「新装版 ルベーグ積分入門—使うための理輪と演習」(吉田伸生 著) 誤植の訂正と注釈の追加¹

ここに書いた以外にお気付きの点などございましたら,是非お知らせ頂きますようお願い致します.

以下、「—」 \rightarrow 「…」 は、 「—」を 「…」に訂正するという意味で、(…)内のお名前はご指摘下さった方です.なお,新装版第 3 刷(2023 年 3 月発行)では以下に述べる誤植の多くが既に訂正済みです.

- p. 21, 問 1.1.3 (i) 「(1.1)-(1.7)」 \rightarrow 「(1.1)-(1.4), (1.6), (1.7)」
- 第 2 刷以前 p.27, 問 1.2.5: 2 行目で,「真部分集合」 → 「空でない真部分集合」
- 第 1 刷 p.36, (1.24) 直後, $\varphi(t\pm)$ の定義の後に次を挿入:「また, $-\infty \le s \le t \le \infty$, $\varphi(s)=\varphi(t)=\pm\infty$ の場合, $\varphi(t)-\varphi(s)=0$ と規約する.」また, これに伴って (1.25) を以下に差し替える:

$$a \leq s \leq t \leq b$$
 なら $\mu((s,t] \cap \mathbb{R}) = \varphi(t) - \varphi(s)$.

- 第 1 刷 p.38, 例 1.5.3: 2 行目の「したがって」は削除. なお $\overline{S} = \overline{S \backslash N}$ の証明は次のとおり: $x \in S$ を任意とし、 $\forall r > 0$, $B(x,r) \cap (S \backslash N) \neq \emptyset$ ならよい. そこで、これを否定し $\exists r > 0$, $B(x,r) \cap (S \backslash N) = \emptyset$ とすると, $B(x,r) \cap S \subset N$ となり, $N \in \mathcal{N}^{\mu}$ に反する.
- 第1刷 p.45, 問 2.1.5: 1 行目の 「∈ ℬ」を削除 (不要な条件).
- 第 1 刷 p.58, 例 2.3.9(b) の証明 2 行目で「f+g」 \rightarrow 「 $(f+g)|_{S_1}$ 」. また, (c) の証明 2 行目で「f」 \rightarrow 「 $f|_{S_1}$ 」.
- 第1刷 p.64, 例 2.4.4 の条件 (b) のうち「 $\int \xi_k d\mu = m$ 」を削除 (不要な条件).
- 第 1 刷 p.69, 例 2.5.3: 1 行目: 「... とする.」 \rightarrow 「...,また測度 μ は恒等的に 0 ではないとする.」
- 第 2 刷以前 p.80, 9 行目: $\lceil \underline{\lim}_{n \to \infty} \rfloor \to \lceil \lim_{n \to \infty} \rfloor$
- p.85, 2 行目:任意の $\alpha \in \mathbb{N}^d$ に対し $x \in \mathbb{R}^d$, y > 0 についての多項式 p(x,y) が存在し

1)
$$\left(\frac{\partial}{\partial x}\right)^{\alpha} h_t(x) = p(x, t^{-1/2}) \exp\left(-\frac{|x|^2}{2t}\right)$$
.

これを詳解する:本文にあるように $|\alpha_1|+\cdots+|\alpha_d|$ に関する帰納法による. $\alpha=0$ なら自明である. そこである $\alpha\in\mathbb{N}^d$ に対し 1) の成立を仮定する. このとき任意の $j=1,\ldots,d$ に対し

$$p_j(x,y) = \left(\frac{\partial}{\partial x_j}\right) p(x,y) - x_j y^2 p(x,y)$$

は $x \in \mathbb{R}^d$, y > 0 についての多項式であり,

$$\left(\frac{\partial}{\partial x_j}\right) \left(\frac{\partial}{\partial x}\right)^{\alpha} h_t(x) = \left(\left(\frac{\partial}{\partial x_j}\right) p(x, t^{-1/2}) - \frac{x_j}{t} p(x, t^{-1/2})\right) \exp\left(-\frac{|x|^2}{2t}\right)
= p_j(x, t^{-1/2}) \exp\left(-\frac{|x|^2}{2t}\right).$$

以上より 1) は任意の $\alpha \in \mathbb{N}^d$ に対して正しい.

- p.85, 4 行目の式右辺が t について可積分になる理由: $t^{-k/2}\exp\left(-\frac{\varepsilon^2}{2t}\right)$ は t について有界であることに注意せよ.
- 第 1 刷 p.92, 問 4.1.2, 2 行目: $\lceil \infty \le \alpha \le \beta \le \infty \rfloor \to \lceil \infty < \alpha \le \beta < \infty \rfloor$.
- 第 2 刷以前 p.81, 定理 3.1.3 に対する注意の 3 つ目の 2 行目:「 μ が σ -加法族 $\mathscr{A} \supset \mathscr{B}(\mathbb{R}^d)$ で定義された測度」 \to 「 μ が $\mathscr{B}(\mathbb{R}^d)^\mu \subset \mathscr{A}$ をみたす σ -加法族 \mathscr{A} で定義された測度」.
- 第 1 刷 p.95, (4.8) 直後, $\varphi(t\pm)$ の定義の後に次を挿入:「また, $-\infty \leq s \leq t \leq \infty$, $\varphi(s)=\varphi(t)=\pm\infty$ の場合, $\varphi(t)-\varphi(s)=0$ と規約する.」また, これに伴って (4.9) を以下に差し替える:

$$a \leq s \leq t \leq b$$
 なら $\mu((s,t] \cap \mathbb{R}) = \varphi(t) - \varphi(s)$.

¹²⁰²⁴年4月27日更新

- 第1刷 p.96, 下から 6 行目「(ii) の証明:」直後に次を挿入「記号を簡単にするために $a=-\infty$ とするが、 $a>-\infty$ でも同様である.」
- 第 1 刷 p.153, 系 6.3.5 の証明を次のように修正: **証明**: 仮定より,次のような自然数列 *K*₁ < *K*₂ < ... が存在する:

$$\mu(|F_{K_n} - f| > 1/n) < 2^{-n}$$
.

このとき、任意の $N \ge 1$ に対し、

$$\mu(\sup_{n\geq N}|F_{K_n}-f|>1/N) = \mu\left(\bigcup_{n\geq N}\{|F_{K_n}-f|>1/N\}\right)$$
 測度の劣加法性
$$\leq \sum_{n\geq N}\mu\left(|F_{K_n}-f|>1/N\right)$$

$$\leq \sum_{n\geq N}\mu\left(|F_{K_n}-f|>1/N\right)$$

$$\leq \sum_{n\geq N}\mu\left(|F_{K_n}-f|>1/n\right)$$

$$\leq \sum_{n\geq N}2^{-n}\longrightarrow 0,\ (N\nearrow\infty).$$

ゆえに、 $f_n \stackrel{\text{def.}}{=} F_{K_n}$ は命題 6.3.3 の (a) を、したがって (a)–(c) を全て満たす. $((^{\circ}_{-}^{\wedge})/(^{\circ}_{-}))$

- p.168, 命題 7.3.2: 「測度 $(\mathcal{B}(\mathbb{R}^d), \mu)$ は (7.8) を満たすとし, $S \subset \mathbb{R}^d$, $\mathcal{B}(\mathbb{R}^d)^{\mu}$ -可測関数 $f: \mathbb{R}^d \to \mathbb{C}$ に次を仮定する」 \to 「測度 $(\mathcal{B}(\mathbb{R}^d), \mu)$, $S \subset \mathbb{R}^d$, $\mathcal{B}(\mathbb{R}^d)^{\mu}$ -可測関数 $f: \mathbb{R}^d \to \mathbb{C}$ に次を仮定する」(f が命題 3 行目の条件をみたしさえすれば, μ 自身が (7.8) をみたす必要はない).
- p.177, 系 7.5.4 は,仮定の「全ての $C \in [0,\infty)$ に対し…」を「ある $C \in (0,\infty)$ に対し…」に緩めても成立する (著者).証明の概略は次の通り. $q \in (1,\infty]$, $\frac{1}{p} + \frac{1}{q} = 1$,かつ $g \in L^q(\mu)$ が全ての多項式と直交すると仮定し,g = 0, μ -a.e. を示す. μ は有限測度なので $g \in L^1(\mu)$ であり, $gd\mu$ は符号つき測度を定める.そこで,そのフーリエ変換が恒等的に零ならよい. $\theta \in \mathbb{R}^d$ を任意, $\delta = \frac{1}{p} \frac{C}{1+|\theta|}$ とする.このとき, $z \in \mathbb{C}$, $|\operatorname{Re} z| < \delta$ に対し $F_{\theta}(z) \stackrel{\mathrm{def}}{=} \int_{\mathbb{R}^d} \exp(z \, \theta \cdot x) g(x) d\mu(x)$ は z について正則であり,特に $F_{\theta}(\mathbf{i})$ が $gd\mu$ のフーリエ変換である.ところが, $|z| < \delta$ なら exp の展開と仮定より $F_{\theta}(z) = 0$.ゆえに一致の定理より $F_{\theta}(\mathbf{i}) = 0$.
- p.215, 補題 9.3.7. 証明の省略部分のうち、「 $\widetilde{\mathscr{A}}$ が可算和で閉じる」に証明を与える. 任意 の $\{B_n\}_{n\geq 1}\subset \widetilde{\mathscr{A}}$ に対し $B\stackrel{\mathrm{def}}{=}\bigcup_{n=1}^\infty B_n\in \widetilde{\mathscr{A}}$ ならよい. このとき $\{B_n\}_{n\geq 1}\subset \widetilde{\mathscr{A}}$ により、任意の $\varepsilon>0$ に対し $\{A_n\}_{n\geq 1}\subset \mathscr{A}_0$ が存在し、 $\forall n\geq 1$ 、 $\mu(A_n\Delta B_n)<2^{-(n+1)}\varepsilon$. そこで $A=\bigcup_{n=1}^\infty A_n$ とすると、 $B\Delta A\subset \bigcup_{n=1}^\infty (B_n\Delta A_n)$ より、

1)
$$\mu(B\triangle A) \leq \sum_{n=1}^{\infty} \mu(B_n \triangle A_n) < \varepsilon/2.$$

また, $\bigcup_{n=1}^N A_n$ は N について単調増大するので,N を十分大きくとると

$$\mu(A) < \mu\left(\bigcup_{n=1}^{N} A_n\right) + \varepsilon/2.$$

さらに、 $A \triangle \left(\bigcup_{n=1}^N A_n\right) = A \setminus \left(\bigcup_{n=1}^N A_n\right)$ より

2)
$$\mu\left(A\triangle\left(\bigcup_{n=1}^{N}A_{n}\right)\right)=\mu(A)-\mu\left(\bigcup_{n=1}^{N}A_{n}\right)<\varepsilon/2.$$

以上より,

$$\mu\left(B\triangle\left(\bigcup_{n=1}^{N}A_{n}\right)\right)\leq\mu\left(B\triangle A\right)+\mu\left(A\triangle\left(\bigcup_{n=1}^{N}A_{n}\right)\right)\overset{1),\;2)}{<}\varepsilon/2+\varepsilon/2=\varepsilon.$$

上式と $\bigcup_{n=1}^{N} A_n \in \mathcal{A}_0$ より $B \in \widetilde{\mathcal{A}}$.

- 第 2 刷以前 p.243,補題 11.1.7 の証明,2 行目:「 $(\varphi(x_1), \varphi(x_2))$ 」 \longrightarrow 「 $(\varphi_1(x_1), \varphi_2(x_2))$ 」 (吉永彰成氏).
- 第 2 刷以前 p.267 間 2.3.9 (i): 最初の部分に次を挿入. 「 μ は個数測度なので $\infty \in f(S)$ なら所期等式は $\infty = \infty$ で成立する. ゆえに $f(S) \subset [0,\infty)$ としてよい.」
- 第 2 刷以前 p.267, 問 2.3.10: 最初の部分に次を挿入. 「 μ は個数測度なので $\infty \in f(S)$ なら所期等式は $\infty = \infty$ で成立する. ゆえに $f(S) \subset [0,\infty)$ としてよい.」
- 第 2 刷以前 p.269, 問 2.4.7 (b) の解答が $\{\xi_n\}$ が実数値の場合に限られている.一般には以下のとおり. (1.22) より $\int \xi_k d\mu = \sum_{\alpha \in A} \alpha \mu(\xi_k = \alpha) = \sum_{\alpha \in A} \alpha p_\alpha = m$.また $k < \ell$ なら,(1.23)

(1.22) より $\int \xi_k d\mu = \sum_{\alpha \in A} \alpha \mu(\xi_k = \alpha) = \sum_{\alpha \in A} \alpha p_\alpha = m$. また $k < \ell$ なら、(1.23) より $\mu(\xi_k = \alpha, \xi_k = \beta) = p_\alpha p_\beta$. ゆえに $\int \xi_k \overline{\xi_\ell} d\mu = \sum_{(\alpha,\beta)\in A^2} \alpha \overline{\beta} \mu(\xi_k = \alpha, \xi_k = \beta) = \sum_{(\alpha,\beta)\in A^2} \alpha \overline{\beta} p_\alpha p_\beta = |m|^2$. これより $\int (\xi_k - m)(\overline{\xi_\ell} - \overline{m}) d\mu = \int (\xi_k \xi_\ell - \overline{m} \xi_k - m \overline{\xi_\ell} + |m|^2) d\mu = 0$.

ご指摘を頂いた方々に厚くお礼申しあげます.