Homework 4

Exercise 1 (Second part of Exercise 4 of HW 3) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function of class C^1 and let $X \in \mathbb{R}^n$ such that $[\nabla f](X) \neq \mathbf{0}$. Let $k \in \mathbb{R}$ be given by k := f(X) and consider the k-level set L_k . This k-level set can be considered (at least locally) as a surface of dimension n - 1 in \mathbb{R}^n . Show that $[\nabla f](X)$ is perpendicular to the surface L_k . For that purpose, we can consider any parametric curve $\varphi : (-1, 1) \to L_k$ with $\varphi(0) = X$ and show that $[\nabla f](X)$ is perpendicular to it at the point X.

Exercise 2 (i) Compute the Taylor expansion around (0,0) and up to the second order of the function

$$\mathbb{R}^2 \ni (x, y) \mapsto e^{x^2 + xy + y^2} \in \mathbb{R}.$$

(ii) Compute the Taylor expansion around (0,0) up to the third order of the function

$$\mathbb{R}^2 \ni (x, y) \mapsto \mathrm{e}^{x+y} \in \mathbb{R}$$

By fixing then x = y = 1/2 in the polynomial you have obtained, what can you say about the number e?

Exercise 3 Consider the functions $\varphi : \mathbb{R} \to \mathbb{R}^2$ defined by $\varphi(t) := \begin{pmatrix} \cos(t) \\ t^2 \end{pmatrix}$, and $f : \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) := e^{3x+2y}$. We consider the composition of these two functions, namely $F : \mathbb{R} \to \mathbb{R}$ given by $F = f \circ \varphi$. Compute the derivative of this function by two different methods: once by a direct computation, and once as the derivative of a composed function (chain rule).

So far we have considered the norm in \mathbb{R}^n provided by the formula

$$||X|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{\sum_{j=1}^n x_j^2} =: ||X||_2.$$

We could have considered other expressions, as for example

$$||X||_1 := |x_1| + |x_2| + \dots + |x_n| = \sum_{j=1}^n |x_j|, \text{ or } ||X||_\infty := \max_{j \in \{1,\dots,n\}} |x_j|.$$

Exercise 4 a) Show that the two alternative expressions also define norms. Namely, they satisfy the three conditions of any norm $\|\|\cdot\|\|$:

- (i) $|||X||| \ge 0$ for any $X \in \mathbb{R}^n$, and |||X||| = 0 if and only if $X = \mathbf{0}$,
- (ii) $\||\lambda X\|| = |\lambda| \||X\||$, for any $\lambda \in \mathbb{R}$ and $X \in \mathbb{R}^n$,
- (*iii*) $|||X + Y||| \le |||X||| + |||Y|||$, for any $X, Y \in \mathbb{R}^n$.

b) Draw the unit ball of \mathbb{R}^2 with the three norms $\|\cdot\|_2$, $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$.