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Exercise 2.4.5

Let (H*,U*) and (H*,U*) be two unitary and irreducible representations of a finite group G, with respective
characters denoted by x* and x*. Then,
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Proof. When (7—[’“, U*) and (H*,U*) are identical or inequivalent, we have this equality
|G\ Z 6kg§sj5m fori,j€{1,...,ng} and r,s € {1,...,n4}. (2)

Then, we have
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For the factor 1/ny, we can choose either nj or n; because 0y on the right hand side of (2) is nonzero when
k = {. Hence, we can choose it so that it cancels min{ng, ns}. Thus,
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In addition, consider the case that (#*, U*) and (H¢, U*) are not identical but equivalent. In that case, x* = x¢,
which means that the sum on the right hand side of (1) when (H*,U*) ~ (H*,U*) and (H*,U*) # (H',U?) is
the same as when (H*, U*) = (H¢, U*). Hence,
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