Dixmier traces
Contact:
Serge Richard (richard@math.nagoya-u.ac.jp), Rm. 237 in Sci. Bldg. A
-
Schedule : Wednesday 8.45 - 10.15 in room 309 of the math building
-
Class dates :
April 12, 19, 26
May 10, 24, 31
June 7, 14, 21, 28
July 5, 12, 19, 26
-
References : (electronic version available upon request)
[Amr] W. Amrein, Hilbert space methods in quantum mechanics, Fundamental Sciences. EPFL Press, Lausanne 2009.
[Ars] G. Arsu, On Schatten-von Neumann class properties of pseudodifferential operators, The Cordes-Kato method,
J. Operator Theory 59, no. 1, 81–114, 2008.
[Ban] S. Banach, Theory of linear operations, North-Holland Mathematical Library, 38. North-Holland Publishing Co., Amsterdam, 1987.
[Bri] C. Brislawn, Kernels of trace class operators, Proc. Amer. Math. Soc. 104, no. 4, 1181-1190, 1988.
[Cal] J.W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. (2) 42, 839-873, 1941.
[CRSS] A.L. Carey, A. Rennie, A. Sedaev, F. Sukochev, The Dixmier trace and asymptotics of zeta functions, J. Funct. Anal. 249, no. 2, 253-283, 2007.
[CS1] A.L. Carey, F.A. Sukochev, Dixmier traces and some applications to noncommutative geometry, Uspekhi Mat. Nauk 61 no. 6(372), 45-110, 2006;
translation in Russian Math. Surveys 61 no. 6, 1039-1099, 2006.
[CS2] A.L. Carey, F.A. Sukochev, Measurable operators and the asymptotics of heat kernels and zeta functions,
J. Funct. Anal. 262, no. 10, 4582-4599, 2012.
[Cha] I. Chavel, Eigenvalues in Riemannian geometry,
Pure and Applied Mathematics 115. Academic Press, Inc., Orlando, FL, 1984.
[Con] A. Connes, The action functional in noncommutative geometry,
Comm. Math. Phys. 117, no. 4, 673-683, 1988.
[Del] G. Dell'Antonio, Lectures on the mathematics of quantum mechanics II, Selected topics,
Atlantis Studies in Mathematical Physics: Theory and Applications 2. Atlantis Press, Paris, 2016.
[Dix] J. Dixmier, Existence de traces non normales (in French), C. R. Acad. Sci. Paris Ser. A-B 262, A1107-A1108, 1966.
[DPSS] P.G. Dodds, B. de Pagter, E.M. Semenov, F.A. Sukochev, Symmetric functionals and singular traces Positivity 2, no. 1, 47-75, 1998.
[Fac] T. Fack, Sur la notion de valeur caracteristique (in French), J. Operator Theory 7, no. 2, 307-333, 1982.
[Fan] K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous
operators, Proc. Nat. Acad. Sci., U.S.A. 37, 760–766, 1951.
[GK] I.C. Gohberg, M.G. Krein, Introduction to the theory of linear nonselfadjoint operators,
Translations of Mathematical Monographs Vol. 18, American Mathematical Society, Providence, R.I. 1969.
[HLP] G. Hardy, J.E. Littlewood, G. Polya, Inequalities, Reprint of the 1952 edition, Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1988.
[Hor] A. Horn, On the singular values of a product of completely continuous operators, Proc. Nat. Acad. Sci. U.S.A. 36, 374-375, 1950.
[KLPS] N. Kalton, S. Lord, D. Potapov F. Sukochev, Traces of compact operators and the noncommutative residue, Adv. Math. 235, 1-55, 2013.
[KSS] N.J. Kalton, A.A. Sedaev, F.A. Sukochev, Fully symmetric functionals on a Marcinkiewicz space are Dixmier traces, Adv. Math. 226, no. 4, 3540-3549, 2011.
[Kat] T. Kato, Perturbation theory for linear operators, Classics in mathematics, Springer, 1995.
[Les] M.Lesch, Pseudodifferential operators and regularized traces, in Motives, quantum field theory, and pseudodifferential operators,
37-72, Clay Math. Proc. 12, Amer. Math. Soc., Providence, RI, 2010.
[LSZ] S. Lord, F. Sukochev, D. Zanin, Singular traces, theory and applications, Studies in mathematics 46, De Gruyter, 2013.
[Lor] G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80, 167-190, 1948.
[Ma1] A.S. Markus, Eigenvalues and singular values of the sum and product of linear operators, Soviet math. Dokl. 3, 1238-1241, 1962.
[Ma2] A.S. Markus, Eigenvalues and singular values of the sum and product of linear operators, Russian Mathematical Surveys 19, No 4, 91-120, 1964.
[MOB] A. Marshall, I. Olkin, A. Barry, Inequalities: theory of majorization and its applications (second edition),
Springer Series in Statistics, Springer, New York, 2011.
[Mur] G.J. Murphy, C*-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990.
[Ped] G.K. Pedersen, Analysis now, Graduate Texts in Mathematics 118. Springer-Verlag, New York, 1989.
[RS1] M. Reed, B. Simon, Methods of modern mathematical physics I: Functional analysis, Academic Press, Inc., 1972.
[RS3] M. Reed, B. Simon, Methods of modern mathematical physics III: Scattering theory, Academic Press, Inc., 1979.
[RS4] M. Reed, B. Simon, Methods of modern mathematical physics IV: Analysis of operators, Academic Press, Inc., 1978.
[RT] M. Ruzhansky, V. Turunen, Pseudo-differential operators and symmetries; background analysis and advanced topics,
Pseudo-Differential Operators, Theory and Applications 2. Birkhauser Verlag, Basel, 2010.
[Sak] S. Sakai, C*-algebras and W*-algebras}, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60. Springer-Verlag, New York-Heidelberg, 1971.
[Sch] R. Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F., Heft 27 Springer-Verlag, Berlin-Goettingen-Heidelberg, 1960.
[Shu] M.A. Shubin, Pseudodifferential operators and spectral theory,
Second edition, Springer-Verlag, Berlin, 2001.
[Sim] B. Simon, Trace ideals and their applications (second edition), Mathematical surveys and Monographs 120, AMS, 2005.
[SU] F. Sukochev, A. Usachev, Dixmier traces and non-commutative analysis, J. Geom. Phys. 105, 102-122, 2016.
[SUZ1] F. Sukochev, A. Usachev, D. Zanin, Generalized limits with additional invariance properties and their applications to noncommutative geometry,
Adv. Math. 239, 164-189, 2013.
[SUZ2] F. Sukochev, A. Usachev, D. Zanin, On the distinction between the classes of Dixmier and Connes-Dixmier traces,
Proc. Amer. Math. Soc. 141, no. 6, 2169-2179, 2013.
[SZ] F. Sukochev, D. Zanin, Zeta-function and heat kernel formulae,
J. Funct. Anal. 260, no. 8, 2451-2482, 2011.
[Wey] H. Weyl, Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. U.S.A. 35, 408-411, 1949.
[Wod1] M. Wodzicki, Local invariants of spectral asymmetry, Invent. Math. 75, no. 1, 143-177, 1984.
[Wod2] M. Wodzicki, Noncommutative residue I, Fundamentals, in K-theory, arithmetic and geometry (Moscow, 1984–1986), 320–399,
Lecture Notes in Math., 1289, Springer, Berlin, 1987.
Back to the main page