condition [32–34] is imposed (see [35] for
a physical description). However, the appearance of the APS boundary condition
is somewhat puzzling in physics as it is non-locally imposed, and therefore, it is
unlikely to be realized in any physical fermion systems. Moreover, the APS boundary
condition allows no edge-localized mode to exist, which makes it difficult to separate
the η-invariant into bulk and edge contributions.

Yonekura and Witten [36] explained that there is no need for imposing unphysical
boundary condition on the physical fermion system. Instead, the APS boundary condi-
tion can be introduced as an intermediate state when we rotate the normal direction to
the surface to the “time” direction. Then, the unphysical properties cancel out between
bra and ket states and the physically reasonable local boundary condition is imposed
without any difficulty. But it was not fully answered why the massless Dirac operator
with unphysical properties must be introduced in the massive fermion system. Since
the spatial boundary is lost in the rotation, it is still difficult to understand the role of
the edge or bulk modes separately in the total η invariant.
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We have been investigating more physicist-friendly alternative understanding of
the anomaly inflow without introducing the unphysical boundary conditions at all.
For pseudo-real fermions, the η invariant is reduced to an integer called the APS
index [32–34]. In Refs. [37–40], we succeeded in reformulating this APS index using
the domain-wall fermions [7, 42, 43]. We add an “outside” to the original boundary
and consider a closed manifold in which the two domains are separated by a wall.
Interestingly, only the half region is shared by the manifold on which the original
APS index is formulated but the same index is obtained. Although the location of
the domain-wall coincides with the boundary for the original APS, the boundary
conditions imposed on fermions are totally different.

For the mod-two version of the APS index, the issue is more difficult, because the
index cannot be expressed by any integral of local curvature functions, and no natural
way is known to separate the edge and bulk contributions. As already mentioned, the
APS boundary condition allows no edge-localized mode to exist.

In this work, we extend our formulation in [37–39] to themod-two type indexwhich
describes the sign of the real fermion determinant.Wewill show below amathematical
relation between the domain-wall fermion determinant defined on a closed manifold
to the APS index of the massless Dirac operator given on the half of the manifold with
boundary, whose location coincides with the domain-wall. In contrast to our previous
work limited to even dimensional bulk, this work can be applied to any dimensions.

The rest of the paper is organized as follows. InSect. 2,we review theglobal anomaly
originally found in [27], as well as recent development leading to the mod-two APS
index, which, however, requires an unphysical boundary condition. In Sect. 3, we sum-
marize our previous work where we achieved an alternative expression of the standard
APS index using domain-wall fermions without introducing any non-local conditions.
Then, we mathematically prove that the mod-two APS index can also be expressed
by the domain-wall fermion Dirac operator in Sect. 4 and describe how the bulk-edge
correspondence of the anomaly is embedded in the index in Sect. 5. In Sect. 6, we give
a summary and discuss possible applications to higher-order topological insulators
and lattice gauge theory.

2 Review of global anomaly

In this section, we review the global anomaly, where the mod-two index theorem plays
a key role. Starting from the Witten’s SU (2) anomaly [27], we also discuss a modern
view of the anomaly as the current inflow to the higher-dimensional bulk. In this point
of view, the anomaly can be identified as the η invariant of the massless Dirac operator
on a manifold with boundary, as it was shown in [30, 31] that the η invariant satisfies
properties required to describe the topological field theory on the manifold, which
appears as an effective action of the bulk fermions.

The mod-two APS index naturally appears as a special case of the η invariant.
However, it requires a non-local boundary condition on the fermion fields, which
cannot be directly applied to the physical fermion systems.
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2.1 Global anomaly andmod-two index

In [27], the first example of global gauge anomaly was shown, in which the sign of
a Weyl fermion path-integral in the fundamental representation of the SU (2) gauge
group cannot be determined in a gauge invariant way. The same discussion applies to
general Weyl or Majorana fermions whose Dirac operator is real and anti-symmetric.

Let us consider a real Dirac operator DX on a manifold X and assume that it has no
zero eigenvalue. The complex conjugate1 of DX is given as D∗

X = CDXC−1 with a
unitary symmetric operator C 2. Every nonzero eigenvalue of it makes a ± pair since
for DXφ = iλφ, we have DXC−1φ∗ = −iλC−1φ∗ (where λ is real). The Weyl or
Majorana fermion Lagrangian is expressed as

L = 1

2
ψTCDXψ, (1)

with a Grassmannian variable ψ . One can choose a basis so that C = 1 and DX is real
anti-symmetric operator. In this basis, the path-integral is the Pfaffian of DX , or PfDX ,
which ends up with a product of half of eigenvalues taking one from all eigenvalue
pairs. Since det DX = (PfDX )2 is real and positive, PfDX is real. This means that
there is no perturbative gauge anomaly, always appearing as a variation in the complex
phase. The sign of the PfDX is, thus, the only possible source of the anomaly, which
is essentially non-perturbative.

Let us consider two gauge equivalent configurations A and Ag smoothly connected
by a one-parameter family, say, parameterized by s: As = (1− s)A + s Ag . Here, the
configuration Ag is obtained from A by an SU (2) gauge transformation g. Since A and
Ag are gauge equivalent, exactly the same spectrum of the Dirac eigenvalues is shared.
However, some pairs of eigenvalues may be exchanged crossing zero somewhere in
0 < s < 1, which is called the spectral flow. As PfDX is determined by only half of
the eigenvalue pairs, if this spectral flow is odd, PfDX changes its sign.

Identifying the infinity in R
4 as one point, or compactifying the spacetime to S4,

the gauge transformations are classified by the homotopy group π4(SU (2)) = Z2. In
[27], it was shown that when the gauge transformation is in the non-trivial class of
π4(SU (2)), the eigenvalues must change the sign by odd times and the spectral flow
is odd. Therefore, the sign of PfDX is not determined in a gauge invariant way.

The proof was given using the mod-two Atiyah–Singer (AS) index. The one-
parameter family s given above can be treated as the fifth dimension, to which the
gauge connection As is naturally introduced. As the two points s = 0 and s = 1
are gauge equivalent, the extended spacetime we consider is equivalent to S4 × S1,
which is called a mapping torus. On this mapping torus, the Dirac operator D is still
real, and the number of zero modes mod 2 is known as the mod-two AS index. It was

1 In this work, we denote the complex conjugate by the superscript ∗ and the Hermitian conjugate by †.
2 C may contain a non-trivial operator on the gauge fields. For example, in the four-dimensional SU (2)
gauge theory with fermions in the fundamental representation, the gamma matrices act as pseudo-real
operators: γ ∗

μ = EγμE−1 with an anti-symmetric operator E = γ1γ3 (in the chiral representation). So do

the gauge fields: we have A∗ = εAε−1 with ε = σ2 (the second Pauli matrix). Then C = E ⊗ ε, which is
a unitary symmetric operator.
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proved that the mod-two AS index always agrees with the spectral flow of original
four-dimensional DX as follows. Let us introduce another one-parameter family t ,
which connects A0 at t = −∞ and A1 at t = ∞, where the t dependence is mild. The
zero modes of D satisfies

∂tΨ (t, x) = −γ t DX (t)Ψ (t, x), (2)

where γ t is the gammamatrix in the t-direction. In this adiabatic situation, the solution
is approximated by Ψ (t, x) = φ(t)ψt (x), where ψt (x) satisfies the four-dimensional
Dirac equation γ t DX (t)ψt (x) = λ(t)ψt (x), with the eigenvalue iλ(t) of DX (t) at the
time slice t . The solution φ(t) is formally given by

φ(t) = φ(0) exp

[
−

∫ t

0
dt ′λ(t ′)

]
, (3)

but this is normalizable only when λ(t) > 0 for t → ∞ and λ(t) < 0 for t → −∞.
Therefore, the number of zeromodes of i D always agreeswith the spectral flow of DX .
It was also shown that the index is always odd for At when the gauge transformation
g is in the non-trivial class of π4(SU (2)).

In [27], however, the direct equivalence between themod-two index and the element
of π4(SU (2)) is not shown explicitly. Let us address this issue in a simpler case with
S5. In K-theory, a USp(2n) bundle can be viewed as a quaternionic vector bundle,
which is stably classified by K Sp0. In particular, an SU (2)(� USp(2)) bundle over S5

determines a class in K Sp0(S5) � π5(BUSp(∞)) � π4(USp(∞)) � π4(SU (2)).
The mod-two AS index corresponds to an isomorphic map from K Sp0(S5) �
K Sp−5(point) � Z2 to KO−1(point) � Z2.

The standard argument of global anomaly is similar to the anomaly inflow of the
perturbative anomalies in that the extra dimension and associated Dirac operator are
introduced. However, as the extra direction introduced is limited to S1, it is difficult
to treat the original Weyl fermion as the edge localized mode of the total system. The
physical role of the bulk massive fermion is not obvious, either. In fact, in the next
subsection, the notion of global anomaly is extended to incorporate general bulk man-
ifold attached to the original spacetime. In the mathematical language, the extension
is from the mod-two AS index to the mod-two APS index3.

2.2 Global anomaly inflow (frommod-two AS tomod-two APS)

To understand the anomaly inflow, it is instructive to go back to the perturbative
anomaly. It is well known that a single Weyl fermion in a complex representation of
SU (N ) (N > 2) gauge interactions suffers from anomaly and the theory is inconsis-
tent. However, the anomaly is exactly the same as the surface term of the variation
of the Chern–Simons (CS) action and, therefore, the gauge invariance can be recov-
ered by adding a five-dimensional bulk fermion whose effective action contains the
CS action to cancel the anomaly of the Weyl fermion. In this extension, known as

3 In [41], the mod-two indices on non-compact manifolds Rd (for d = 1, 2, 3, 4) were considered.
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the Callan–Harvey mechanism [7] the original anomaly can be regarded as a current
escaping into the extra dimension, which is, in total, conserved in the five-dimensional
system.

The extended theory is still “anomalous” since the theory is no longer defined on
the original four-dimensional manifold. The theory is anomaly free when (the total
sum of) CS action is zero.

In [8], it was argued that the Callan–Harvey mechanism can be applied to the
global anomaly, as well. The anomalous n-dimensional fermion path integral can be
cured by extending the theory to (n + 1) dimensions where the total phase is given
by exp(iπη(i D)), where η(i D) is the η invariant of the Dirac operator i D, on the
extended manifold [30, 31]. Here, the η invariant of a Hermitian operator H is given
by a regularized sum of the sign of all eigenvalues λ,

η(H) =
∑
λ

sgnλ + h, (4)

where h is the number of zero modes (namely, we count the zero modes as positive
eigenvalues.). As the CS action is a perturbative part of the η invariant, the perturbative
anomaly is properly included in this anomaly inflow argument.

The η invariant is gauge invariant, and the total theory is, thus, gauge invariant.
The theory is still “anomalous,” since the theory is no more defined on the original n-
dimensional manifold X , but depends on the extended (n + 1)-dimensional bulk. The
theory is anomaly-free or consistent as an n-dimensional theory, only when the (total)
η invariant is independent of the bulk. Using the gluing property of the η invariant,
this anomaly-free condition is simply given by η = 0 (mod 2) on any closed manifold
which is constructed by gluing two (n + 1)-dimensional manifolds sharing X , the
same n-dimensional boundary.

WhenD is real, theη invariant is reduced to thenumber of zeromodes,h (Remember
that all nonzero modes have ± pairs.). Namely, this index is the mod-two APS index
on a (n + 1)-dimensional manifold with the n-dimensional boundary. The notion of
anomaly is extended in that we can put any (n + 1)-dimensional bulk, in contrast to
the traditional global anomaly limited to the mapping tori4.

As is the case with perturbative anomaly, if we can relate exp(iπη(i D)) to the
path-integral of the massive fermion, we may be able to unite the notion of anomaly as
the symmetry breaking of the n-dimensional massless edge modes, which is canceled
by the bulk massive fermions. However, this is not straightforward since the definition
of η(i D) requires a special type of boundary condition, known as the APS boundary
condition, to guarantee the Hermiticity of i D.

2.3 Non-local boundary condition

In the previous subsection, we have introduced η(i D), which describes the phase of
the fermion path-integral in (n+1) dimension in a gauge invariant way.When i D acts

4 Even in the framework of the mapping tori, a new-type of anomaly in the four-dimensional SU (2) gauge
theory was found [29].
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on a field in a real representation, the mod-two APS index appeared as a special case
of the η invariant whose nonzero eigenvalues cancel out. But we have not discussed in
detail what kind of boundary conditions should be imposed on the (n+1)-dimensional
fermions.

Before going into details, let us discuss yet another fermion species, or those in a
pseudo-real representation under Spin(n) and other symmetry group transformations.
This pseudo-real fermion is special in that it allows the mass term. Therefore, any kind
of gauge anomaly can be essentially removed by the Pauli–Villars regularization, for
example. However, if we “require” the time-reversal (T ) symmetry, which is known
to be incompatible with gauge symmetry in odd dimensions and for odd number of
Dirac fermions, the situation is exactly the same as the previous complex and real
fermion examples. The gauge invariance needs bulk fermions.

In the pseudo-real fermion case, it is more natural to consider the anomaly inflow
as the one for T symmetry, rather than gauge anomaly. Let us consider a three-
dimensional manifold X and massless Dirac fermion with the SU (N )(N > 2) gauge
interaction on it, as an example,

lim
Λ→∞ det

DX

DX + Λ
= lim

Λ→∞
∏
λ

iλ

iλ + Λ
∝ exp

[
− i

π

2
η(i DX )

]
, (5)

wherewehave employed thePauli–Villars regularization and iλdenotes the eigenvalue
of DX . The η invariant appears since the phase of the determinant is essentially given
by howmany times i and−i aremultiplied,which correspond to the number of positive
λ and negative λ, respectively. The T symmetry is broken as the T transformation flips
the sign of the mass Λ, and thus the sign of η(i DX ).

It is known that the smooth part of η(i DX ) is the Chern–Simons action, half of
which coincides the surface term of the instanton number density integrated over
a four-dimensional manifold Y , whose boundary is the original three-dimensional
manifold X . Thus we can add the bulk fermion so that its effective action becomes
this instanton number density. The total phase

exp

[
iπ

{
P − 1

2
η(i DX )

}]
= exp(iπI), (6)

where P an integral of local function of curvature5 over Y , is now guaranteed to be T
invariant, as I is an integer known as the APS index. The APS index I = n+ − n− is
defined by the number of zero modes n± with positive/negative chirality, respectively,
of the Dirac operator i D on Y . This index is again a special case of η(i D) = h =
n+ + n− = I + 2n−, where 2n− is irrelevant to the fermion determinant phase.
Note that the nonzero modes of i D make ± pairs by the chirality operator and do
not contribute. This APS index beautifully explains the bulk-edge correspondence of
the topological insulator where the T symmetry is protected by cancellation of the T
anomaly.

5 In four-dimensional flat space, it is well known that P = 1
32π2

∫
Y d4xεμνσρTrFμν Fνρ .

123



   16 Page 8 of 32 H. Fukaya et al.

Now let us go back to the boundary condition of D. For a complete set {φi } of
the operand of D, a natural choice would be γτφi |X := nμγμψi |X = ±φi |X , where
nμ is a normal vector to the surface X . This condition is local and respects rotational
symmetry of X when it exists. However, this condition spoils the anti-Hermiticity of
D by the surface contribution as

∫
Y
dn+1xϕ†

2(x)Dϕ1(x)+
∫
Y
dn+1x(Dϕ2(x))

†ϕ1(x)=
∫
X
dnxϕ†

2(x)γτϕ1(x), (7)

for general ϕ1(x), ϕ2(x) satisfying the same boundary condition.
Instead, the original work by APS [32–34] chooses a different boundary condition,

known as the APS boundary condition. Assuming a product structure in the metric
near the boundary, and denoting the Dirac operator as D = γτ (∂

τ + A), they require
the boundary modes to satisfy6

A + |A|
|A| ϕi (x)|X = 0. (8)

As A anticommutes with γτ , the surface contribution in Eq. (7) disappears to keep
the anti-Hermiticity of D. Moreover, A commutes with the chirality operator and the
index of D in terms of the chiral zero modes is well-defined. In [30, 31] a modified
version was used, but the essential properties of APS are inherited.

However, as discussed in detail in [37, 38], the APS boundary condition is unnatural
and unlikely to be realized in the materials. In particular, the boundary condition has
little relation to the physics of topological insulators. Let us examine if the edge
localized solution exp(−λτ) can exist near the boundary. If λ is an eigenvalue of A,
the Dirac equation holds. But the solution is normalizable only when λ is positive,
which is not allowed by the APS boundary condition. Namely, the APS condition
prohibits the edge-localized modes to exist. This makes it difficult to understand the
bulk-edge correspondence or anomaly inflow, in particular, in themod-twoAPS index,
as it has no intuitive separation of the bulk and edge contributions, in contrast to the T
anomaly inflow in the standard APS index, or the perturbative gauge anomaly inflow
of complex fermions. It is also unnatural to lose the rotational symmetry at the surface
due to the gauge field dependence of A. Above all, the operator |A| is non-local, which
makes the causal structure of the system doubtful.

In [36], Witten and Yonekura explained that we do not need to impose any unphys-
ical boundary condition in the fermion system but introduce the APS boundary
condition just as an intermediate “state,” rotating the normal direction to the “time.” If
the gap of the system is big enough, the overlap between the physical boundary state
and the APS state is controlled by the ground state of the system and the unphysical
features of the APS cancel out between the bra and ket states. Their argument justifies
the use of the massless Dirac operator with the APS boundary condition even in the
physical system. However, the fundamental question why the index or η invariant with
such an unphysical property appears in the materials is not clear.

6 A more mathematical definition will be given in Sect. 4
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A natural question is whether we can reformulate the APS index, or η invariant
without relying on the non-local boundary condition. To this question, a positive
answer was partly given in our previous works. The key idea is to consider the so-
called domain-wall fermion, as discussed in the next section.

3 Domain-wall fermion and standard APS index

In the original work by Callan and Harvey [7], where the anomaly inflow was first
discussed, they considered a spacetime Y without any boundary, rather than a man-
ifold with boundary. Instead, they introduced a space-dependent fermion mass (as a
vacuum expectation value of scalar field) whose sign flips at some co-dimension one
manifold X , which divides Y into Y+ ∪ Y−. Here Y± denotes the region with posi-
tive/negative fermion mass. This is the so-called domain-wall fermion. As we will see
below, the domain-wall fermion is a good model to describe the physics of topological
insulators. The region Y− corresponds to inside of topological insulator, and Y+ is
normal insulator. This setup is more realistic than a manifold with boundary, since any
boundary in our world has “outside” of it.

Let us assume that Y is an odd-dimensional manifold, and X is located at τ = 0
with a simple product structure of the metric of Y near X . Then, the Dirac equation
becomes

0 = (D + mκ)ψ = (γτ ∂τ + DX + mκ)ψ = 0, (9)

where κ = sgn(τ ) is a sign function such that sgn(±t) = ±1 for t > 0, DX is the
Dirac operator on X , and m > 0 is a real constant. At the leading order of adiabatic
approximation assuming slow τ dependence of the gauge field, the above equation
has an edge-localized solution [42]:

ψ(x, τ ) = φ(x) exp(−m|τ |), γτφ(x) = φ(x), DXφ(x) = 0, (10)

where x is a local coordinate of X . The last two conditions show that the edge mode
has positive chirality, and satisfies the massless Dirac equation on the domain-wall X .

In [7], it was shown that the edge-localized modes suffer from gauge anomaly, but
it is precisely canceled by the surface term of the Chern–Simons action appearing as
an effective action of the massive bulk modes in the region Y−. As the total massive
Dirac fermion determinant in Y can be regularized in a gauge invariant way, with
Pauli–Villars fields, for instance, this anomaly cancellation is guaranteed at all order
of perturbation. See [44] for a recent recomputation of this anomaly cancellation in a
more microscopic and subtle treatment of edge and bulk modes near the domain-wall.

In our recent work [37–39], we have successfully described the anomaly inflow
using the domain-wall fermion when Y is an even-dimensional manifold. Let us con-
sider a determinant of the domain-wall fermion with Pauli–Villars regulator

det(D + κm)

det(D + m)
= det iγ (D + κm)

det iγ (D + m)
, (11)
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where we have taken the physical mass and the Pauli–Villars mass the same value
for simplicity. The sign function κ again takes ±1 on Y±. Thanks to the existence
of the chirality operator γ , the determinant is always real since det(D + κm) =
det γ (D + κm)γ = det(D† + κm).

From the right-hand side of Eq. (11), one can see that the sign of the determinant is
controlled by the η invariant of the Hermitian operators γ (D + κm) and γ (D + m).
And it coincides with the APS index IndAPSD, on the half of the manifold Y− with
the APS boundary condition is imposed on X . Namely, we have

IndAPSD|Y− = −1

2
η(γ (D + κm)) + 1

2
η(γ (D + m)). (12)

This non-trivial equivalence was perturbatively shown by three of the present authors
[37, 38]. Then, the other three of the present authors who are mathematicians joined
the collaboration and gave a mathematical proof [39] that the agreement is not a
coincidence but generally true on any even-dimensional curved manifold when m is
large enough.

In our reformulation of the APS index, we put the Dirac operator on a closed even-
dimensional manifold Y , which ensures the anti-Hermiticity of D, and no specific
boundary condition is needed. Instead, the local and rotational symmetric boundary
condition is automatically given on the domain-wall.We have shown that the boundary
η invariant entirely comes from the edge-modes localized on thewall, and the curvature
integral part in the index is from the bulk modes. Thus, the bulk-edge correspondence
is manifest in our reformulation. The non-local feature of the boundary η invariant is
also naturally explained by the masslessness of the edge modes. This formulation is
so physicist-friendly that even the application to the lattice gauge theory is achieved
[40].

In this work, we pursue the mod-two version of APS index, which applies to the
real fermions in odd dimensions. The most general case with complex fermions is
still an open question, although we expect a similar relation between the domain-wall
fermion and η(D) with the APS boundary condition.

4 Main theorem

Here, we describe our main theorem using a mathematically precise language. The
physics consequence is discussed in the next section.

4.1 Mod-two APS indices

In this subsection, for completeness, we will define the mod-two APS index for real
skew-adjoint operators on manifolds with boundaries, which is a slight modifica-
tion of the original APS index [32–34] for self-adjoint operators on manifolds with
boundaries7. HR denotes a separable real Hilbert space, and HC := HR ⊗ C its

7 The definition of the mod-two APS index is easy, but it is important that a mod-two version of the APS
index theorem does not exist.
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complexification. A C-linear operator D on HC is called real if it coincides with
its complex conjugate, and skew-adjoint if D† = −D. The complexification of an
R-linear operator D on HR is also denoted by D, which is a real operator. The spec-
trum of an R-linear operator on HR is always understood to be the spectrum of its
complexification.

Recall that, for a real skew-adjoint Fredholm operator D on a separable real Hilbert
space, the dimension mod 2 of its kernel is a deformation invariant [45]. So we define
its mod-two index by

Ind(D) := dim ker D (mod 2).

For a closed manifold equipped with a real vector bundle, the mod-two index of a
skew-adjoint elliptic operator is defined in the above way and studied by the mod-
two index theorem of Atiyah and Singer [46]. Here we would like to formulate the
mod-two APS index for the case with boundaries.

Let Y− be a compact Riemannian manifold with boundary X = ∂Y−, and S be a
real Euclidean vector bundle over Y−. We assume the collar structure (−ε, 0]τ × X
near the boundary of Y−, and there exists a real Euclidean vector bundle SX over X
with the isomorphism SX � S over the collar. We assume that SX is equipped with
a self-adjoint endomorphism γX ∈ End(SX ) with γ 2

X = idSX . Let D be a R-linear
formally skew-adjoint elliptic operator on C∞(Y−; S). Assume that, on the collar, D
is of the form

D = γX∂τ + DX ,

for some R-linear skew-adjoint elliptic operator DX on C∞(X; SX ) which anti-
commutes with γX , i.e., γX DX + DXγX = 0. In order to define the mod-two APS
index, we assume that DX is invertible8.

In this setting, the APS boundary condition defined in [32–34] is the following.
Note that γX DX is self-adjoint on L2(X; SX ). Let P := χ[0,∞)(γX DX ) denote the
spectral projection onto the nonnegative eigenspaces of γX DX .

Definition 1 (the APS boundary condition and mod-two APS indices) In the above
settings, a smooth section f ∈ C∞(Y−; S) satisfies the APS boundary condition
[32–34] if it satisfies

P f |X = 0.

The closure of this operator on L2(Y−; S) with the above boundary condition, still
denoted by D, is Fredholm. Moreover, if DX is invertible, D is skew-adjoint. We
define the mod-two APS index IndAPS(D) ∈ Z2 of D by its mod-two index.

The mod-two APS indices have another formulation as follows. We consider Ycyl :=
Y− ∪ [0,+∞) × X with the standard cylindrical-end metric. The bundle S and the
operator D naturally extend to Ycyl, which is denoted by Scyl and Dcyl.

8 The APS boundary condition is defined also in the case where DX has a non-trivial kernel, but the
resulting operator is not skew-adjoint.
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Proposition 1 ([32,Proposition 3.11]) If DX is invertible, Dcyl is a skew-adjoint Fred-
holm operator on L2(Ycyl; Scyl). Let us denote by Ind(Dcyl) its mod-two index. We
have

IndAPS(D) = Ind(Dcyl).

4.2 The statement of themain theorem

Let Y be a closed Riemannian manifold whose dimension can be odd or even. Let S be
a real Euclidean vector bundle on Y . Let D : C∞(Y ; S) → C∞(Y ; S) be a first-order,
formally skew-adjoint, elliptic partial differential operator. Let X ⊂ Y be a separating
submanifold that decomposes Y into two compact manifolds Y+ and Y− with common
boundary X . Let κ : Y → [−1, 1] be the L∞–function such that κ ≡ ±1 on Y±\X .
We define DDW = D + κmidS with a real positive number m as a domain-wall Dirac
operator, where idS is an identity matrix on S. We also define DPV = D + midS ,
whose determinant corresponds to the Pauli–Villars regulator.

We assume that X has a collar neighborhood isometric to the standard product
(−4, 4) × X and satisfying ((−4, 4) × X) ∩ Y− = (−4, 0] × X . We denote the
coordinate along (−4, 4) by τ . We assume the collar structure on S and D explained
in Sect. 4.1.

In the collar region, DDW can be written as

DDW = γX (∂X + γXκmidS + γX DX ). (13)

For m large enough, DDW is invertible. This can be shown in the same way as
[39, Proposition 9], and can be understood as follows. In the large m limit, we have
edge-localized modes proportional to exp(−m|τ |) in a γX = +1 subspace, on which
the domain-wall Dirac operator operates as DDW = DX P+, where P+ = (1+γX )/29.
When DX at τ = 0 has no zero eigenvalue, it is guaranteed that DDW is invertible.

Theorem 1 If DX on C∞(X; SX ) is invertible, then there exists a constant m0 > 0
that depends only on X, S, and D such that for any m > m0 we have,

IndAPS(D|Y−) = 1 − sgn det(DDWD−1
PV)

2
(mod 2). (14)

where sgn det(DDWD−1
PV) will be defined in Definition 2 below.

Here, “sgn det” in the right hand side of (14) needs an explanation, because the
operator DDWD−1

PV is defined on infinite-dimensional Hilbert space. Note that the
real invertible operator DDWD−1

PV differs from the identity operator by a compact
operator. For such operators, we define “sgn det” which generalizes the usual signature
of the determinants of invertible real operators on finite-dimensional Hilbert spaces

9 Note that DX is self-adjoint but DX P+, which operates on the edge Weyl fermions, is not.
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as follows. For a real Hilbert space HR, let

C(HR) := {A ∈ IdHR
+ K(HR) | A is invertible }, (15)

where K(HR) denotes the space of compact operators on HR. The space C(HR),
equipped with the norm topology, has two connected components [45, Proposition
3.3].

Definition 2 (sgn det) We define a map

sgn det : C(HR) → {1,−1}

by letting sgn det(A) := 1 if A belongs to the same connected component of C(HR)

with the identity, and sgn det(A) := −1 otherwise.

This map is a generalization of the “sgn det” for finite-dimensional case. Indeed,
if A ∈ C(HR) is of the form A = AV ⊕ idV⊥ for some finite-dimensional subspace
V ⊂ HR, then the value sgn det(A) defined inDefinition 2 coincideswith the signature
of the determinant of AV .

4.3 Example on a closedmanifold

Before giving a general proof, let us consider a special case with Y− = Y or κ = −1
on whole Y and there is no domain-wall. In this case, we obtain the mod-two AS index
on whole Y .

Corollary 1 For any m > 0, we have

IndAS(D) = 1 − sgn det
[
(D − midS)(D + midS)−1

]
2

(mod 2), (16)

where IndAS(D) = dim ker(D) (mod 2).

This corollary can be easily checked by a direct evaluation of the massive fermion
determinant. Remembering that every nonzero eigenvalue iλ of D makes a pair with
another eigenvalue −iλ (where λ is real) the ratio of the determinant is expressed as

det
[
(D − midS)(D + midS)

−1
]

= (−m)N0
∏

λ>0(λ
2 + m2)

mN0
∏

λ>0(λ
2 + m2)

= (−1)N0 ,

where N0 is the number of zero modes or N0 = I ndAS(D) mod 2.

4.4 Mathematical preparations: mod-two spectral flows and indices on cylinders

In this subsection, we give mathematical preparations necessary for the proof of the
main theorem. In [47], Carey, Phillips and Schulz-Baldes introduced mod-two spec-
tral flow for paths of real skew-adjoint Fredholm operators. After recalling it and its
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necessary properties, we relate it with “sgn det” in Definition 2. We also explain its
relation with mod-two indices of operators on cylinders10.

We have to deal with unbounded operators on Hilbert spaces. Unbounded operators
appearing below are always assumed to be closed and densely defined. We topologize
the set of unbounded closed densely defined Fredholm operators by the Riesz topology
(see for example [48] for topologies on the space of unbounded Fredholm operators).
In this topology, a family {Dx }x∈X of Fredholm operators is continuous if and only if
the families {Dx (1+ D†

x Dx )
−1/2}x∈X and {D†

x (1+ Dx D
†
x )

−1/2} are both continuous
with respect to the norm topology. Restricted to the subspace of bounded Fredholm
operators, it coincides with the norm topology.

Now, we recall the definition of mod-two spectral flows for continuous paths of real
skew-adjoint operators following [47]. The spectrum of a real skew-adjoint operator
D lies in

√−1R and satisfies Spec(D) = −Spec(D). In generic cases, the mod-two
spectral flow counts the parity of the number of crossings of eigenvalue pairs at 0.

First assume that HR is finite-dimensional. Given two invertible real skew-adjoint
operators D−1 and D1, the mod-two spectral flow between them is defined as follows.
Choose an operator A on HR such that

D1 = A†D−1A.

Then, the mod-two spectral flow in the finite-dimensional case is simply

Sf(D−1, D1) := 1 − sgn det(A)

2
∈ Z2. (17)

Next we pass to the infinite-dimensional case. The definition in [47] is given for
bounded families, but it is straightforward to extend it to the unbounded case11. The
precise definition of mod-two spectral flow consists of subdividing a path into pieces
small enough, and applying the definition for finite-dimensional paths for each pieces.
Assume we are given a continuous family {Dt }t∈[a,b] of real skew-adjoint Fredholm
operators on HR, parameterized by a finite interval [a, b] ⊂ R. We assume that Da

and Db are invertible. For λ > 0 and t ∈ [a, b], we define the corresponding spectral
projection by

Qλ(t) := χ(−λ,λ)(
√−1Dt ),

where χ(−λ,λ) is the characteristic function of (−λ, λ). Qλ(t) is a real projection.
By Fredholmness of Dt , for λ small enough Qλ(t)HR is a finite-dimensional sub-
space of HR. For each t , take an arbitrary skew-adjoint operator Rt on the kernel of

10 The equivalence between the APS index and that on a non-compact manifold with cylindrical ends is
proved in [32–34]. For the latter setup, non-local boundary condition is not needed but we still consider it
unphysical, since having exact copies of gauge fields are not allowed by causality in physics.
11 In [49], the authors extend the definition of spectral flows to paths of operators with general Clifford
symmetries. There, they also define spectral flows for paths of unbounded Fredholm operators.
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Qλ(t)Dt Qλ(t)12. Let us denote

D(λ)
t := Qλ(t)Dt Qλ(t) + Rt .

This is a real skew-adjoint invertible operator on Qλ(t)HR.
We choose a subdivision of the interval as a = t0 < t1 < · · · < tN = b, and a

sequence of positive numbers {λn}Nn=1 such that Qλn (t) is of constant finite rank on
the interval [tn−1, tn] for all n, and the orthogonal projection

Vn : Qλn (tn−1)HR → Qλn (tn)HR

is a bijection for all n. Using these data, the mod-two spectral flow of the path {Dt }t
is defined as follows.

Definition 3 (Mod-two spectral flows)][[47, Definition 4.1]] Let {Dt }t∈[a,b] be a con-
tinuous path of real skew-adjoint possibly unbounded Fredholm operators onHR. We
assume that Da and Db are both invertible. Choosing additional data as above, we
define the spectral flow of the path {Dt }t∈[a,b] by

Sf({Dt }t ) :=
N∑

n=1

Sf(D(λn)
tn−1

, V †
n D

(λn)
tn Vn).

Remark 1 Themod-two spectral flow in Definition 3 gives the family index of the path
of real skew-adjoint operators, which is in KO−1([a, b], {a, b}) � KO−2(pt) = Z2.
However, if we apply the same definition for a path of odd real skew-adjoint oper-
ators as we will do below, we actually get its family index which is an element of
KO0([a, b], {a, b}) � KO−1(pt) = Z2. This is because, using the Atiyah–Bott–
Shapiro description of KO p−q(pt) via Clifford modules Mp,q−1/Mp,q , there is a
forgetful map M1,1/M1,2 → M0,1/M0,2 that sends generators to generators [49, The-
orem 2.6]

For an unbounded path {Dt }t∈[a,b], we can also take the bounded transform {Dt (1+
D†
t Dt )

−1/2}t∈[a,b] to get a bounded path and consider its mod-two spectral flow. We
easily see that

Sf({Dt }t ) = Sf({Dt (1 + D†
t Dt )

−1/2}t ). (18)

4.4.1 The case of paths consisting of bounded operators

In this subsubsection, we deal with paths consisting of bounded operators. We relate
“sgn det” in Definition 2 with a certain type of mod-two spectral flows.

In general, spectral flows are not determined by the operators at the endpoints, but
depend on the choice of the paths. However, continuous deformations of the paths do

12 The family {Rt }t is necessary in order to define mod-two spectral flows in the case where the original
family has kernels on an interval of positive length.
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not change the spectral flows, as long as they fix the endpoints [47, Theorem 4.3]. This
implies the following.

Lemma 1 Given two bounded paths {Dt }t∈[a,b] and {D′
t }t∈[a,b] satisfying the condi-

tions in Definition 3, assume Da = D′
a, Db = D′

b, and that Dt − D′
t is a compact

operator for all t ∈ [a, b]. Then, we have

Sf({Dt }t ) = Sf({D′
t }t ).

Proof Since the Fredholmness is preserved by adding compact operators, we get a
continuous deformation between two paths {Dt }t and {D′

t }t by the linear homotopy.��
Thus, if we are given two invertible real skew-adjoint Fredholm operators D−1 and

D1 which differ by a compact operator, we get a distinguished value of spectral flows
between them; namely those of paths consisting of compact perturbations between
them.

Definition 4 Let D−1 and D1 be two invertible real skew-adjoint bounded Fredholm
operators on HR. Assume that (D1 − D−1) is a compact operator. Take any path
{Dt }t∈[−1,1] of real skew-adjoint Fredholm operators connecting D−1 and D1, such
that (Dt − D−1) is a compact operator for all t ∈ [−1, 1]. Then we define

Sfcpt(D−1, D1) := Sf({Dt }t∈[−1,1]).

This does not depend on the choice of the path by Lemma 1.

For Sfcpt, we have a similar formula as (17), which expresses the spectral flow by
“sgn det” of operators defined in Definition 2.

Proposition 2 Let D−1 and D1 be two invertible real skew-adjoint bounded operators
onHR. Assume that there exists an element A ∈ C(HR) such that

D1 = A†D−1A.

In particular, this means that D1 − D−1 is compact. Then, we have

Sfcpt(D−1, D1) := 1 − sgn det(A)

2
,

where sgn det(A) is defined in Definition 2.

Proof Choose λ > 0 so that the spectrum of
√−1D−1 is discrete on the interval

[−λ, λ]. The Hilbert space HR is decomposed as

HR = Qλ(−1)HR ⊕ (1 − Qλ(−1))HR

with the first component finite-dimensional. Choose a continuous path {At }t∈[1,2] in
C(HR) such that A = A1 and A2 is of the form

A2 = A2|Qλ(−1)HR
⊕ id(1−Qλ(−1))HR

.
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This implies

sgn det(A) = sgn det(A2|Qλ(−1)HR
). (19)

Consider a path {Dt }t∈[−1,2] defined as

Dt :=
{

1−t
2 D−1 + t+1

2 D1 if t ∈ [−1, 1],
A†
t D−1At if t ∈ [1, 2].

Then, we have

Sfcpt(D−1, D2) = Sf({Dt }t∈[−1,1]) + Sf({Dt }t∈[1,2]) = Sfcpt(D−1, D1),

where the second equality follows from the invertibility of the family {Dt }t∈[1,2]. Note
that Sfcpt(D−1, D2) is equal to the spectral flow of the linear path between D−1 and
D2. Applying Definition 3 to this linear path, we see that

Sfcpt(D−1, D2) = 1 − sgn det(A2|Qλ(−1)HR
)

2
.

Combining these with (19), we get the result. ��

4.4.2 The case of paths consisting of elliptic pseudodifferential operators

In this subsubsection, we deal with the paths {Dt }t consisting of first order elliptic
pseudodifferential operators on closed manifolds. Let us assume thatHR = L2(Y ; S),
where Y is a closed manifold and S is an R-vector bundle with inner product over Y .
Using the relation (18), we have the corresponding notion of Sfcpt in this setting.

Definition 5 Let Y and S as above. Let D−1 and D1 be two invertible real skew-adjoint
first order elliptic pseudodifferential operators on L2(Y ; S). Assume that D1 − D−1
is of zeroth order. Take any path {Dt }t∈[−1,1] of real skew-adjoint elliptic operators
connecting D−1 and D1, such that Dt − D−1 is of zeroth order for all t ∈ [−1, 1].
Then, we define

Sfcpt(D−1, D1) := Sf({Dt }t∈[−1,1]).

This does not depend on the choice of the path by Lemma 1 and (18).

We see that Sfcpt is also compatible with the bounded transform,

Sfcpt(D−1, D1) = Sfcpt(D−1(1 + D†
−1D−1)

−1/2, D1(1 + D†
1D1)

−1/2), (20)

where the left hand side is defined in Definition 5 and the right hand side is defined in
Definition 4.
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4.4.3 A relation betweenmod-two APS indices on cylinders andmod-two spectral
flows

In this subsection, we assume that HR is Z2-graded. Let γ ∈ O(HR) denote the
Z2-grading operator. We deal with both cases where a family {Dt }t is bounded and
unbounded. We explain a relation between mod two spectral flows of odd real skew-
adjoint Fredholm operators and mod-two indices of certain operators on R.

Proposition 3 Let HR be Z2-graded with the grading operator γ . Let {Dt }t∈[a,b] be
a continuous path of odd (i.e., γ Dt + Dtγ = 0 for all t) real skew-adjoint possibly
unbounded Fredholm operators onHR. We assume that Da and Db are both invertible.

We construct a real skew-adjoint operator D̂ on L2(Rt ) ⊗ HR as follows. By a
continuous homotopy which fixes the endpoints, we perturb the path {Dt }t∈[a,b] into
a smooth path {Dsm

t }t∈[a,b] which is constant near the endpoints. We extend the path
to {Dsm

t }t∈R by letting Dsm
t = Da for t < a and Dsm

t = Db for t > b. We define D̂ as

D̂ := γ ∂t + Dsm
t .

Then, D̂ is Fredholm and its mod-two index does not depend on the choice of the
smoothing {Dsm

t }t∈[a,b]. We have,

Ind(D̂) = Sf({Dt }t∈[a,b]) ∈ Z2. (21)

Proof The independence of Ind(D̂) on the choice of smoothings follows from the
deformation invariance of indices.

We reduce the proof of (21) to finite-dimensional cases. In order to do this, we need
the following easy properties of the indices of operators on cylinders.

(a) Given a path {Dt }t∈[a,b] as above, if Dt is invertible for all t ∈ [a, b], we have
Ind(D̂) = 0.

(b) Given a path {Dt }t∈[a,b] as above, assume that the path is divided into two paths
as {Dt }t∈[a,b] = {D′

t }t∈[a,c] ∪ {D′′
t }t∈[c,a] with Dc invertible. We construct the

operators D̂′ and D̂′′ on L2(R) ⊗ HR using {D′
t }t and {D′′

t }t , respectively, in the
same way. Then, we have

Ind(D̂) = Ind(D̂′) + Ind(D̂′′).

(c) Given two paths {Dt }t∈[a,b] and {D′
t }t∈[a,b] as above, assume that Da = D′

a and
Db = D′

b, and that the two paths are connected by a continuous homotopy leaving
the endpoints fixed. Then we have

Ind(D̂) = Ind(D̂′).

Indeed, (a) is because D̂ is invertible in such cases, (b) follows from the gluing prop-
erty of the indices, and (c) follows from the deformation invariance of the indices.
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Using the definition of mod-two spectral flows and the above properties of indices of
operators on cylinders, as well as the corresponding properties of mod-two spectral
flows [47, Theorem 4.2, 4.3], we can easily reduce to the case where HR is finite-
dimensional. Moreover, using the above properties again, we are reduced to the case
where HR = R

2,

γ =
(
1 0
0 −1

)
, Dt = t

(
0 1
−1 0

)
t ∈ [−1, 1].

In this case, we have Sf({Dt }t∈[−1,1]) = 1. On the other hand, the L2-kernel of D̂
is one-dimensional, spanned by an element which is asymptotically e−t (1,−1) on
t � 1 and et (1,−1) on t � −1, so we have Ind(D̂) = 1. Thus, we get (21) and the
result follows. ��

Now assume that we are given two invertible odd real skew-adjoint operators D−1
and D1 which differ by compact (resp. zero-th order) in the bounded case (resp. first-
order elliptic case). In this case, we get a canonical choice of operator A satisfying
D1 = A†D−1A. Namely, with respect to the Z2-grading, we decompose Dt , t = ±1,
as

Dt =
(
0 D+,t

−(D+,t )
† 0

)
. (22)

Then, we can choose A to be,

A :=
(

(D†
+,−1)

−1D†
+,1 0

0 id

)
.

By the assumption on the difference between D1 and D−1, we see that A ∈ C(HR). In
the bounded case, by Proposition 2 and the obvious identity sgn det(A) = sgn det(A†),
we get the following.

Proposition 4 LetHR beZ2-gradedwith the grading operator γ . Assumewe are given
two invertible odd real skew-adjoint bounded operators D−1 and D1 with D1 − D−1
compact. Then we have

Sfcpt(D−1, D1) = 1 − sgn det(D+,1(D+,−1)
−1)

2
.

Here D+,t is defined in (22).

In the first-order elliptic case, we have the corresponding result.

Proposition 5 Let Y be a closed manifold and S be aZ2-graded real Euclidean vector
bundle over Y . Assume we are given two invertible odd real skew-adjoint first-order
elliptic operators D−1 and D1 on L2(Y ; S). Suppose that D1−D−1 is of zeroth order.
Then, we have

Sfcpt(D−1, D1) = 1 − sgn det(D+,1(D+,−1)
−1)

2
.
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Here D+,t is defined in (22).

Proof For an unbounded Fredholm operator, let us denote by χ(D) := D(1 +
D†D)−1/2 its bounded transform. Note that if D is odd and skew-adjoint, χ(D) is
also odd and skew-adjoint. By (20) and Proposition 4, we get

Sfcpt(D−1, D1) = 1 − sgn det(χ(D+,1)(χ(D+,−1))
−1)

2
.

Since the operator (1 + D†
+,1D+,1)

1/2(1 + D†
+,−1D+,−1)

−1/2 lies in the same con-
nected component of C(HR) as the identity, we see that

sgn det(D+,1(D+,−1)
−1) = sgn det(χ(D+,1)(χ(D+,−1))

−1).

Thus, we get the result. ��

4.5 Proof of main theorem

In this subsection, we prove Theorem 1. The proof given here relies on the techniques
developed in our previous work [39]. We will see that, by modifying the proof in that
paper appropriately, essentially the same proof works in the mod-two case. We give
an alternative simpler and self-contained proof in Appendix.

First, in order to deal with smooth operators in the proof, we perturb the L∞-
function κ : Y → [−1, 1] to a smooth function κsm : Y → [−1, 1] so that κsm ≡ ±1
on Y± \ (−4, 4) × X (recall the collar parameter introduced before the statement of
Theorem 1). Consider the corresponding smoothed domain-wall Dirac operator,

Dsm
DW = D + κsmmidS .

For m large enough, we have

sgn det(DDWD−1
PV) = sgn det(Dsm

DWD−1
PV).

This is because, form large enough, the linear path connecting DDW and Dsm
DW consists

of invertible operators.
Let us consider a Z2-graded vector bundle S ⊕ S over Y with the natural real

structure, with the Z2-grading given by γ = diag(idS,−idS). Choose any smooth
function κ̂sm : R × Y → [−1, 1] such that κ̂sm

t := κ̂sm(t, ·) = +1 for t < −0.5 and
κ̂sm
t = κsm for t > 0.5. Let Dt : L2(Y ; S ⊕ S) → L2(Y ; S ⊕ S) be a one-parameter
family of odd real skew-adjoint elliptic operators defined by

Dt :=
(
0 D + mκ̂sm

t idS
D − mκ̂sm

t idS 0

)
. (23)
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Note that

D−1 =
(
0 DPV

−(DPV)† 0

)
, D1 =

(
0 Dsm

DW−(Dsm
DW)† 0

)
, (24)

and these two operators are both invertible. The path {Dt }t∈[−1,1] satisfies the condition
in Definition 5; namely, Dt −D−1 is of zeroth-order for all t ∈ [−1, 1]. By Proposition
5, we get

Sf({Dt }t∈[−1,1]) = Sfcpt(D−1, D1) = 1 − sgn det(Dsm
DWD−1

PV)

2
. (25)

Applying Proposition 3, we get the following. We introduce a real skew-adjoint oper-
ator D̂m on C∞(R × Y ; S ⊕ S) defined by

D̂m := γ ∂t + Dt =
(

∂t D + mκ̂sm
t idS

D − mκ̂sm
t idS −∂t

)
. (26)

Then, we have

Ind(D̂m) = Sf({Dt }t∈[−1,1]). (27)

By (25) and (27), we are left to prove the following.

IndAPS(D|Y−) = Ind(D̂m). (28)

Now the proof is just a small modification of that of the main theorem of our previous
work [39], sowe summarize themain points here and refer the details to it. The strategy
is to embed Ycyl := Y−∪[0,+∞)×X intoR×Y in a certain way, and use localization
argument to prove (28).

First, since DX is assumed to be invertible, we can apply Proposition 1 and get

IndAPS(D|Y−) = Ind(Dcyl). (29)

Here S and D are extended to the cylinder to Scyl and Dcyl, respectively, in a canonical
way.

Moreover, let us consider a bundle Scyl ⊕ Scyl on Rs × Ycyl and introduce a higher-
dimensional Dirac operator

D̂cyl =
(

∂s Dcyl + m sgn idS,
Dcyl + m sgn idS −∂s

)
, (30)

where sgn : R × Ycyl → [−1, 1] is the L∞-function13 such that sgn = −1 on
(−∞, 0) × Ycyl and sgn = 1 on (0,∞) × Ycyl (see Fig. 1). In the same way as
[39, Section 3.3] we have dimKer D̂cyl = dimKerDcyl.

13 Here, the operator is not smooth, but it causes no problem.We may also use a smoothing of the function
sgn if we like.
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Fig. 1 Rs × Ycyl, where the domain-wall is put at s = 0

Fig. 2 R × Y , where {0} × Ycyl is smoothly embedded

Now we recall the construction of a smooth embedding in [39, Section 3.4]. We
define an embedding

τ̄ : (−2, 2) × Ycyl → R × Y .

Roughly speaking, the cylinder {0} × Ycyl ⊂ (−2, 2) × Ycyl goes to a smoothing of
the subset {0} × Y− ∪ [0,∞) × X ⊂ R × Y .

Let R1 := (−2, 2)× (−4,∞) and R2 = R× (−4, 4). We denote the coordinate of
R1 by (−τ, t), and that of R2 by (s, u). Fix an embedding τR2 : R1 → R2 such that
τR2 ≡ id for t < −2 and

(−τ, t) �→ (t, τ )

for t > 100. Since X has a collar neighborhood isometric to (−4, 4) × X , we can
regard R1 × X and R2 × Y as open subsets of (−2, 2) × Ycyl and R× Y , respectively.
Using this, we can define an embedding τ̄ so that τ̄ ≡ idR × idY on (−2, 2) × Y−
and τ̄ ≡ τR2 × idX on R1 × X . Note that τ̄ is an isometry outside a compact set
((−2, 2) × (−2, 100) × X) (Fig. 2).

Here, the important point for the localization argument is the following. We view
τ̄ ({0} × Ycyl) as a domain-wall in R × Y , which separates R × Y into two connected
components. Then, the smooth function κ̂sm : R × Y → [−1, 1] is a smoothing of
the domain-wall function which takes value ±1 on the two connected components,
respectively.
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In our previous work, we have shown that there is a one-parameter family of Rie-
mannian metric connecting the induced metric by τ̄ and the original one on R× Y so
that the low lying spectrum is unchanged for m > m0 with some real positive number
m0. Thus, for such m we have

dimKer D̂cyl = dimKer D̂m . (31)

By (29) and (31), we get (28) and the result follows.

5 Anomaly inflow and bulk-edge correspondence in themod-two
APS index

In the previous section, we have proved that for any mod-two APS index of a Dirac
operator on a manifold Y− with boundary X , there exists a domain-wall Dirac fermion
determinant

det(DDWD−1
PV) = det

(
D + κmidS
D + midS

)
, (32)

and the quantity (1 − sgn det(DDWD−1
PV))/2 coincides with the original index (mod

2). In the latter setup, instead of the boundary X , we put the “outside” Y+ to form a
closed manifold Y , and the mass term is introduced in such a way that the sign flips
at the original location of X .

Contrary to the original APS’s massless Dirac operator, which requires a non-
local and unphysical boundary condition, the operator D in the domain-wall fermion
determinant is kept anti-Hermitian (skew-adjoint) without any difficulty. The local and
rotational symmetric boundary condition, which is commonly expected in the fermion
system of topological insulators, is automatically satisfied on the domain-wall.

In this section, we discuss another physicist-friendly aspect of the domain-wall
fermion formulation: it allows a “natural decomposition” of the index into bulk and
edge contributions. To this end, we introduce another domain-wall fermion in the
trivial representation with the opposite sign of the mass. Its free edge fermion has
the opposite chirality to our target fermion. Then, we can add a set of Pauli–Villars
fields where the target domain-wall field and the free field are coupled with another
“mass” μ. This procedure corresponds to the traditional Pauli–Villars regularization
of the Weyl fermion determinant. For complex fermions, this regularization is known
to produce the consistent anomaly, satisfying the Wess–Zumino condition, which can
be canceled precisely by the bulk Chern–Simons action. Below we show that this
traditional treatment works even in the case of global anomaly.

Let us introduce a free fermion field, or a trivial bundle S0 on Y , where we assume
by an appropriate regularization, that (S0)y the fiber at y ∈ Y , is isomorphic14 to
(S)y (but we do not assume a smooth isomorphism on whole Y ). Then, we define the
domain-wall Dirac operator with the opposite sign of the mass to the original fermion:

14 For example, (S0)y is isomorphic to (S)y at each site y in the lattice regularization.

123



   16 Page 24 of 32 H. Fukaya et al.

∂DW = ∂ − κmidS0 : C∞(Y ; S0) → C∞(Y ; S0) with a free Dirac operator ∂ . As
in the case with DDW, this new operator ∂DW also has edge-localized eigenstates but
with opposite chirality γτ = −1. Here, we assume that ∂DW is invertible, which is
achieved by, for instance, choosing a spin structure such that the fermion obeys the
anti-periodic boundary condition around a non-trivial cycle on X . We further assume
that sgn det ∂DW∂−1

PV = +1 with the free Pauli–Villars operator ∂PV = ∂ + midS0 .
Namely, the corresponding mod-two index is always trivial.

Now we can decompose the sgn det(DDWD−1
PV) in Eq. (14) as follows.

sgn det(DDWD−1
PV) = sgn

[
det(DDWD−1

PV) det(∂DW∂−1
PV )

]

= sgn

[
det

(
DDW 0
0 ∂DW

)
det

(
DPV 0
0 ∂PV

)−1
]

= sgn
[
det Dedge

]
sgn [det Dbulk] , (33)

where Dedge/bulk : C∞(Y ; S ⊕ S0) → C∞(Y ; S ⊕ S0) are defined as

Dedge :=
(
DDW 0
0 ∂DW

) (
DDW μI
μI−1 ∂DW

)−1

, (34)

Dbulk :=
(
DDW μI
μI−1 ∂DW

) (
DPV 0
0 ∂PV

)−1

, (35)

with a positive constant μ and a trivial isomorphism I = diag(1, 1...) : (S0)y → (S)y
at each y ∈ Y . Note that both of Dedge and Dbulk are real operators, and therefore,
sgn

[
det Dedge

]
and sgn [det Dbulk] are both well-defined in the same sense as that for

the original operator DDWD−1
PV.

Now let us take a hierarchical limit λedge � μ � m, where λedge denotes a
typical energy scale of the edge localized modes. In this limit, det Dedge is dominated
by contribution from the edge modes, since Dedge operates as idS⊕S0 up to μ/m
corrections on the bulk modes. Similarly, det Dbulk is essentially described by the
bulk modes.

It is important to remark here that Dedge/bulk and their signs are not gauge invariant,
due to the newmass termμI and its inverse. Therefore, sgn

[
det Dedge

]
depends on the

choice of the gauge, and its gauge transformation can change its sign. This is exactly
whatwe expect for the global anomaly. In their product sgn

[
det Dedge

]
sgn [det Dbulk],

however, theμ dependence precisely cancels out and the total index is gauge invariant.
Now, we have manifestly achieved the global anomaly inflow, decomposing the mod-
two APS index:

IndAPS(D|Y−) = Iedge + Ibulk (mod 2),

Iedge = 1 − sgn
[
det Dedge

]
2

,

Ibulk = 1 − sgn [det Dbulk]

2
, (36)
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where the gauge dependence of Iedge is canceled by that of Ibulk. Or equivalently,
we can say that the gauge invariance of the APS index guarantees the bulk-edge
correspondence of the global anomalies.

6 Summary and discussion

In this work, we gave a mathematical proof that for any APS index IndAPS(D) of a
massless Dirac operator D on a manifold Y− with boundary X , there exists a domain-
wall Dirac fermion determinant, whose sign coincides with (−1)IndAPS(D).

Our domain-wall fermion Dirac operator is formulated on a closed manifold
extended from Y−. Instead, the mass term flips its sign at the original location of
X . Unlike the original APS setup, where an unphysical boundary condition is needed
to keep the chiral symmetry and edge localized modes are not allowed to exist, the
domain-wall fermion keeps many essential features to understand the physics of topo-
logical matters. No specific boundary condition is imposed a priori, but a local and
physically sensible one having rotational symmetry is automatically imposed on the
domain-wall. The distinction of the massless edge-localized modes and the bulk mas-
sive modes is manifest. Moreover, we find a natural decomposition of the mod-two
APS index into edge and bulk contributions. Each of them is given by a non-gauge
invariant integer, and therefore, contains a global anomaly. The gauge invariance of
the mod-two APS index guarantees its cancellation or the bulk-edge correspondence
of the global anomalies. Thus, our theorem indicates that the domain-wall fermion
determinant (with Pauli–Villars regularization) can be used as a physicist-friendly
“reformulation” of the mod-two APS index.

The mathematical proof was given introducing a higher (d + 2)-dimensional Dirac
operator D̂m

15, whose mod-two index is equal to the original IndAPS(D) and also
equal to the spectral flow of a skew-adjoint operator Dt , which coincides with
(1 − sgn det(DDWD−1

PV))/2. What is the physical meaning of D̂m? An interesting
observation is that Ind(D̂m) is equal to IndAPS(D̂m |Z−), where Z− = Y × [−1, 1].
Then, denoting Z = Y × R and Z+ = Z\Z−, and introducing ρ : Z → [−1, 1] by
ρ ≡ ±1 on Z±\Y , we can recursively use our main theorem to obtain

Ind(D̂m) =
1 − sgn

[
det(D̂DW D̂−1

PV)
]

2
, (37)

where D̂DW/PV : C∞(Z; S ⊕ S) → C∞(Z; S ⊕ S) are defined by D̂DW = D̂m +
MρidS⊕S and D̂PV = D̂m +M idS⊕S , respectively, with a positive constant M , which
is sufficiently larger than m. This new domain-wall fermion Dirac operator

D̂DW :=
(

∂t + MρidS D + mκ̂idS
D − mκ̂idS −∂t + MρidS

)
(38)

15 The physical role of (d + 2)-dimensional Dirac operator was also discussed in our previous work [39].
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in the largem and M limits, has an “edge-of-edge” solution, whose asymptotic behav-
ior near (τ, t) = (0, 1) is given by

Ψ (x, τ, t) = Φ(x) exp(−m|τ |) exp(−M |t − 1|),
id ⊗ γτΦ(x) = Φ(x), γ ⊗ idSΦ(x) = −Φ(x), DΦ(x) = 0. (39)

Thus, our domain-wall fermion formulation naturally contains a mathematical struc-
ture that gapless states appear at a boundary of the system of codimension larger
than one [50–52], which may be useful to understand the physics of higher-order
topological insulators [53, 54].

Another interesting application is the formulation in lattice gauge theory16. On a
flat Euclidean lattice with periodic boundary conditions, whose continuum limit cor-
responds to T d+1, we can construct a lattice Dirac operator having the same properties
as DDW above. For example, in the SU (2) gauge theory on a hyper-cubic five-
dimensional lattice Y lat = L5, the domain-wall Dirac operator Dlat

DW : Y lat ⊗ Slat →
Y lat ⊗ Slat on a fermion field in the fundamental representation denoted by Slat can
be defined as

Dlat
DW(x, y) = DW (x, y) + κmidSlatδx,y, (40)

where x = (x1, x2, x3, x4, x5) and y = (y1, y2, y3, y4, y5) represent discrete lattice
points on Y lat, κ = sgn(x5 + 1/2)sgn(L/2 − x5 − 1/2), the mass is in a range
0 < m < 2 (to avoid contribution from doublers), and DW (x, y) is the Wilson Dirac
operator

DW =
5∑

μ=1

γμ

∇ f
μ + ∇b

μ

2
−

5∑
μ=1

∇ f
μ∇b

μ

2
,

∇ f
μ (x, y) = Uμ(x)δx+1,y − δx,y,

∇b
μ(x, y) = δx,y −U †

μ(y)δx−1,y . (41)

Here, we take the lattice spacing unity. Note that the link variables Uμ(x) in the
fundamental representation of SU (2) is pseudo-real: Uμ(x)∗ = EUμ(x)E with the
second Pauli matrix E = iτ2, which is anti-symmetric. This is also the case for
γ ∗
μ = CγμC with C = γ2γ4γ5 (for the chiral representation), which is also anti-

symmetric. Therefore, Dlat
DW is real: (Dlat

DW)∗ = CEDlat
DWCE . Then, we can “define”

the mod-two APS index on the lattice by

1 − sgn
[
det(Dlat

DW)
]

2
mod 2, (42)

and it is natural to conjecture that this lattice index for sufficiently large L and smooth
link variables coincides with the continuum one on T 4 × [−L/2, 0]. Note that the

16 For the standard APS index, index a lattice formulation was proposed in [40] using the Wilson Dirac
operator. Here we consider the mod-two version.
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application to the mod-two AS index, which was already mathematically defined in
[55], is straightforward, setting κ = −1 to define the mod-two AS index17 on T 5 by

1 − sgn
[
det(DW − midSlat )

]
2

mod 2. (43)
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sions. This work was supported in part by JSPS KAKENHI (Grant numbers: JP15K05054, JP17H06461,
JP17K14186, JP18H01216, JP18H04484, JP18K03620, JP19J20559 and JP20K14307).

A An alternative proof of themain theorem

In this appendix,we sketch an alternative simpler proof for themain theorem (Theorem
1). The proof given here does not rely on the techniques developed in our previous
work [39], and is self-contained. In particular, we do not use the embedding of cylinder
Ycyl := Y− ∪ [0,+∞) × X into R × Y or the localization argument.

We use the same notations as in Sect. 4.5. We proceed in the same way to get (25),
and using Proposition 1, we are left to prove the equality

Sf({Dt }t∈[−1,1]) = Ind(Dcyl). (44)

We proceed in a different way from here.
First consider the following three operators acting on L2(Ycyl; Scyl ⊕ Scyl),

Dcyl,−1 :=
(
0 Dcyl + midS
Dcyl − midS 0

)
, (45)

Dcyl,0 :=
(
0 Dcyl − midS
Dcyl + midS 0

)
, (46)

Dcyl,1 :=
(
0 Dcyl + mκsm

cyl idS
Dcyl − mκsm

cyl idS 0

)
. (47)

Here κsm
cyl : Ycyl → [−1, 1] is a smooth function with κsm

cyl ≡ −1 on Y− and κsm
cyl ≡ 1

on X × (4,+∞). Let {Ds
cyl,t }(s,t)∈[0,1]×[−1,1] denote the two-parameter family of

operators defined as

Ds
cyl,t := 1 − t

2
Dcyl,−1 + (1 − s)(1 + t)

2
Dcyl,0 + s(1 + t)

2
Dcyl,1.

This family consists of real and formally skew-adjoint operators. Moreover, by the
invertibility of DX each operator is Fredholm, and the family is continuous, by the
same argument as that in [57, Section 2].We regard this as a path, parameterized by s ∈
17 The mod-two AS index on a mapping torus was introduced to explain global anomaly by Witten [27].
Its lattice version was considered in Ref [56], where the Weyl fermion determinant is regularized by the
overlap fermion on a lattice with a definite chirality projection, and its one parameter family connecting
two gauge-equivalent configurations was discussed.
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[0, 1], of paths {Ds
cyl,t }t∈[−1,1] of real skew-adjoint Fredholm operators. Obviously,

Ds
cyl,−1 = Dcyl,−1 is invertible. Using the invertibility of DX , for m large enough,

we can also see that Ds
cyl,1 are all invertible for all s ∈ [0, 1]: this can be shown in

the same way as [39, Proposition 9]. Thus, by the deformation invariance of spectral
flows, we get

Sf({D0
cyl,t }t∈[−1,1]) = Sf({D1

cyl,t }t∈[−1,1]). (48)

Moreover, at s = 0, we see directly from the definition of spectral flow that

Sf({D0
cyl,t }t∈[−1,1]) = Ind(Dcyl). (49)

So we get

Sf({D1
cyl,t }t∈[−1,1]) = Ind(Dcyl). (50)

Note that, restricted on the cylindrical end X × (4,∞), the family {D1
cyl,t }t does not

depend on t .
In order to pass to the closed manifold Y , we consider the manifold Y+,cyl :=

(−∞, 0)×X∪Y+ with the correspondingbundle S+,cyl andD+,cyl. Let {D+,cyl,t }t∈[−1,1]
the constant family of operators on L2(Y+,cyl; S+,cyl ⊕ S+,cyl) defined by

D+,cyl,t :=
(

0 D+,cyl + midS
D+,cyl − midS 0

)
. (51)

Of course, we have

Sf({D+,cyl,t }t∈[−1,1]) = 0. (52)

By the gluing property of Fredholm index, we can show the corresponding glu-
ing formula for mod-two spectral flows18. If we glue the family {D1

cyl,t }t∈[−1,1] and
{D+,cyl,t }t∈[−1,1] along X , we get the family {Dt }t∈[−1,1] on L2(Y ; S ⊕ S) defined in
(23), and get

Sf({Dt }t∈[−1,1]) = Sf({D1
cyl,t }t∈[−1,1]) + Sf({D+,cyl,t }t∈[−1,1]) = Ind(Dcyl). (53)

So the proof is complete.

Remark 2 The authors came up with this simpler proof while writing this paper. We
can also prove the main theorem of our previous work [39] in a similar way.

Actually, the two proofs are essentially the same. The relation between them can
be understood by comparing Figs. 3, 4 and 5. Figure 3 corresponds to the proof in
Appendix, and Fig. 5 corresponds to that in Sect. 4.5. On the pink regions, we have

18 One simplest way to show the gluing of spectral flows here is to use Proposition 3. Using it, we can
reduce the problem to the gluing property of indices of operators on Y− ×R and Y+ ×R, which is standard.
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Fig. 3 The proof in Appendix

Fig. 4 Deformation of the two reference manifolds

Fig. 5 The proof in Sect. 4.5

κ = 1, and on the white regions, we have κ = −1. In the proofs, we identified the
mod-twoAPS indexwith themod-two spectral flows between operators defined on red
and blue parts. The fact that spectral flows in Figs. 3 and 5 coincide can be understood
by moving the red and blue manifolds in the way shown in Fig. 4.
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