Quiz 2

Name:

No partial credit. Write legible.

1. [5 points] Let \vec{a} , \vec{b} and \vec{c} be given non-zero vectors in \mathbb{R}^3 . Use dot and cross products to give expressions for vectors satisfying the following geometric descriptions:

(a) A vector orthogonal to
$$\vec{a}$$
 and \vec{b} .

(b) A vector of length 2 orthogonal to \vec{a} and \vec{b} .

$$\frac{2 \|\vec{a} \times \vec{b}\|}{\|\vec{a} \cdot \vec{b}\|}$$

(c) The vector projection of \vec{b} onto \vec{a} .

$$\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^2} \cdot \vec{a}$$

(d) A vector with the length of \vec{b} and the direction of \vec{a} .

(e) A vector orthogonal to
$$\vec{a}$$
 and $\vec{b} \times \vec{c}$

$$\vec{a} \times (\vec{b} \times \vec{c})$$

2. [5 points] Let \vec{a} , \vec{b} , \vec{c} and \vec{d} be given non-zero vectors in \mathbb{R}^3 . Indicate which of the following expressions are vectors (V), scalars (S), and which are nonsense (N).

(a)
$$\vec{a} \times \vec{b} \times \vec{c}$$
 \bigvee

(b)
$$(\vec{a} \circ \vec{b}) \circ \vec{c}$$
 N

(c)
$$(\vec{a} \times \vec{b}) \circ \vec{c}$$

(c)
$$(\vec{a} \times \vec{b}) \circ \vec{c}$$
 S $(\vec{a} \times \vec{b}) \circ \vec{c}$ is a vector \Rightarrow $(\vec{a} \times \vec{b}) \circ \vec{c}$ is a scalar)

(d)
$$(\vec{a} \times \vec{b}) \circ (\vec{c} \times \vec{d})$$
 S $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d})$ is a scalar

(e)
$$(\vec{a} \circ \vec{b})\vec{c} - (\vec{a} \times \vec{b})$$
 V $(\vec{a} \circ \vec{b})\vec{s} = scalar , (\vec{a} \circ \vec{b})\vec{c} \text{ is a vector})$
 $\vec{a} \times \vec{b} \text{ is a vector} \Rightarrow (\vec{a} \circ \vec{b})\vec{c} - (\vec{a} \times \vec{b}) \text{ is a vector})$