
Chapter 3

Crossed product C∗-algebras

The aim of this chapter is to present an introduction to the theory of crossed product
C∗-algebras. Our main references will be Chapter 7 of [Ped79] and the first chapters
of [Wil07]. We shall also heavily rely on [Fol95] for the preliminary sections on locally
compact groups, and refer to [Tom87] for a nice introduction to C∗-dynamical systems
and crossed product algebras in a restricted setting.

3.1 Locally compact groups

We start with some information on locally compact group. The main reference is [Fol95].

Definition 3.1.1. A locally compact group is a group G equipped with a locally compact
and Hausdorff1 topology with respect to which the group operations are continuous,
i.e. G×G 3 (x, y) 7→ xy ∈ G is continuous, and G 3 x 7→ x−1 ∈ G is continuous. The
unit of G is denoted by 1.

Note that we use the multiplicative notation for the group, and therefore the unit is
denoted by 1. If the additive notation is used (and this will be the case at some places
in the sequel), then the continuity requirements read G × G 3 (x, y) 7→ x + y ∈ G is
continuous, and G 3 x 7→ −x ∈ G is continuous, and the unit of G is denoted by 0. In
the sequel, G will always denote a locally compact group.

If V is a subset of G, we write V −1 := {x−1 ∈ G | x ∈ V } and say that V is
symmetric if V = V −1. For two subsets V1, V2 of G, we write V1V2 for {xy ∈ G | x ∈
V1 and y ∈ V2}. A subgroup of H of G is normal if xHx−1 = H for all x ∈ G. In
particular, if H is a normal subgroup of G, then its quotient G/H is also a locally
compact group.

For any bounded map f : G → C, we define the left and right translates of f by
[Lyf ](x) := f(y−1x) and [Ryf ](x) := f(xy). These definitions make the maps y 7→
Ly and y 7→ Ry group homomorphisms. We say that f is left uniformly continuous,

1This condition is often tacitly assumed in the literature, and we will always assume it implicitly.
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38 CHAPTER 3. CROSSED PRODUCT C∗-ALGEBRAS

resp. right uniformly continuous, if ‖Lyf − f‖∞ → 0, resp. ‖Ryf − f‖∞ → 0, as y → 1
in G.

Let us start with a simple result which is well-known for continuous functions on Rd

with compact support. We use the notation Cc(G) for the set of compactly supported
continuous complex functions on G.

Lemma 3.1.2. If f ∈ Cc(G), then f is left and right uniformly continuous.

Proof. We give the proof for the right uniform continuity, the argument for the other
one is similar. Let f ∈ Cc(G), K := supp f and ε > 0. For every x ∈ K, let Ux be a
neighbourhood of 1 such that |f(xy) − f(x)| < ε/2 for any y ∈ Ux, and let Vx be a
symmetric neighbourhood of 1 such that VxVx ⊂ Ux. The sets xVx define a covering of
K, so there exists x1, . . . , xn ∈ K such that K ⊂ ∪nj=1xjVxj . Let us set V := ∩nj=1Vxj and
show that supy∈V ‖Ryf − f‖∞ < ε. Indeed, for any x ∈ K there exists j ∈ {1, . . . , n}
such that x−1

j x ∈ Vxj , so that xy = xj(x
−1
j x)y ∈ xjUxj for any y ∈ V . Then, one has

|f(xy)− f(x)| ≤ |f(xy)− f(xj)|+ |f(xj)− f(x)| < ε/2 + ε/2 = ε.

Similarly, if xy ∈ K, one obtains |f(xy)− f(x)| < ε. If neither xy ∈ K nor x ∈ K, then
f(xy)− f(x) = 0− 0 = 0, and the statement is proved.

Definition 3.1.3. A left Haar measure, resp. a right Haar measure, on G is a non-zero
Radon measure2 µ on G that satisfies µ(xV ) = µ(V ), resp. µ(V x) = µ(V ), for every
Borel set V ⊂ G and every x ∈ G.

For any Radon measure µ and any set V we write (µ̃)(V ) := µ(V −1). From now
on, we also denote by C+

c (G) the subset of compactly supported continuous functions
on G which are non-negative.

Lemma 3.1.4. Let µ be a Radon measure on G.

(i) µ is a left Haar measure if and only if µ̃ is a right Haar measure,

(ii) µ is a left Haar measure if and only if
∫
G
Lyfdµ =

∫
G
fdµ for any f ∈ C+

c (G)
and any y ∈ G.

The proof of this statement is rather simple, see [Fol95, Prop. 2.9]. In view of this
result, it is not really relevant to consider differently a left Haar measure or a right
Haar measure. We shall follow the more common choice which consists in considering
left Haar measures only.

The following statement is of fundamental importance for performing analysis on
locally compact groups. We refer to Theorem 2.10 and 2.20 of [Fol95] for its proof, and
for various examples of locally compact group with their Haar measure.

2A Radon measure is a measure on the algebra of Borel sets of a Hausdorff topological space X that
is locally finite and inner regular.
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Theorem 3.1.5. Every locally compact group possesses a left Haar measure, which is
unique up to a scaling constant.

Note that if µ is a Haar measure on G, then µ(V ) > 0 for every non-empty open
set V , and that

∫
G
fdµ > 0 for any f ∈ C+

c (G) with f 6= 0.

Extension 3.1.6. It has not been assumed that the locally compact group G is σ-
compact (⇔ the union of countably many compact subsets). Consequently, the Haar
measure is not always σ-finite (⇔ G might not a countable union of measurable sets
with finite measure). In such a situation, some standard results of analysis which are
well-known on Rd present some complications for their generalization on G, but these
problems are manageable, see [Fol95, Sec. 2.3] for details.

Let us fix a locally compact group G with a left Haar measure µ. We shall denote
by Lp(G, dµ) the Lp-spaces constructed with this measure. Now, for any x ∈ G and
V ⊂ G, let us define the measure µx by µx(V ) := µ(V x). µx is again a left Haar
measure, and by Theorem 3.1.5 there exists ∆(x) ∈ (0,∞) such that µx = ∆(x)µ. Note
that the value ∆(x) is independent of the original choice for the Haar measure µ. The
map ∆ : G→ R+ is called the modular function of G. An important result concerning
this function is:

Lemma 3.1.7. The map ∆ is a continuous homomorphism from G to the group multi-
plicative on R+. Moreover, for any f ∈ L1(G, dµ) one has

∫
G
Ryfdµ = ∆(y−1)

∫
G
fdµ.

Proof. For any x, y ∈ G and V ⊂ G one has

∆(xy)µ(V ) = µ(V xy) = ∆(y)µ(V x) = ∆(y)∆(x)µ(V ),

so that ∆ is a homomorphism from G to R+. For the rest of the proof, we refer to
[Fol95, Prop. 2.24].

Definition 3.1.8. A locally compact group G is called unimodular if ∆ = 1.

Abelian groups and discrete groups are unimodular, but many others groups are
unimodular too.

Lemma 3.1.9. If K is any compact subgroup of G, then ∆|K = 1.

Proof. ∆(K) is a compact subgroup of R+, and therefore ∆(K) = {1}.

Corollary 3.1.10. If G is compact, then G is unimodular.

Let us now denote by M(G) the space of all complex bounded Radon measures on
G, and endow this set with a convolution and an involution: For any µ, ν ∈M(G) and
f ∈ C0(G) we define the convolution µ ∗ ν by the formula∫

G

f(x)d(µ ∗ ν)(x) =

∫
G

∫
G

f(xy)dµ(x)dν(y)
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and the involution by the formula
∫
G
f(x)dµ∗(x) =

∫
G
f(x−1)dµ(x). Endowed with this

product and involution, M(G) becomes a B∗-algebra.
The closed self-adjoint ideal L1(G) consisting of measures which are absolutely

continuous with respect to a left Haar measure on G can clearly be identified with the
space L1(G, dµ). With this identification one has for any f, g ∈ L1(G)

f ∗ g(x) =

∫
G

f(y)g(y−1x)dµ(y) =

∫
G

f(xy)g(y−1)dµ(y)

and f ∗(x) = ∆(x)−1f(x−1). The B∗-algebra L1(G) is called the L1-group algebra of G.
Note that M(G) is always unital, with unit δ1 (the point mass at 1) while L1(G) is
unital if and only if G is discrete. However, approximate unit exists for L1(G):

Theorem 3.1.11. For any locally compact group G, there exists an approximate unit for
L1(G), i.e. there exists an increasing net {Ij}j∈J ⊂ L1(G) with Ij ≥ 0, Ij(x

−1) = Ij(x),
and

∫
G
Ij(x)dµ(x) = 1, such that limj ‖f ∗ Ij − f‖1 = 0.

Proof. We refer to [Fol95, Prop. 2.42] for a constructive proof.

Exercise 3.1.12. We state in this exercise a couple of useful formulas which can be
deduced from the definition of the modular function. Let f ∈ Cc(G) and x ∈ G:∫

G

f(xy)dµ(y) =

∫
G

f(y)dµ(y),∫
G

f(yx)dµ(y) = ∆(x)−1

∫
G

f(y)dµ(y),∫
G

∆(y−1)f(y−1)dµ(y) =

∫
G

f(y)dµ(y).

We end this section with some information on representations. In particular, we
shall prove a result about the equivalence between unitary representations of the group
and non-degenerate representations of the corresponding L1-group algebra. Note that
we use the notation U (H) for the set of all unitary operators in a Hilbert space H.

Definition 3.1.13. A unitary representation of G is a pair (H, U), where H is a Hilbert
space and where U : G→ U (H) is a homomorphism which is strongly continuous. One
usually writes Ux for U(x) ∈ U (H).

Note that on U (H), weak and strong topologies coincide. Recall also that a repre-
sentation of a B∗-algebra C is a pair (H, π) with H a Hilbert space and π : C → B(H)
a continuous ∗-homomorphism. This representation is non-degenerate if for any h ∈ H
there exists A ∈ C such that π(A)h 6= 0.

Proposition 3.1.14. There are bijective correspondences between the sets of unitary
representations of G, representations of M(G) whose restrictions to L1(G) are non-
degenerate, and non-degenerate representations of L1(G).



3.1. LOCALLY COMPACT GROUPS 41

Proof. If (H, U) is a unitary representation of G, we define for each µ ∈ M(G) and
each h, h′ ∈ H

〈π(µ)h, h′〉 :=

∫
G

〈Uxh, h′〉dµ(x). (3.1.1)

Then (H, π) us a representation of M(G), and by using an approximate unit for L1(G)
we can check that the restriction to L1(G) is non-degenerate.

Conversely, let (H, π) be a non-degenerate representation of L1(G) and let {Ij}j∈J
be an approximate unit for L1(G). Since elements of the form π(f)h with f ∈ L1(G)
and h ∈ H are dense in H, it follows that {π(Ij)} converges strongly to the operator
1. In addition, this representation can be extended to a representation of L(G) (we use
the same symbols for this extension) by defining

π(µ)(π(f)h) = π(µ ∗ f)h (3.1.2)

for any µ ∈M(G), f ∈ L1(G) and h ∈ H. Equivalently, one has

π(µ)h = s− lim
j
π(µ ∗ Ij)h, (3.1.3)

which shows that the extension is unique. The restriction of M(G) to point measures
δx with x ∈ G, provides then a unitary representation of G whose extension to L1(G)
is precisely the representation (H, π).

We refer to [Fol95, Sec. 3.2] for more details in the above proof. Note that a unitary
representation of G always exists, namely its left regular representation: We consider
H := L2(G, dµ) where µ is a Haar measure on G, and set

[Uxf ](y) = [Lxf ](y) = f(x−1y). (3.1.4)

By the construction exhibited in the proof of the previous proposition, one also ob-
tains a non-degenerate representation of L1(G) on L2(G, dµ), whose norm closure in
B
(
L2(G, dµ)

)
is called the reduced group C∗-algebra, and is usually denoted by C ∗r (G).

On the other hand, the completion of L1(G) with the norm

‖f‖ := sup{‖π(f)‖ | (H, π) is a unitary representation of G}

is called the group C∗-algebra C ∗(G).
Let us now consider a unitary representation (H, U) of G. If there exists a non-

trivial closed subspace M of H such that UxM ⊂M for all x ∈ G, then M is called
an invariant subspace for U . In such a case, the restriction (M, U |M) is a unitary
subrepresentation of G. If such a subrepresentation exists, the original representation
(H, U) is called reducible, and otherwise irreducible.

The following statement is important in this context. Its proof is not difficult but
requires some preliminary lemmas, see [Fol95, Lem. 3.5].

Theorem 3.1.15 (Schur’s Lemma). A unitary representation (H, U) of G is irreducible
if and only if the set of elements of B(H) which commute with Ux for all x ∈ G is
reduced to C1.
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The set mentioned in the previous statement is usually called the commutant or the
centralizer of (H, U).

Corollary 3.1.16. If G is abelian, then every irreducible representation of G is one-
dimensional.

Proof. If (H, U) is a representation of G, then Ux commute will all elements Uy for
any y ∈ G. Therefore, Ux belongs to the commutant of (H, U) for any x ∈ G. If this
representation is irreducible, this commutant is equal to C1, and therefore we have
Ux = cx1, with cx ∈ C, for all x ∈ G. Since every one-dimensional subspace of H is
then invariant for U , it follows that dim(H) = 1.

Extension 3.1.17. The notion of amenable locally compact group is important and
could be studied, cf. [Ped79, Sec. 7.3]. Note that abelian groups and compact groups are
amenable.

3.2 Locally compact abelian groups

We shall now develop the theory of locally compact abelian groups, and refer to [Fol95,
Sec. 4] for more details. In particular, one of our aims is to show that the usual Fourier
transform is nothing but a Gelfand representation in the context of locally compact
abelian groups.

In the section, G will always denote a locally compact abelian group. For them, left
and right continuity coincide, convolution is commutative, and the modular function is
identically equal to 1. For simplicity, we shall simply denote by dx a Haar measure on
G (which is unique up to a scaling constant), and Lp(G) for Lp(G, dx) with the norm
denoted by ‖ · ‖p.

Let us recall from Corollary 3.1.16 that all unitary irreducible representation of G
are one-dimensional. Thus, for each such representation (H, U) one can take H = C
and then Ux = ξ(x), where ξ : G→ T is a continuous homomorphism.

Definition 3.2.1. For a locally compact abelian group G, a character ξ is a continuous
homomorphism from G to T. The set of all characters is denoted by Ĝ.

Note that we shall use both notations ξ(x) or 〈x, ξ〉. As a consequence of Proposition
3.1.14, this unitary representation induces a non-degenerate representation (C, τξ) of
L1(G) by the formula

τξ(f) =

∫
G

〈x, ξ〉f(x)dx (3.2.1)

for any f ∈ L1(G). Since B(C) is clearly identified with C, such a representation
is nothing but a character on the algebra L1(G), i.e. an element of Ω

(
L1(G)

)
, see

Definition 2.3.1. Conversely, any character τ on L1(G) defines a character on G. Indeed,
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observe first that any τ ∈ Ω
(
L1(G)

)
= L1(G)∗ is obtained by integration against some

ξ ∈ L∞(G). Then, choose f ∈ L1(G) such that τ(f) 6= 0. For any g ∈ L1(G) one has

τ(f)

∫
G

ξ(y)g(y)dy = τ(f)τ(g) = τ(f ∗ g)

=

∫
G

∫
G

ξ(x)f(xy−1)g(y)dydx =

∫
G

τ(Lyf)g(y)dy

so that ξ(y) = τ(Lyf)

τ(f)
locally a.e. We can thus redefine ξ such that ξ(y) = τ(Lyf)

τ(f)
for

every y ∈ G, and then ξ is continuous. As a consequence, one has

ξ(xy)τ(f) = τ(Lxyf) = τ(LxLyf) = ξ(x)ξ(y)τ(f)

which means ξ(xy) = ξ(x)ξ(y). Finally, ξ(xn) = ξ(x)n for any n ∈ Z, and since ξ is
bounded it implies that |ξ(x)| = 1. As a consequence, ξ is a character on G, as expected.

We have thus proved that:

Theorem 3.2.2. For any locally compact abelian group, the set of characters Ĝ can be
identified with Ω

(
L1(G)

)
through formula (3.2.1).

Ĝ is an abelian group under pointwise multiplication, its identity is the constant
function 1 on G, and one has

〈x, ξ−1〉 = 〈x, ξ〉 = 〈x−1, ξ〉.

By endowing Ĝ with the weak∗ topology inherited from L∞(G), one infers that Ĝ is
a locally compact abelian group, called the dual group of G. Note that this topology
coincides with the one borrowed from Ω

(
L1(G)

)
through the identification mentioned

above.

Examples 3.2.3. (i) For G = R, Ĝ ∼= R with the pairing 〈x, ξ〉 = eiξx,

(ii) For G = T, Ĝ ∼= Z with the pairing 〈α, n〉 = αn,

(iii) For G = Z, Ĝ ∼= T with the pairing 〈n, α〉 = αn.

Let us add some information in the case of compact or discrete groups.

Lemma 3.2.4. If G is a compact abelian group with a Haar measure normalized such
that

∫
G

dx = 1, then Ĝ is an orthonormal set in L2(G).

Proof. If ξ ∈ Ĝ then |ξ| = 1 and therefore ‖ξ‖2 = 1. If ξ, η ∈ Ĝ with ξ 6= η there exists
x0 ∈ G such that 〈x0, ξη

−1〉 6= 1, and then we have∫
G

〈x, ξη−1〉dx = 〈x0, ξη
−1〉
∫
G

〈x−1
0 x, ξη−1〉dx = 〈x0, ξη

−1〉
∫
G

〈x, ξη−1〉dx,

which implies that
∫
G
〈x, ξη−1〉dx = 0.
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Proposition 3.2.5. If G is discrete, then Ĝ is compact. If G is compact, then Ĝ is
discrete.

Proof. If G is discrete, then L1(G) has a unit, and therefore Ω
(
L1(G)

)
is compact. By

Theorem 3.2.2, it follows that Ĝ is compact.
If G is compact (with Haar measure satisfying

∫
G

dx = 1), then the constant func-
tion 1 belongs to L1(G). It follows from Lemma 3.2.4 that

∫
G
〈x, ξ〉dx = 1 if ξ = 1

while
∫
G
〈x, ξ〉dx = 〈1, ξ〉L2(G) = 0 if ξ ∈ Ĝ with ξ 6= 1. Since the set {f ∈ L∞(G) |

|
∫
G
f(x)dx| > 1/2} is a weak∗ open set, it follows that {1} is an open set in Ĝ, and

therefore Ĝ is discrete.

Henceforth, it is more convenient (and more common) to use a slightly different
identification of Ĝ with Ω

(
L1(G)

)
than the one given in (3.2.1). Namely, we associate

with ξ ∈ Ĝ the functional

f 7→
∫
G

〈x, ξ〉f(x)dx.

The Gelfand transform for the abelian Banach algebra L1(G) becomes then the map
F : L1(G)→ C0(Ĝ) defined by

[Ff ](ξ) ≡ f̂(ξ) =

∫
G

〈x, ξ〉f(x)dx

and is usually called in this context the Fourier transform. A rephrasing of Theorem
2.3.5 together with some simple verifications lead to:

Theorem 3.2.6. The Fourier transform is a norm decreasing ∗-homomorphism from
L1(G) to C0(Ĝ), or to C(Ĝ) if Ĝ is compact. It extends to a ∗-isomorphism between
C ∗(G) and C0(Ĝ).

Extension 3.2.7. In the setting presented above, many classical results of Fourier
analysis on Rd can be extended to arbitrary locally compact abelian groups. This subject
is nicely presented in Section 4 of [Fol95]. A look at Plancherel Theorem, at some
Fourier inversions formula or at Pontrjagin duality theorem is certainly valuable.

3.3 C∗-dynamical systems

In the sequel, we shall go on with the convention of simply writing dx for a left Haar
measure on G, and denote by Lp(G) the spaces Lp(G, dx).

Definition 3.3.1. A C∗-dynamical system consists in a triple (C , G, θ), where C is a
C∗-algebra, G is a locally compact group, and θ is a continuous homomorphism from G
to Aut(C ), with Aut(C ) the group of ∗-automorphisms of C equipped with the topology
of pointwise convergence.



3.3. C∗-DYNAMICAL SYSTEMS 45

Note that the topology on Aut(C ) means that for each A ∈ C , the map

G 3 x 7→ θx(A) ∈ C

is continuous.

Example 3.3.2. Let us present an example which will be important later on. We con-
sider the C∗-algebra C := BCu(Rd), the group G = Rd (with the additive notation)
and the action θ of G on C by translation, i.e. [θxf ](y) = f(y − x) for any f ∈ C and
x, y ∈ Rd. Almost by definition, the algebra BCu(Rd) is the largest algebra of functions
on Rd for which this action is continuous, namely ‖θxf − f‖∞ → 0 as x → 0. Then
the triple (C , G, θ) is a C∗-dynamical system. Note that any C∗-subalgebra of BCu(Rd)
which is stable under translations would also be suitable for such a dynamical system,
as for example C0(Rd).

Exercise 3.3.3. Let G be a locally compact group, Ω be a locally compact space, and
assume that the group G acts continuously on Ω, i.e. there exists a continuous map

G× Ω 3 (x, ξ) 7→ x · ξ ∈ Ω

such that 1 · ξ = ξ and x · (y · ξ) = xy · ξ for all x, y ∈ G and ξ ∈ Ω. Such a system is
called a locally compact transformation group, and Ω is also called a locally compact
G-space. Then, let us define an automorphism of C0(Ω) by [θxf ](ξ) := f(x−1 · ξ) for
any f ∈ C0(Ω), x ∈ G and ξ ∈ Ω. Check that the triple

(
C0(Ω), G, θ

)
is a C∗-dynamical

system. In fact, it turns out that all C∗-dynamical systems with C abelian arise from
locally compact transformation groups, see [Wil07, Prop. 2.7] for details.

Definition 3.3.4. A covariant representation of a C∗-dynamical system (C , G, θ) con-
sists in a triple (H, π, U), where (H, π) is a representation of C , (H, U) is a unitary
representation of G, and the following compatibility condition holds

π
(
θx(A)

)
= Uxπ(A)U∗x

for all A ∈ C and x ∈ G. This covariant representation is non-degenerate if the repre-
sentation (H, π) of C is non-degenerate.

Examples 3.3.5. Covariant representations of the dynamical systems (C , {1}, id) cor-
respond exactly to representation of C . On the other hand, covariant representations of
the dynamical systems (C, G, id) coincide with unitary representations of G.

Example 3.3.6 (Regular representation). Let (C , G, θ) be a C∗-dynamical system, and
let (H, π) be a representation of C . Consider the Hilbert space L2(G;H) ∼= L2(G)⊗H,
and let us then define π̃ : C → B

(
L2(G;H)

)
and Ũ : G→ U

(
L2(G;H)

)
by

[π̃(A)h](x) := π
(
θ−1
x (A)

)
h(x) and [Ũxh](y) := h(x−1y),
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for any A ∈ C , h ∈ L2(G;H) and x, y ∈ G. Let us now check that

[Ũxπ̃(A)Ũ∗xh](y) = [π̃(A)Ũ∗xh](x−1y) = π
(
θ−1
x−1y(A)

)(
Ũ∗xh(x−1y)

)
= π

[
θ−1
y

(
θx(A)

)](
h(y)

)
=
[
π̃
(
θx(A)

)
h
]
(y).

Thus, the triple
(
L2(G;H), π̃, Ũ

)
is a covariant representation of the C∗-dynamical sys-

tem, called its regular representation. As a consequence, any C∗-dynamical system has
at least one covariant representation. It can also be shown that the regular representa-
tion is non-degenerate if the representation (H, π) of C is non-degenerate, cf. [Wil07,
Lem. 2.17].

Exercise 3.3.7. Let G be a locally compact group and its left action on elements
of C0(G), i.e. [Lxf ](y) = f(x−1y). In this setting, check that

(
C0(G), G, L

)
is a C∗-

dynamical system. Now, let H := L2(G) and define Id : C0(G)→ B(H) be the identifi-
cation map defined by [Id(f)h](x) = f(x)h(x) for any f ∈ C0(G) and h ∈ H. Finally,
let Ux ∈ U (H) defined by [Uxh](y) = h(x−1y). Check that (H, Id, U) is a covariant
representation of

(
C0(G), G, L

)
.

3.4 Crossed product algebras

This section is mainly based on [Ped79, Sec. 7.6] together with [Wil07, Sec. 2.3]. How-
ever, note that quite a lot of explicit computations are explicitly written in [Sko12].

Let (C , G, θ) be a C∗-dynamical system, and let us define a product and an invo-
lution on the linear space Cc(G; C ) of continuous functions from G to C with compact
support: for any f, g ∈ Cc(G; C ) and x ∈ G one sets

[f ∗ g](x) :=

∫
G

f(y)θy
(
g(y−1x)

)
dy

f ∗(x) := ∆(x)−1θx
(
f(x−1)∗

)
.

Some lengthy but straightforward computations show that these definitions endow
Cc(G; C ) with an associative product and with an involution. In addition, if one sets
‖f‖1 :=

∫
G
‖f(y)‖dy, then Cc(G; C ) becomes a norm algebra with a submultiplicative

norm, i.e. ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1. The completion of Cc(G; C ) with this norm is denoted
by L1(G; C ) which is therefore a B∗-algebra.

Clearly, if C = C, the above construction leads simply to the algebra L1(G). Let
us also observe that if f ∈ L1(G) and A ∈ C , then the element f ⊗ A is an element of
L1(G; C ). In addition, the linear span of elements of the form f ⊗ A with f ∈ Cc(G)
and A ∈ C is dense in L1(G; C ).

Let us now state an important result relating a covariant representation of a C∗-
dynamical system to a representation of the corresponding L1-algebra:
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Theorem 3.4.1. If (H, π, U) is a covariant representation of the C∗-dynamical system
(C , G, θ), then there is a norm-decreasing representation (H, πoU) of L1(G; C ) defined
by

π o U(f) =

∫
G

π
(
f(y)

)
Uydy (3.4.1)

for every f ∈ Cc(G; C ). Moreover, (H, π o U) is non-degenerate if (H, π) is non-
degenerate.

The representation (H, π o U) is called the integrated representation of (H, π, U).
We provide below a sketch of the proof, and refer to [Wil07, Prop. 2.23] for the details.

Proof. Let f ∈ Cc(G; C ) and define π o U(f) ∈ B(H) by (3.4.1). Then, one observes
that

π o U(f ∗) =

∫
G

π
[
∆(y)−1θy

(
f(y−1)∗

)]
Uydy

=

∫
G

∆(y)−1Uyπ
(
f(y−1)∗

)
dy =

∫
G

U∗yπ
(
f(y)∗

)
dy =

(
π o U(f)

)∗
,

and (with g ∈ Cc(G; C ))

π o U(f ∗ g) =

∫
G

π
[ ∫

G

f(y)θy
(
g(y−1x)

)
dy
]
Uxdx

=

∫
G

[ ∫
G

π
[
f(y)

]
Uyπ

[
g(y−1x)

]
U∗yUxdy

]
dx

=

∫
G

[ ∫
G

π
[
f(y)

]
Uyπ

[
g(x)

]
Uxdy

]
dx

= π o U(f) π o U(g).

In addition, one also has ‖πoU(f)‖ ≤
∫
G

∥∥π(f(y)
)
Uy
∥∥dy = ‖f‖1. These relations show

that
(
H, π o U

)
extends to a norm-decreasing representation of L1(G; C ).

For the non-degeneracy, we refer to the proof of [Wil07, Prop. 2.23].

Definition 3.4.2. For any C∗-dynamical system (C , G, θ) and any f ∈ Cc(G; C ) let
us set

‖f‖ := sup{‖π o U(f)‖B(H) | (H, π, U) is a covariant representation of (C , G, θ)}.
(3.4.2)

The norm ‖ · ‖ on Cc(G; C ) is called the universal norm, and is dominated by the ‖ · ‖1-
norm. The completion of Cc(G; C ) with respect to the norm ‖ · ‖ is called the crossed
product C∗-algebra of C by G and is denoted by C oθ G.

Example 3.4.3. If G is a locally compact group and if θ corresponds to the left action
on C0(G), i.e. [θxf ](y) = f(x−1y) for all f ∈ C0(G), then C0(G) oθ G is ∗-isomorphic
to the compact operators on L2(G).
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Remark 3.4.4. If the C∗-algebra C is abelian, with C ∼= C0(Ω), the corresponding
crossed product algebra C oθ G is also called transformation group C∗-algebra. More-
over, it is possible to describe the ∗-algebraic structure on Cc

(
G;C0(Ω)

)
in terms of

functions on G× Ω. Indeed, observe first that by obvious identifications one has

Cc(G× Ω) ⊂ Cc
(
G;Cc(Ω)

)
⊂ Cc

(
G;C0(Ω)

)
.

Then, if one denotes the action of G on Ω by · (note that such an action always exists,
see Proposition 2.7 of [Wil07]) one ends up with the following formula:

[f ∗ g](x, ξ) =

∫
G

f(y, ξ)g(y−1x, y−1 · ξ)dy

f ∗(x, ξ) = ∆(x)−1f(x−1, x−1 · ξ)

for f, g ∈ Cc(X × Ω) and (x, ξ) ∈ G× Ω.

Except in some very special cases, the crossed product algebra C oθ G contains
neither a copy of the algebra C nor a copy of L1(G). However, its multiplier algebra
M
(
C oθG

)
does, as we shall observe now. Indeed, for any A ∈M (C ), µ ∈M(G) and

f ∈ Cc(G; C ) let us define

[L(A,µ)f ](x) := A

∫
G

θy
(
f(y−1x)

)
dµ(y)

[R(A,µ)f ](x) :=

∫
G

f(xy−1)θxy−1(A)∆(y)−1 dµ(y).

One can check that L(A,µ) and R(A,µ) are bounded by ‖A‖‖µ‖, and thus extend by con-
tinuity to linear operators on L1(G; C ). In addition, some straightforward computations
(see [Ped79, Lem. 7.6.3]) show that

L(A,µ)(f ∗ g) = (L(A,µ)f) ∗ g, R(A,µ)(f ∗ g) = f ∗ (R(A,µ)g)

and that (R(A,µ)f) ∗ g = f ∗ (L(A,µ)g). Thus, the pair (L(A,µ), R(A,µ)) defines a double
centralizer on the B∗-algebra L1(G; C ), see Section 2.4. With these notions at hand,
one can deduce that:

Theorem 3.4.5. For any C∗-dynamical system (C , G, θ), there exist a non-degenerate
faithful ∗-homomorphism

iC : C →M
(
C oθ G

)
and an injective homomorphism

iG : G→M
(
C oθ G

)
defined by the formulas iC (A) := (L(A,δ1), R(A,δ1)) and iG(x) := (L(1,δx), R(1,δx)).

Proof. See [Ped79, Sec. 7.6] and Proposition 2.34 of [Wil07] for the details.
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By using the alternative representation of the multiplier algebra, as introduced at
the end of Chapter 2, one also infers the following corollary:

Corollary 3.4.6. Let (H, π, U) be a non-degenerate covariant representation of the C∗-
dynamical system (C , G, θ) such that the representation π of C is faithful. Then, the
maps C 3 A 7→ π(A) ∈ B(H) and G 3 x 7→ Ux ∈ U (H) are injective homomorphisms
into M

(
π o U(C oθ G)

)
⊂ B(H).

Proof. The mentioned formula are obtained from the previous theorem by observing
that for any f ∈ Cc(G,C ) one has

π o U(L(A,δ1)f) =

∫
G

π
(
[L(A,δ1)f ](x)

)
Uxdx =

∫
G

π
(
Af(x)

)
Uxdx = π(A)π o U(f),

and

π o U(L(1,δx)f) =

∫
G

π
(
[L(1,δx)f ](y)

)
Uy dy =

∫
G

π
(
θxf(x−1y)

)
Uy dy

=

∫
G

Uxπ
(
f(x−1y)

)
U∗xUy dy =

∫
G

Uxπ
(
f(y)

)
Uy dy = Uxπ o U(f).

Remark 3.4.7. In the context of the previous corollary and by starting again with the
double centralizer (L(A,µ), R(A,µ)) as above, with A = 1 and µ an element of L1(G),
one can also infer that there exists a ∗-homomorphism iG : L1(G) → M

(
π o U(C oθ

G)
)
⊂ B(H) such that one has iG(f) =

∫
G
f(x)iG(x) dx for any f ∈ L1(G). In fact,

this ∗-homomorphism continuously extends to a ∗-homomorphism from C ∗(G) to the
multiplier algebra M

(
π o U(C oθ G)

)
.

By using the multiplier algebra and the two maps introduced above, it is rather
straightforward to improve Theorem 3.4.1:

Theorem 3.4.8. For any C∗-dynamical system (C , G, θ), the map sending a covariant
representation (H, π, U) to the integrated form (H, πoU) is a bijective correspondence
between non-degenerate covariant representations of (C , G, θ) and non-degenerate rep-
resentations of C oθ G.

We stress that this theorem asserts in particular that any representation of the C∗-
algebra C oθ G corresponds to the integrated form of a covariant representation of the
underlying dynamical system. Let us now end this section with a technical result which
will be important later on. Its proof is not complicated but is based on some preliminary
results which are not trivial, see Lemma 2.45 and Corollary 2.48 of [Wil07]. Note that
in this section, most of the difficulties do not come from the algebraic computations
but from some topological considerations.
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Lemma 3.4.9. Let (C 1, G, θ1) and (C 2, G, θ2) be C∗-dynamical systems, and let ϕ :
C 1 → C 2 be an equivariant ∗-homomorphism3. Then there is a ∗-homomorphism

ϕo id : C 1 oθ1 G→ C 2 oθ2 G

mapping Cc(G; C 1) into Cc(G; C 2) and such that [ϕ o id(f)](x) = ϕ
(
f(x)

)
for any

f ∈ Cc(G; C 1) and x ∈ G.

Extension 3.4.10. Consider the special case C = C(T), G = Z and [θnf ](z) =
f(ei2πnϑz) for any f ∈ C , z ∈ T and some fixed ϑ ∈ [0, 1]. Depending if ϑ is rational
or irrational, the corresponding algebra C(T) oθ Z is called the rational or irrational
rotation algebra. Its study has been a hot topic in the early 80’s, and continues to be of
interest. Some preliminary information can be grasp for example in [Wil07, Prop. 2.56]
and in many other references.

3.5 Invariant ideals and crossed product

Let us consider a C∗-dynamical system (C , G, θ), and let J be a closed and self-
adjoint ideal in C which is θ-invariant (⇔ θx(A) ∈ J for any A ∈ J and x ∈ G).
Then, each θx restricts to a ∗-automorphism of J , and this defines a C∗-dynamical
system (J , G, θ) as well as a quotient C∗-dynamical system (C /J , G, θ), where

θx(A+ J ) = θx(A) + J .

Note that we have kept the same notation for the ∗-automorphism θx acting on J and
for its action on the quotient algebra C /J . Since the inclusion map ι : J → C and the
quotient map q : C → C /J are equivariant ∗-homomorphisms, they define by Lemma
3.4.9 ∗-homomorphisms ιo id : J oθG→ C oθG and qo id : C oθG→ (C /J )oθG.

Clearly, Cc(G; J ) is a self-adjoint ideal in Cc(G; C ), and therefore its closure is an
ideal in CoθG, which corresponds to the image of JoθG through the ∗-homomorphism
ιo id. In addition, it can be shown that ιo id is isometric on Cc(G; J ), which implies
that ι o id is in fact a ∗-isomorphism onto the closure of Cc(G; J ) in C oθ G, see
[Wil07, Lem. 3.17] for the proof of the isometry.

Let us now state an important result about the functoriality of the crossed product:

Lemma 3.5.1. Let (C , G, θ) be a C∗-dynamical system, and let J be a self-adjoint
closed ideal in C which is θ-invariant. Then we have the following short sequence of
C∗-algebras:

0 −→J oθ G
ιoid

−−−−→ C oθ G
qoid

−−−−→ (C /J ) oθ G −→ 0.

3In the present context, the ∗-homomorphism ϕ is equivariant if ϕ
(
θ1x(A)

)
= θ2x

(
ϕ(A)

)
for all

A ∈ C 1 and x ∈ G.
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The fact that ιoid is a ∗-isomorphism has already been mentioned in the paragraph
preceding the statement. Thus it only remains to show that

Ker
(
q o id

)
= ιo id

(
J oθ G

)
which can be achieved with the use of an approximate unit, see [Wil07, Prop. 3.19] for
the details.

Let us close this section by considering the previous result in the context of trans-
formation group C∗-algebras, see Remark 3.4.4. More precisely, let us consider the
C∗-dynamical system (C0(Ω), G, θ) with [θxf ](ξ) = f(x−1 · ξ) for any f ∈ C0(Ω), x ∈ G
and ξ ∈ Ω. In this framework, the θ-invariant ideals of C0(Ω) corresponds to subal-
gebras C0(Ω′) with Ω′ a G-invariant open subset of Ω. Then, let us set F := Ω \ Ω′,
which is a G-invariant closed subset of Ω, and let us identify C0(F ) with the quotient
C0(Ω)/C0(Ω′) (notice that the ∗-homomorphism q : C0(Ω)→ C0(F ) is equivariant). A
special case of the previous lemma reads then:

Corollary 3.5.2. Let us consider the C∗-dynamical system (C0(Ω), G, θ), and let Ω′ be
an open G-invariant subset of Ω. Then we have the following short exact sequence of
C∗-algebras

0 −→ C0(Ω′) oθ G
ιoid

−−−−→ C0(Ω) oθ G
qoid

−−−−→ C0(Ω \ Ω′) oθ G −→ 0. (3.5.1)
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