Chapter II: Spectral theory for self-adjoint operators

II.1: Spectral measures

Def: A spectral family, or resolution of the identity, is a family $\{E_{\lambda}\}_{{\lambda}\in\mathbb{R}}$ with E_{λ} a projection in \mathcal{H} it means such that

- i) $E_{\lambda}E_{\mu}=E_{\min\{\lambda,\mu\}}=E_{\mu}E_{\lambda}$
- ii) $E_{\lambda} = E_{\lambda+0} := S-\lim_{\epsilon, \lambda = 0} E_{\lambda+\epsilon}$ continuity
- iii) s-lim $E_{\lambda} = 0$ s-lim $E_{\lambda} = 1$

The support of a spectral family is defined by

Supp $\{E_{\lambda}\} := \{\mu \in \mathbb{R} \mid E_{\mu+\epsilon} - E_{\mu-\epsilon} \neq 0 \ \forall \epsilon > 0\}$ Then we define $E((a,b]) := E_b - E_a$

and we extend this defination to all Borel sets of IR.

Def. A Borel set of \mathbb{R} is a subset of \mathbb{R} obtained by countable unions, intersections and complements of (a,b] with $a,b \in \mathbb{R}$

The set of all Boral sets of IR is denoted as AB.

=> At the end, we obtain a function

E: AB -> P(H) set of all projections on H

Def. The map E: AB -> P(H) is called .

the spectral measure associated with the spectral family {Ex}xer.

If f∈H we can consider

 $F_f(\lambda) := \langle f, E_{\lambda} f \rangle = \langle E_{\lambda} f, E_{\lambda} f \rangle = \|E_{\lambda} f\|^2 \in \mathbb{R}$

and the function $\lambda \mapsto F_{\varphi}(\lambda)$ satisfies

- 1) $F_f(\lambda) \geqslant F_f(\mu)$ if $\lambda \geqslant \mu$
- 2) $F_{\varphi}(\lambda) = F_{\varphi}(\lambda + 0) := \lim_{n \to \infty} F_{\varphi}(\lambda + \varepsilon)$
- 3) $F_f(-\infty) = 0$

 $F_f(\infty) = \|f\|^2$

and we can define a measure $m_f: A_B \longrightarrow \mathbb{R}$ by $m_f(V) = \langle f, E(V) f \rangle$ for any $V \in A_B$