Uniqueness of local minimizers for crystalline variational problems

P-16 Kento OKUDA* (Joint work with Miyuki KOISO*)

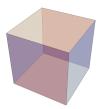
Institute of Mathematics for Industry, Kyushu University, Japan* E-mail: k-okuda@imi.kyushu-u.ac.jp

International Conference on Discrete Geometric Analysis for Materials Design Poster Session, Online (Zoom)

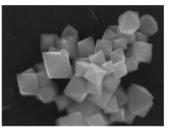
September 28th, 2021

Introduction

- **Crystalline variational problem**: Study on equilibrium surfaces for anisotropic (surface) energy of which the minimizer among surfaces enclosing the same volume is a polyhedron.
- The origin of the above name: Single crystals are usually polyhedra, and each of them is a local minimizer of such a variational problem.
- Our main result is the uniqueness of local minimizer! Consider any crystalline variational problem whose minimizer with volume constraint is a regular polyhedron. Then, roughly speaking, we proved any local minimizer is the global minimizer!



salt crystal (cube)



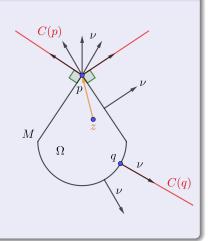
nanocrystals of CeO_2 (Asahina, Takami, et al., 2011)

regular octahedron

- **Difficulty**: Equilibrium surfaces are **not** smooth. They have edges and vertices. Moreover, if the global minimizer has a flat face or a straight edge, then the anisotropic energy is **not** differentiable!
- Our idea: We adopt "multi-valued unit normal vector" at edges and vertices of considered surfaces.

Definition 1 (Multi-valued unit normal vector)

Let *M* be a piecewise- C^1 convex surface in \mathbb{R}^3 . Denote by Ω the closed domain bounded by *M*. For a point *p* in *M*, a vector *n* is called an outer normal at *p* if *n* satisfies $\langle p - z, n \rangle \ge 0$ for any point *z* on Ω . $\nu(p) = n(p) / ||n(p)||$ is called an outer unit normal at *p*. If $q \in M$ is a regular point of *M*, $\nu(q)$ is the usual outward-pointing unit normal at *q*.



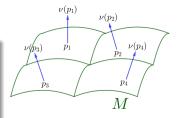
Anisotropic surface energy and the Wulff shape

- γ : S² → ℝ_{>0} := {x ∈ ℝ; x > 0}: a positive continuous function (S² = {v ∈ ℝ³; ||v|| = 1}: a unit sphere in ℝ³)
 ∽→ This γ is a mathematical model of anisotropic surface energy density.
- M: a piecewise smooth surface in \mathbb{R}^3
- $v: M \rightarrow$ " S^2 ": a (multi-valued) unit normal on M
- $\mathcal{F}_{\gamma}(M) := \int_{M} \gamma(\nu) dA$: the anisotropic energy of M(dA: the area element of M) **Special case**: $\gamma \equiv 1 \Rightarrow \mathcal{F}_{\gamma}(M)$: the area of the surface M

The following is known:

Fact 1 (J. E. Taylor, 1978)

There is a unique minimizer of \mathcal{F}_{γ} among closed surfaces enclosing the same volume in \mathbb{R}^3 (up to translation). It is a convex surface which is called the Wulff shape or its homothety.



piecewise smooth surface M

Wulff shape W_{γ}

•
$$W_{\gamma} = \partial \left(\bigcap_{\nu \in S^2} \left\{ X \in \mathbb{R}^3; \langle X, \nu \rangle \leq \gamma \left(\nu \right) \right\} \right)$$

Convex energy density function γ

- ∀W: a convex closed surface in ℝ³ with the origin inside, ∃γ: an energy density function s.t. W is the Wulff shape.
- γ is **not** necessarily unique.
- The smallest γ is called the support function of W.
- And its homogeneous extension to \mathbb{R}^3 is a convex function.

Remark 1

Assume W has a flat face f (resp. straight edge e). Then, γ is **not** differentiable at any $\nu \in S^2$ that is orthogonal to f (resp. to e).

Example 1 $\gamma(v) = |v_1| + |v_2| + |v_3| \implies W_{\gamma}$ is the cube.

Main theorem

Theorem 1 (Uniqueness of local minimizers for crystalline variational problems) Let W be a regular polyhedron with the origin at the center. And let γ be the support function of W and let M be a piecewise- C^1 convex closed surface. Then, M is a local minimizer of $\mathcal{F}_{\gamma}(M) = \int_M \gamma(\nu) dA$ for all volume-preserving variations if and only if M = W (up to homothety and translation).

Outline of the proof of the Main theorem

Assume

- W: a regular polyhedron
- $\gamma: S^2 \to \mathbb{R}_{>0}$: the support function of W
- η : the outer unit normals of W

• η is multi-valued on vertices and edges.

Assume

- M: a piecewise- C^1 surface
- v: the outer (multi-valued) unit normals of M

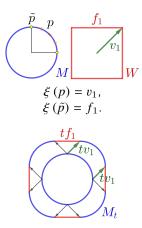
A mapping

 $\xi: M \to W$ (multi-valued) anisotropic Gauss map of M is defined as follows:

$$\xi(p) := \eta^{-1}(\nu(p)), \quad \forall p \in M.$$

Anisotropic parallel surfaces M_t of M are defined as

$$M_t\left(p\right):=p+t\xi\left(p\right),\quad p\in M.$$



Let M be a local minimizer of \mathcal{F}_{γ} for all volume-preserving variations. We may assume V(M) = V(W). Take r(t) > 0 so that $\tilde{M}_t := r(t) M_t$ satisfies $V(\tilde{M}_t) = V(M)$. Then, $\tilde{M}_0 = M$, and we can prove

$$\frac{d\mathcal{F}_{\gamma}\left(\tilde{M}_{t}\right)}{dt}\bigg|_{t=0}\leq0,$$

here "=" $\Leftrightarrow M = W$ (up to translation). Therefore, if M is a local minimizer of \mathcal{F}_{γ} , then M must coincide with W (up to translation), which proves the following.

Theorem 1 (Uniqueness of local minimizers for crystalline variational problems)

Let W be a regular polyhedron with the origin at the center. And let γ be the support function of W and let M be a piecewise- C^1 convex closed surface. Then, M is a local minimizer of $\mathcal{F}_{\gamma}(M) = \int_M \gamma(\nu) dA$ for all volume-preserving variations if and only if M = W (up to homothety and translation).

Preceding research

The uniqueness of local minimizers was proved,

- for $W = S^n$, by Barbosa-do Carmo (1984).
- for W is smooth and strictly convex, by B. Palmer (1998).

Concluding remarks: We defined

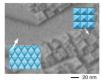
- anisotropic surface energy,
- multi-valued unit normals for piecewise- C^1 surfaces,
- multi-valued anisotropic Gauss map for piecewise- C^1 surfaces.

We proved:

• If the Wulff shape W_{γ} (the absolute minimizer) is a regular polyhedron, then any convex local minimizer is a homothety of W_{γ} .

Application to material science

- \bullet A single crystal of CeO_2 usually forms a regular octahedron.
- Inner structure of nanocrystals of CeO_2 in the water consists of regular octahedra and regular tetrahedra (Asahina, Takami, et al., 2011).
- If the energy density of CeO₂ is convex, from the Main theorem, these regular tetrahedra are **not** single crystals of CeO₂. ⇒ They are expected to be air or water.



nanocrystals of CeO_2 (Asahina, Takami, et al., 2011)

regular octahedra: single crystals of \mbox{CeO}_2

regular tetrahedra: air or water

P-16 Kento OKUDA (Kyushu University, Japan) Uniqueness of local minimizers for crystalline variation

September 28th, 2021 9 / 10

References

S. Asahina, S. Takami, T. Otsuka, T. Adschiri and O. Terasaki,

Exploitation of surface-sensitive electrons in scanning electron microscopy reveals the formation mechanism of new cubic and truncated octahedral CeO_2 nanoparticles,

ChemCatChem 3 (2011), 1038–1044.

M. Koiso and K. Okuda,

Uniqueness of local minimizers for crystalline variational problems, in preparation.

F. Morgan,

Planar Wulff shape is unique equilibrium, Proc. Amer. Math. Soc. 133 (2005), 809–813.

B. Palmer,

Stability of the Wulff shape, Proc. Amer. Math. Soc. 126 (1998), 3661–3667.

S. Takami,

Personal communication (2020).

Bull. Amer. Math. Soc. 84 (1978), 568–588.