Homework 8

Exercise 1 Consider the map

$$f: \mathbb{R}^2 \ni (x, y) \mapsto x^3 - 2xy + 2y^2 - 1 \in \mathbb{R}.$$

- (i) Show that the implicit function theorem can be applied at the point $(1,1) \in \mathbb{R}^2$,
- (ii) Compute the tangent at the point (1,1) of the curve of equation f(x,y) = 0, and determine the position of this curve with respect to the tangent line at this point.

Exercise 2 Consider the map

$$f: \mathbb{R}^2 \ni (x, y) \mapsto \arctan(x + y) + e^x - 2y - 1 \in \mathbb{R}$$
.

- (i) Show that the implicit function theorem can be applied at any point $(x, y) \in \mathbb{R}^2$ which satisfies f(x, y) = 0,
- (ii) Let ϕ be the function which expresses the second coordinates in terms of the first coordinate, and whose existence is justified by the point (i). Compute the Taylor expansion of ϕ up to the order 2 near (x, y) = (0, 0).

Exercise 3 Let $f : \mathbb{R}^2 \to \mathbb{R}$ be of class C^1 and let $(x_0, y_0) \in \mathbb{R}^2$ be a solution of $f(x_0, y_0) = 0$. Suppose that $\partial_y f(x_0, y_0) \neq 0$. Let $\phi : (x_0 - \varepsilon, x_0 + \varepsilon) \to \mathbb{R}$ be the implicit function of class C^1 satisfying $f(x, \phi(x)) = 0$ for any $x \in (x_0 - \varepsilon, x_0 + \varepsilon)$ and satisfying $\phi(x_0) = y_0$. Show that

$$\phi'(x) = -rac{\left[\partial_x f
ight]\left(x,\phi(x)
ight)}{\left[\partial_y f
ight]\left(x,\phi(x)
ight)}$$

whenever the denominator is not 0