Rigidity School \ The Final Meeting
Dates &
Place
September 16-19, 2018
Nagoya University, Mathematics
Building, room 509
http://www.math.nagoya-u.ac.jp/en/direction/nagoya.html#a
http://www.math.nagoya-u.ac.jp/ja/direction/campus.html
Organizers
IZEKI, Hiroyasu (Keio U)
KANAI, Masahiko (U Tokyo)
NAYATANI, Shin (Nagoya U)
Lecturers
BROWN, Aaron (U. Chicago)
FUKAYA, Tomohiro (Tokyo
Metropolitan U)
HASSELBLATT, Boris (Tufts U)
MARUHASHI, Hirokazu (U Tokyo)
MATSUMOTO, Shigenori (Nihon U)
MIMURA, Masato (Tohoku U)
OGUNI, Shinichi (Ehime U)
TOYODA, Tetsu (NIT, Suzuka)
Banquet (New)
We are planning to have dinner together in the evening of 16th September. Those participants who would like to join, please contact Hiroyasu Izeki ((izeki@math.keio.ac.jp) by 9th September.
Time Table
16th September
13:30-14:30 Matsumoto
15:00-16:00 Oguni
16:30-17:30 Brown 1
17th September
10:00-11:00 Brown 2
11:30 –12:30 Fukaya
14:30-15:30 Brown 3
16:00-17:00 Maruhashi
18th September
10:00-11:00 Brown 4
11:30 –12:30 Toyoda
14:30-15:30 Brown 5
16:00-17:00 Mimura
19th September
10:00-11:00 Hasselblatt
11:30 –12:30 Brown 6
Titles & Abstracts
BROWN, Aaron
Smooth ergodic
theory and rigidity of lattice actions
The main result of this course
is the resolution of Zimmerfs Conjecture for cocompact lattices in
SL(n,R):
Theorem 1: for n>= 3 and any
cocompact lattice in Sl(n,R)
1. any C^2
action on a compact manifold of dimension at most (n-2) is finite
2. any C^2
volume-preserving action on a compact manifold of dimension at most
(n-1) is finite
The main theorem of the course,
however, is a theorem about Lyapunov exponents.
Theorem 2: for n>= 3,
any C^2 action (resp. vol-preserving action) of a cocompact lattice in
Sl(n,R) on a manifold of dimension at most (n-2) (resp. at most (n-1)) has
uniform subexponential growth of derivatives.
We will see that Theorem 2,
when combined with Strong Property (T) and Margulis Superrigidity,
immediately implies the above result.
The goal of the course will be
to motivate the above results, present sufficient background in smooth
ergodic theory, lattice actions, and superrigidity theorems, and to give a
complete proof of Theorem 1. If there is time, I will also explain
some ideas used to prove the result for non-uniform lattices.
A provisional outline for the
course is the following:
1. Background on lattices and
Lie groups, Motivation, statement of results and recent developments
2. Margulis and Zimmer
superrigidity theorems; Statement of Theorem 2 and Proof of Theorem 1
3. Lyapunov exponents for
diffeomorphisms and actions of abelian groups
4. Unstable manifolds, entropy,
relationships between entropy, exponents and geometry of conditional
measures
5. Begin proof of Theorem 2
6. Conclude proof of Theorem 2
FUKAYA, Tomohiro
Coarsely convex
spaces
In a joint-work with Shin-ichi
Oguni, we introduced a new class of metric spaces, called coarsely convex
spaces, which can be
regarded as a coarse geometric analogue of non-positively curved
spaces. In this talk, I explain the definition of a coarsely convex
space and a
construction of its boundary. Then I give an outline of the proof of
the coarse Cartan-Hadamard theorem.
If time permits, we also talk on relations with semihyperbolic spaces by
Alonso-Bridson, and combing corona by Engel-Wulff. As a corollary, we show
some group-theoretic property of groups acting on coarsely convex spaces,
like isoperimetric inequality and cohomological dimension.
HASSELBLATT, Boris
New contact flows
on 3-manifolds
Foulon-Ding-Geiges-Handel-Thurston
surgery
produces contact flows that are unusual and interesting in several ways.
The periodic fiber flow in the unit tangent bundle becomes parabolic, and
the geodesic flow becomes a nonalgebraic contact Anosov flow with larger
orbit growth. An idea by Vinhage promises a quantification of the gap
between the Liouville and topological entropies.
MARUHASHI, Hirokazu
A computation of
the de Rham cohomology of certain foliations
It's quite straightforward to
define the de Rham cohomology of a smooth foliation of a manifold if you
know the definition of the de Rham cohomology of a manifold. What's not
straightforward is its computation. It's been more than four decades since
this concept was first investigated with regard to the deformation theory
of foliations, but not much computations have been done to this day in my
opinion. (Probably because people haven't paid much attention to
it.) For example, let $\mathcal{F}$ be the weak stable foliation of
the geodesic flow of a compact hyperbolic surface, which is a good example
of a foliation you can find in any textbook on foliations. The first
cohomology of $\mathcal{F}$ was computed by Matsumoto and Mitsumatsu in
2003. But the second cohomology has remained unknown as far as I
know. In this talk I will show you how to compute the cohomology of
$\mathcal{F}$ in all degrees at the same time. A Kodaira-Spencer
theory for parameter deformations of a locally free action was a
motivation for the computation. This is an ongoing work (in the sense that
the method is being generalized) with Mitsunobu Tsutaya from Kyushu
University.
MATSUMOTO, Shigenori
Left orders on
countable groups
Left invariant total orders on
a countable group have strong connections with its actions on the real
line. The set of such orders form a totally disconnected compact
metrizable spaces. For example, if the group is a free group on two
generators or more, then this space is homeomorphic to a Cantor
set. However there are groups which admit isolated points of
this set. Isolation of a left invariant order has relations with the
rigidity of the corresponding actions on the real line. Likewise
left invariant circular orders of a group are connected with its actions
on the circle. My talk will be a survey of these topics.
MIMURA, Masato
Profinite actions
on a common set
We give an answer to the
question asking how different group properties of two finitely generated
dense subgroups of a common compact group can be. Our constructions allow
us to take one dense subgroup to be amenable (in fact, a
locally-finite-lift of Z) and the other to contain a given countable
residually finite group. These provide examples of profinite actions on a
common set with considerably different properties.
OGUNI, Shinichi
On a coarse
Cartan-Hadamard theorem
Recently we introduced a coarse
version of non-positively curved spaces and showed a coarse version of the
Cartan-Hadamard theorem for such spaces in a joint-work with Tomohiro
Fukaya (arXiv:1705.05588). Based on the work, I explain what is a
coarse Cartan-Hadamard theorem with a proof for an easy case and an
application to the coarse Baum-Connes conjecture. A coarse version of
non-positively curved spaces is explained in Fukaya's talk.
TOYODA, Tetsu
An intrinsic
characterization of five points in a CAT(0) space
Under the assumption that a metric space X is geodesic, many simple conditions for X which are equivalent to the condition that X is CAT(0) have been known. On the other hand, when we characterize metric spaces which embed isometrically into CAT(0) spaces, we have to omit the geodesicness assumption. M. Gromov remarked that a four-point metric space embeds isometrically into a CAT(0) space if and only if it satisfies the weighted quadruple inequalities. In this talk, we present another proof of Gromov's remark and show that a five-point metric space embeds isometrically into a CAT(0) space if and only if it satisfies the weighted quadruple inequalities.