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Sphere Packing Bound and Gilbert-Varshamov Bound for b-Symbol Read Channels

SONG SEUNGHOAN

Abstract

Recent rapidly growing storage technologies have led to the development of high-

density storage devices. However when information is written with high resolution write

devices and read by lower resolution devices, it possibly occurs that individual symbols

of data are not distinguished at a read but several symbols are read at a read. Over the

hypothesis that the number of symbols read at once is two, a channel model called symbol-

pair read channel is proposed by Cassuto and Blaum. Pair-metric is defined for the error-

correction in symbol-pair read channel and sphere-packing bound, Gilbert-Varshamov(G-

V) bound, and asymptotic G-V bounds were derived for symbol-pair read channel. Also,

from analysis of asymptotic G-V bounds, Cassuto and Blaum showed that there exist

strictly higher rate codes over symbol-pair read channel compared to those over conven-

tional channels with Hamming metric. As a generalization of symbol-pair read channel,

Yaakobi et.al. proposed b-symbol read channel whose number of concurrently read symbols

is b and defined b-symbol metric for error-correction over this channel model.

In this research, we derive sphere-packing bound, G-V bound, and asymptotic G-V

bounds for b-symbol read code. Based on a calculation of the size of b-symbol sphere and

ball, sphere packing bound and G-V bound are obtained. Then we show asymptotic G-V

bounds by approximation and asymptotic methods of G-V bound. Finally, the relationship

between asymtotic b-symbol G-V bounds and the number b of read symbols is analyzed.

We confirmed that the derived bounds for 1-symbol read channels coincide with the

bounds for conventional channels with Hamming metric. Also, from the analysis of asymp-

totic b-symbol G-V bounds proved in this research, we showed that the number b of read

symbols achieving the highest bound is determined dependently on fractional minimum

distance δ = d
n . Furthermore, the existence of b-symbol codes with strictly higher rates is

shown as b becomes larger.

Keywords

error-correcting code, codes for storage media, symbol-pair read channel, b-symbol read

channel, sphere packing bound, Gilbert-Varshamov bound, asymptotic G-V bound
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b-シンボル読出通信路における球充填限界とG-V限界

SONG SEUNGHOAN

内容梗概

近年, 記憶装置の発展により, きわめて高密度な記憶装置が開発されている. しかし記憶

装置が高密度であるものの読出装置の精度が低い場合, 一度の読出しで一つのシンボルでは

なく複数個のシンボルが同時に読み出される現象が起こり得る. 同時に読み出されるシンボ

ル数が二つである前提で, 2010年, Cassutoらによってシンボルペア読出通信路が提案され

た. シンボルペア読出通信路での誤り訂正のためにペア距離空間が定義され, ペア距離空間

での球充填限界, Gilbert-Varshamov(G-V)限界, 漸近的G-V限界が Cassutoらによって導

出されている. また, 漸近的 G-V限界を分析し, シンボルペア読出通信路上では, ハミング

距離を用いる通信路上でより, 高い符号レートを持つ符号が存在することが示された.

シンボルペア読出通信路を一般化し, 隣接した b個のシンボルが同時に読み出される b-

シンボル読出通信路が, 2016年, Yaakobiらによって提案された. しかし, b-シンボル読出通

信路における球充填限界, G-V限界, 漸近的G-V限界はまだ示されていない.

本研究では, b-シンボル読出通信路における球充填限界, G-V限界, 漸近的G-V限界を導

出する. まず, b-シンボル距離の求め方を提案し, それを用いて b-シンボル球面や b-シンボル

球のサイズを導出することで, 球充填限界とG-V限界を示す. また, G-V限界の漸近的な近

似により, 漸近的G-V限界を導出する. 最後に, 漸近的G-V限界がシンボル読み出し数 bに

よって, どのように変化するか分析する.

導出した限界に対して, b = 1のときの球充填限界, G-V限界, 漸近的G-V限界が, ハミ

ング距離を用いた通信路の球充填限界, G-V限界, 漸近的G-V限界と一致することを確認で

きた. また, この研究で証明した漸近的G-V限界に対して, 最も高い符号レートを持つ符号

が求まる bは, fractional minimum distance δ = d
n に依存して決まることがわかった. 加え

て, bを大きくすれば, より高いレートを持つ b-シンボル符号が存在することがわかった.

主な用語

誤り訂正符号, 記憶媒体向け符号, シンボルペア符号, b-シンボル読出通信路, 球充填限界,

Gilbert-Varshamov(G-V)限界, 漸近的Gilbert-Varshamov(G-V)限界
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1 Introduction

One of the fundamental objective of information theory is to construct reliable commu-

nications process. Due to the existence of many sorts of errors in information process,

error correction during information process is indispensable for reliable communications.

In data transmition, data are sent to the receiver, errors occur until the data arrive to the

receiver, and then errored data are corrected by receiver. In storage devices, written data

are considered to be sent data, errors occur while reading the written data, and the reader

corrects errors of data. As an integrated framwork explaining both of data transmition

and storage device reading, information theory introduce a framework called a channel

model which inputs data to be sent and outputs data corrupted by errors.

Traditional approaches in information theory are based on an unit of data, called

symbol. Sent and received data is expressed as a sequence of individual symbols. And

in most channels, the symbols for sent data and received data is assumed to be the same

units. Based on this assumption, researches related to codes and bounds for channels have

been progressed.

However, even though the information theory accumulated significant achievements,

the recent rapidly growing hardware technologies brought out a new problem related to

symbols. With the development of high density data storage devices, it happens that the

performance of writing devices and reading devices varies, which lead to several kinds of

decoding error. One specific form of these errors is the phenomenon that several symbols

are read at once because the resolution of the reading device is lower than that of writing

device. In this case, limited to the current channel models, the decoding process should

be seperated into two parts; seperating multiple symbols read at once to each symbol, and

recovering read errors. It is expected to improve the efficiency of decoding by integrating

two decoding process.

The framework called symbol-pair read channel was proposed by Cassuto and Blaum

[2], for this purpose in case of the number of concurrently read symbols is two. In symbol-

pair read channel, consecutive two symbols, called pair-symbol, are read as a one unit

but it is hypothesized that the former symbol and the latter symbol can be distinguish

after reading the pair-symbol. For example, if 101 is the input of the channel and the

channel makes no error, the output of symbol-pair read channel would be [10, 01, 11]. In

this framework, at least one error of pair-symbol is considered a pair-error.

The fundamental structures of symbol-pair channels and codes were proposed in [2] and

[3]. The definition of pair-metric, pair-error correctability, code construction and decoding

methods, and lower and upper bounds for codesizes were answered. Based on these results,

in [6], [7], and [8], maximum distance seperable codes for symbol-pair read channels were

studied and an MDS codes with certain parameters were found. Decoding algorithms were

also studied over symbol-pair read channel: decoding for cyclic codes [5] and [9], syndrome

1



(A) : Channel without resolution deficiency of reader

x0 x1 x2 x3

1 2 3

Read

· · ·

(B) : Symbol-pair read channel

x0 x1 x2 x3 x4 x5 x6 x7

2 4

1 3 5

Read

· · ·

(C) : b-symbol read channel(b = 4)

x0x1x2x3x4x5x6x7x8x9x10x11x12x13x14x15

2

1

Read

· · ·

Figure 1: Read process of channels

decoding [10], algebraic decoding of BCH codes [11], and linear programming decoding

for binary linear codes [12]. Symbol-pair read channel was generalized to b-symbol read

channel [4] where b ≥ 2 consecutive symbols were read as a unit, instead of two symbols.

In [4], basic notations and code constructions for b-symbol read channels were introduced.

One of the primary goal of this report is deriving sphere packing bound, Gilbert-

Varshamov bound, and finally, asymptotic Gilbert-Varshamov bound for b-symbol read

channels. These three bounds for symbol-pair read channel is obtained in [2]. It should

be denoted that the derivation of these bounds for b-symbol read channel in this report is

basically based on [2].

Then we analyzes the relationship between b and the asymptotically achievable rate. In

[2], Cassuto and Blaum showed that symbol-pair codes achieve higher asymptotic Gilbert-

Varshamov bound for relative minimum distance δ < 0.27 compared to codes for Hamming

metric. Later in [3], Cassuto and Litsyn improved the result in [2] and showed the en-

hanced asymptotic Gilbert-Varshamov bound for symbol-pair codes is strictly higher than

asymptotic Gilbert-Varshamov bound for Hamming metric for all the relative minimum

distance δ. In terms of b-symbol read channels, we conjectured the bound may grow higher

as b grows, but the growth of the bound may have limitation. In this report, we used the

method similar to that of [2] and generalized the asymptotic Gilbert-Varshamov bound

2



for b-symbol codes. As a result, for the bound we showed in this report, we disproved

that the larger b is, the more suitable for getting higher bounds. Rather, a finite number

b such that achieves highest asymptotic b-symbol G-V bound is determined dependently

on the relative minimum distance δ.

The remainder of this report is organized as follows. We state the basics of error-

correcting codes with Hamming distance in Section 2 and the basic concepts of b-symbol

read channel and b-symbol codes in Section 3. In Section 4, we review sphere packing

bound and Gilbert-Varshamov bound with the size of sphere and ball when a metric space

is given. In Section 5, sphere packing bound and Gilbert-Varshamov bound for b-symbol

read channel will be derived. Finally, in Section 6, we will show asymptotic b-symbol

Gilbert-Varshamov bound and give, in terms of the bound we derived, the result that

higher b does not nessesarily lead to the higher asymptotic b-symbol Gilbert-Varshamov

bound. The report ends with a short conclusion and some open questions in Chapter 7.
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2 Error Correcting Codes

In the study of error-correcting codes, the standard scheme has been constructed with

Hamming distance. Before we explore b-symbol read channels, it is worth reviewing the

standard error-correcting codes which have been studied for several decades. Therefore

we introduce elementary concepts about codes, channels and error-correcting process in

this section.

In Section 2.1 and 2.2, we will see formal discription of codes and error-correcting

process. Though it is possible to integrate the two sections, we seperate these to distinguish

the the properties that do not change when the channel model is b-symbol read channel

and those that change. In Section 2.1, we focus on the definitions and properties of codes

that are applied in the same way to both channel models, and those not in Section 2.2.

Lastly, we see how we evaluate asymptotically good codes in Section 2.3.

2.1 Formal Description of Codes

A Simple Code and Error-Correcting Process

To help understanding code and error-correcting process, we introduce a simple exam-

ple of code called repetition code.

Example 2.1. Consider sending a message in

M = {00, 01, 10, 11}.

If a bit flip error occur while sending a message, the received message is different from
the original message. For example, if we are sending 00 and a bit flip occured to the
fisrt symbol, the received message is 10. In this case the receiver cannot discern whether
recieved message 10 is sent from sender or it is a corrupted message.

To resolve this problem, consider sending an element of

C = {000000, 000111, 111000, 111111}

instead of {00, 01, 10, 11}. Then a bit-flip error can be recovered to the most similar element
in C. If the sender wants to send a message 01 and 000111 is sent instead, then a bit-flip
error to the first symbol 100111 will be successfully recovered to 000111.

Here, the set C is called a code and the elements of C are called codewords.

Let us get the formal description of codes we previewed in the former example. A code

is a set of words to be sent through channels. The concepts in this section are directly

applied to codes for b-symbol read channel.

Alphabet : The finite set Σ of possible symbols. Throughout this report, we suppose a

symbol 0 is in Σ without losing generality. |Σ| is denoted as q.

Word : An element of the set Σn.

4



Code Length : The number n of symbols that a word has.

Code : A set C of words that are sent through channels. It is the subset of Σn. With

q = |Σ|, a code C is called a q-ary code. When |Σ| = 2, we call C is a binary code.

Codeword : A word in a code C.

In Example 2.1, the alphabet Σ is {0, 1} and codewords are sequences consist of 0s

and 1s that represent messages in {00, 01, 10, 11}.

Definition 2.1 (Code Rate). We call the following value R(C) code rate, or rate, of
q-ary code C:

R(C) =
log |C|
log Σn

=
logq |C|

n
. (1)

Code rate is the density of the code over the space Σn. Code rate indicates how many

codewords a code expresses using limited n resources with error-correcting ability. The

maximum value of the code rate is 1 when the C = Σn. However, even though higher

rate is expected when building codes, it is, in most cases, the biggest challenge for code

constructors because the code rate is a trade-off for error corretablilty what we will see in

next section.

2.2 Error-Correcting Process for Channels with Hamming Metric

ChannelEncoder Decoder
message x⃗ ∈ Σn y⃗ x⃗′ ∈ Σn

Figure 2: Channel Model

Channel is a structure that inputs a codeword and outputs a vector with a specific kind

of error. The decoding process is recovering the output vector with error to a codeword.

The error-correcting process succeeds if the recovered codeword is not the same as the

input codeword. If the recovered codeword is the same as the input codeword, it is called

decoding error. If the output vector can not be recovered to any codeword, it is called

decoding failure. If the set R of possible output vector is decided, the decoding process

is considered as a mapping from R to Σn or Σn∪{fail}. Therefore designing the mapping

is the main goal of error correction and it is reliant on the property of channels which

decide the kinds of errors.

In most of noisy memoryless channel models, the channel output vector is an element

in Σn. Considering the input codewords are also elements of Σn, we can evaluate the

difference of the output vector and codewords with an evalutaion metric over Σn; in

5



most cases in error correcting codes, Hamming distance which is defined in this section is

the evaluation metric. With an evaluation metric over Σn, we can find a closest codeword

whose difference from the output vector is the least and decode the output to the codeword.

This decoding method is calledminimum distance decoding. Of course, finding the closest

codeword from the output vector is complicated in most of decoding processes. Therefore

constructing decoding algorithm is one of the main research areas in error-correcting codes.

To describe the minimum distance decoding with Hamming distance, we first should

define Hamming metric, an evaluation metric that we think over. In most of coding

schemes, Hamming distance is a basic evalutation metric for decoding.

Definition 2.2 (Hamming Distance). Let x⃗, y⃗ be words in Σn and a⃗i denote the i-th
coordinate of a word a⃗. Then Hamming distance function DH : Σn × Σn → N is defined
as follows (N = {0, 1, 2, ...}):

DH(x⃗, y⃗) ≜ |{i : x⃗i ̸= y⃗i}|. (2)

With Hamming distance as an evaluation metric, we can decode received word y⃗ to a

codeword x⃗′ ∈ C from which Hamming distance to y⃗ is minimum compared to all other

codewords in C.

Next, we consider how many errors a code can correct when the minimum distance dH

is determined. Fisrt, for a code C ⊂ Σn, minimum distance dH is defined as follows:

dH = min
x⃗,y⃗∈C,x̸⃗=y⃗

DH(x⃗, y⃗). (3)

If the minimum distance dH is known, error correctability of a code is proposed as the

next theorem. To make the next theorem obvious, we denote the number of errors as

the distance DH(x⃗, y⃗) where x⃗ is a sent codeword and y⃗ is a received word.

Theorem 2.1. A code C can correct t errors if and only if dH ≥ 2t+ 1.

Proof. Suppose x⃗ ∈ C is a sent codeword and y⃗ ∈ Σn is the received word with t errors.
Then DH(x⃗, y⃗) = t.

If there exists another codeword x⃗′ ∈ C such that DH(x⃗′, y⃗) ≤ t, the received word y⃗
with t errors cannot be corrected because y⃗ might be miscorrected to x⃗′ when DH(x⃗′, y⃗) <
t, called decoding error, or error correction might fail when DH(x⃗′, y⃗) = t, called decoding
failure. We show that there exists no such a codeword x⃗′.

If there exists a codeword x⃗′ ∈ C such that x⃗ ̸= x⃗′ and DH(x⃗′, y⃗) ≤ t,

DH(x⃗, x⃗′) ≤ DH(x⃗, y⃗) +DH(x⃗, y⃗) ≤ 2t. (4)

This contradicts to

2t+ 1 ≤ dH ≤ DH(x⃗, x⃗′). (5)

Therefore there exists no codeword x⃗′ ∈ C such that DH(x⃗′, y⃗) ≤ t except for x⃗.

6



2.3 Asymptotically Good Codes

Asymptotic analysis is a traditional method in information theory. It is introduced from

the initial stage of information theory [1].

There are trade-offs between the code rate and the minimum distance. If a code has

both good rate and good relative distance, the code is considered as an asymptotically good

code. To make it formal, we consider a code C with minimum distance d asymptotically

good if

lim
n→∞

R(C) > 0 and lim
n→∞

δ > 0 (6)

where δ = d
n .

For an example, a code C generated by three times repetition of each symbol in Σn,

as a code in Example 2.1, has the rate

R(C) =
|Σ|n

|Σ|3n
= |Σ|−2n (7)

and minimum distance dH = 3. This code C is not considered an asymptotically good

code because when n grows asymptotically,

lim
n→∞

R(C) = lim
n→∞

|Σ|−2n = 0, lim
n→∞

dH
n

= 0. (8)

Construction of asymptotically good codes is an important but hard question in coding

theory. In terms of existence of asymptotically good codes, it is already proved in channel

with Hamming metric [14] and symbol-pair metric [2]. We will prove with b-symbol metric

in Section 6.

7



3 b-Symbol Read Channels

In this section, we review a formal definition and properties of codes over b-symbol read

channels proposed in [4]. Note on the difference from Section 2 while reading this section.

3.1 Formal Description of b-Symbol Read Channels

Let us review the previous section before we get to the formal description of b-symbol read

channels. The standard methods for error correction is to decode the received vectors sent

through the information channel to a codeword. To make it more formal, a finite set of

symbols is defined as an alphabet Σ and a vector with symbol length n as a word. We also

define the length of words as code length n, a set of words as a code C ⊂ Σn, and words

in code C as codewords. Then channel can be described as a structure whose input is a

codeword in C and the output is an element of R which is called a channel output set, and

decoder is a mapping dec : R → Σn. Differently from the ordinary channel whose output

set R is Σn, b-symbol read channel takes (Σb)n as a channel output set. Therefore in this

channel model, each channel output is a length n vector of which every coordinate consists

of b symbols. Throughout this report, we call the codes over this channel b-symbol codes.

ChannelEncoder Decoder
message x⃗ ∈ Σn y⃗ ∈ (Σb)n x⃗′ ∈ Σn

Figure 3: b-Symbol Read Channel

To distinguish vectors in (Σb)n from vectors in Σn, we express vectors in (Σb)n with

the symbol ↔, and call these vectors b-symbol vectors.

Notation 3.1 (b-Symbol Vector[4]). b-symbol vector ←→u ∈ (Σb)n is denoted as follows:

←→u = [u00u
1
0...u

b−1
0 , u01u

1
1...u

b−1
1 , ..., u0n−1u

1
n−1...u

b−1
n−1] (9)

= [←→u 0...
←→u n−1] (10)

with the notation that ←→u j = u0ju
1
j ...u

b−1
j .

For a word x⃗ ∈ Σn, we define the b-symbol read vector π(x⃗) that corresponds to x⃗.

Definition 3.1 (b-Symbol Read Vector[4]). Let x⃗ = x0x1...xn−1 a word in Σn. The
b-symbol read vector π(x⃗) is defined as

πb(x⃗) ≜ [x0x1...xb−1, x1x2...xb, ..., xn−1x0...xb−2] (11)

= [πb(x⃗)0...πb(x⃗)n−1]. (12)

8



Each coordinate of length n vector πb(x⃗) is composed of cyclically consecutive b sym-

bols. With an example, it is simply understood how a b-symbol read vector is contructed.

Example 3.1. If b = 3 and x⃗ = x1x2x3x4 = 0110, then

πb(x⃗) = [x1x2x3, x2x3x4, x3x4x1, x4x1x2]

= [011, 110, 101, 001]

From notation 3.1 and definition 3.1, it is trivial that every word in Σn has corre-

sponding b-symbol read vectors, but not vice-versa. To make this clear, let a set πb(X)

for X ⊂ Σn [4] be

πb(X) ≜ {πb(x⃗)|x⃗ ∈ X}. (13)

Then for a code C over Σn, πb(C) ⊆ πb(Σ
n) ⊂ (Σb)n. In case that a b-symbol vector ←→u is

in πb(Σ
n), it is called consistent. In other words, All consistent vectors have corresponding

word in Σn.

3.2 b-Symbol Distance

A metric over b-symbol read channel is a suitable evaluation metric for error-correctring

as Hamming metric is for channels in Section 2. First, we define b-symbol distance over

(Σb)n.

Definition 3.2 (b-Symbol Distance[4]). Let ←→u ,←→v be vectors in (Σb)n. Then, b-symbol
distance function Db : (Σ

b)n × (Σb)n → N is defined as follows (N = {0, 1, 2, ...}).
For ←→u ,←→v ∈ (Σb)n,

Db(
←→u ,←→v ) ≜ |{i : (←→u )i ̸= (←→v )i}|. (14)

For notational convenience, in case that one or both b-symbol vectors are consistent

vectors, we express the b-symbol distance with the following notations:

for x⃗, y⃗ ∈ Σn,

Db(x⃗, y⃗) ≜ Db(πb(x⃗), πb(y⃗)) (15)

Db(
←→u , x⃗) ≜ (←→u , πb(x⃗)) (16)

Db(x⃗,
←→u ) ≜ Db(πb(x⃗),

←→u ). (17)

As πb(Σ
n) = {πb(x⃗)|x⃗ ∈ Σn} is proper subset of (Σb)n, Σn is a metric space with a

distance function Db. We confirm Σn is metric space.

Theorem 3.1. Σn is a metric space with the distance function Db : (Σ
n,Σn) → N.

Proof. We show that the set Σn has the following three properties for all x⃗, y⃗, z⃗ ∈ Σn.

(i) Db(x⃗, y⃗) ≥ 0; equality holds if and only if x⃗ = y⃗

9



(ii) Db(x⃗, y⃗) = Db(y⃗, x⃗)

(iii) Db(x⃗, y⃗) ≤ Db(x⃗, z⃗) +Db(z⃗, y⃗)

Proving properties (i),(ii) is trivial from the defintion of the distance function Db.
Property (3) is derived by [πb(x⃗)i ̸= πb(y⃗)i] =⇒ [πb(x⃗)i ̸= πb(z⃗)i] ∨ [πb(z⃗)i ̸= πb(y⃗)i].

For a code C ⊆ Σb, minimum b-symbol distance db is defined as follows:

db = min
x⃗,y⃗∈C,x̸⃗=y⃗

Db(x⃗, y⃗). (18)

Definition 3.3 (b-Symbol Weight[4]). For ←→u ∈ (Σb)n, b-symbol weight wb is defined as
follows (⃗0 = 0n = 0...0︸︷︷︸

n

) :

wb(
←→u ) ≜ Db(π(⃗0),

←→u ). (19)

3.3 Error Correctability of Codes over b-Symbol Read Channels

In absence of errors, πb(x⃗) is received when x⃗ is sent. On the other hands, if errors exist

over the channels, errors over the channels corrupt the original codeword x⃗ to a b-symbol

vector ←→u . The number of errors is counted as the number of coordinates that b-symbol

read vector πb(x⃗) and b-symbol vector ←→u differs.

By the similar way to Theorem 3.1, it is confirmed that (Σb)n is a metric space. For

π(C) ⊂ (Σb)n, the decoding over b-symbol read channels is also based on b-symbol distance.

Proposition 3.1. A code C can correct t b-symbol errors if and only if db ≥ 2t+ 1.

The proof of Proposition 3.1 is the same as Hamming metric case, Theorem 2.1.
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4 Sphere Packing Bound and Gilbert-Varshamov Bound

Bounds for codes are indicators for the performance a code can achieve. Lots of bounds in

information theory are derived from combinatorial calculation. Sphere packing bound and

Gilbert-Varshamov bound are the two bounds for the codesizes. These two code bounds

are derived when the metric of the space is determined. In this section, we suppose a

metric D is predetermined and then explain these two bounds.

4.1 Sphere and Ball

As the sphere packing bound and Gilbert-Varshamov bound are expressed with the size

of the ball, we define the sphere and the ball before. We denote a metric space X with

the distance function D : (X,X) → N as the metric space (X,D).

Definition 4.1 (Sphere and Ball). Let (Σn, D) be a metric space. Then for a word x⃗ ∈ Σn,
sphere and ball are defined, respectively as follows:

Sh(x⃗) ≜ {y⃗ ∈ Σn|D(x⃗, y⃗) = h}, (20)

Br(x⃗) ≜ {y⃗ ∈ Σn|D(x⃗, y⃗) ≤ r} =

r∪
h=0

Sh(x⃗). (21)

Note that the sizes of sphere and ball, |Sh(x⃗)| and |Br(x⃗)| respectively, are independent
of the word x⃗. In metric space with Hamming distance, regardless of the choice of x⃗,

|Sh(x⃗)| =
(
n

h

)
(q − 1)h, |Br(x⃗)| =

r∑
h=0

(
n

h

)
(q − 1)h. (22)

4.2 Sphere Packing Bound

Sphere packing bound is upper bound for code size when error-correctability of the code

is given that t or less errors are always correctable.

Theorem 4.1 (Sphere-Packing Bound[14]). Let (Σn, D) be a metric space. If a q-ary code
C ⊂ Σn can correct all t or less errors, then

|C||Bt(x⃗)| ≤ qn. (23)

We give simple proof of sphere packing bound. When a word x⃗ is sent, the output

vectors with less than t errors are in the radius t ball centered at x⃗. Considering that code

C can corrects all t or less errors, radius t balls centered at codewords should not intersect.

The size of the entire radius t balls in space Σn without intersections is less than the size

of space Σn (Figure 4).

(The size of radius t ball)× (The number of codewords) ≤ (The size of space Σn)

11



t

Figure 4: A diagram for obtaining sphere packing bound

4.3 Gilbert-Varshamov Bound

While sphere paking bound proposes upper bound for codesizes, Gilbert-Varshamov(G-V)

bound gives lower bound for codesizes.

Theorem 4.2 (Gilbert-Vashamov Bound[14]). Let (Σn, D) be a metric space. There exists
a q-ary code C ∈ Σn with minimum distance d = min

x⃗,y⃗∈C,x̸⃗=y⃗
D(x⃗, y⃗) such that

|C||Bd−1(x⃗)| ≥ qn. (24)

We also give simple proof of Gilbert-Varshamov bound. Considering minimum distance

is d, no code word should be in radius d−1 ball centered at other codewords. If codewords

are not in radius d− 1 balls centered at other codewords, minimum distance d is kept.

Then we construct a code satisfying Gilbert-Varshamov bound as follows: repeat

adding a word outside radius d − 1 balls centered at other codewords the to code C

until there is no word to add in the space Σn (Figure 5). If there is no room for adding a

word to code, the entire balls cover the space Σn and we get G-V bound.

However, differently from the proof of sphere packing bound, the balls can intersect if

4.4 Asymptotic Gilbert-Varshamov Bound

Gilbert-Varshamov bound is reformulated with asymptotic methods. The reformulation

is called asymptotic Gilbert-V arshamov bound, the bound for existence of certain rate

codes when code length n grows infinity.

Asymptotic G-V bounds are great indicator for the performance of channels. We need

an indicator for comparing the performance of codes over channels. However, G-V bound

12



d-1

Figure 5: A description of adding a word(center of yellow ball) to code C(set of centers of
ball) in the proof of Gilbert-Varshamov bound

is expressed in terms of the code length n. Asymptotic G-V bounds make it possible to

compare performance of codes by restricting code length n to infinity Therefore we will

compare the performance of codes over channels in terms of asymptotic G-V bounds.

Furthermore, asymptotic G-V bound is written in terms of fractional minimum distance

δ = d
n which is great indicator for error-correctability. G-V bound is written in terms of

minimum distance d. The error correctability of two codes with minimum distance d is

not same if code length n is different.

Asymptotic Gilbert-Varshamov bound in Hamming metric [14] and symbol-pair metric

[2] were expressed with code rate and a special function called entropy. We show asymp-

totic Gilbert-Varshamov bound in b-symbol metric is also derived in Section6. After

introducing the definition and an important property of entropy function, we suggest the

asymptotic Gilbert-Varshamov Bound in Hamming metric and 2-symbol metric(symbol-

pair metric).

4.4.1 Entropy Function

Entropy function is an important function in information theory. It is interpreted as the

quantity of uncertainty.

Here, we only reference simple definitions and a property of entropy function because

these are sufficient for proof of asymptotic Gilbert-Varshamov bound. For further prop-

erties and meaning of entropy, see [14].

Entropy function is defined as below.

13



Definition 4.2 (Entropy). Let p be a real number such that 0 ≤ p ≤ 1. Then entropy
function H(p) is defined as follows:

H(p) ≜ p log2
1

p
+ (1− p) log2

1

1− p
. (25)

Entropy function can be extened to q-ary cases.

Definition 4.3 (q-ary Entropy Function). Let q be an integer and p be a real number such
that q ≥ 2 and 0 ≤ p ≤ 1. Then q-ary entropy function Hq(p) is defined as follows:

Hq(p) ≜ p logq (q − 1) + p logq
1

p
+ (1− p) logq

1

1− p
. (26)

In definition 4.2 and 4.3, we set (0 logq 0) = 0. Entropy function Definition 4.2 is the

special case of q-ary entropy function when q = 2.

Theorem 4.3 ([13]). Let q be an integer and p be a real number such that q ≥ 2 and
0 ≤ p ≤ 1− 1

q . Then the following inequality holds:

pn∑
j=0

(
n

j

)
(q − 1)j ≤ qHq(p)n. (27)

The proof of Theorem 4.3 is in Appendix A.

4.4.2 Asymptotic Gilbert-Varshamov Bound

For proving asymptotic G-V bound, we reformulate G-V bound into the form related with

rate R(C). It follows from (24) that

R(C) =
logq |C|

n
≥ 1

n
logq

qn

|Bd−1(x⃗)|
. (28)

Asymptotic G-V bound is the form that taking limitation n → ∞ to the left and right

terms of (28).

R(Cδ) ≥ lim
n→∞

1

n
logq

qn

|Bd−1(x⃗)|
(29)

Cδ is notation for a code with fractional minimum distance δ = d
n . Therefore Gilbert-

Varshamov bound is stated by another way: there exists a code Cδ that satisfies (29). The

remaining task is calculation of |Bd−1(x⃗)| whose value depends on the metric of the space.

And it is already proved in terms of Hamming metric [14] and 2-symbol metric(symbol-pair

metric) [2].

Theorem 4.4 (Asymptotic Gilbert-Varshamov Bound in Hamming Metric[14]). There
exist q-ary codes with fractional minimum Hamming distance 0 ≤ δ(= dH/n) ≤ 1− 1

q and
rate

R(δ) ≥ 1−Hq(δ) (30)
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From [2], binary asymptotic 2-symbol Gilbert-Varshamov bound is proved as follows.

Theorem 4.5 (Binary Asymptotic 2-Symbol Gilbert-Varshamov Bound[2]). There exist
binary codes with fractional minimum 2-symbol distance δ(= d2/n) and rate

R(δ) ≥ 1−H(δ/2)− δ. (31)

We generalize asymptotic 2-symbol Gilbert-Varshamov bound to b-symbol Gilbert-

Varshamov bound for any integer b ≥ 2 in Section 6.
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5 Sphere Packing Bound and G-V Bound for b-Symbol Read Channels

From this section to the next section, we show the main results of this report: bounds for

b-symbol read channels. In this section, we will prove sphere packing bound and Gilbert-

Varshamov bound for b-symbol read channels by calculating the size of the sphere and ball

over this channel, called b-symbol sphere and b-symbol ball, with combinatorial methods.

We use a notation S(b)
h (x⃗) for the size of b-symbol sphere and B(b)

r (x⃗) for b-symbol ball

over the metric space (Σn, Db).

5.1 Invariance of the Size of b-Symbol Sphere to x⃗

We suppose x⃗ = 0⃗ from this section, as the size of sphere |Sh(x⃗)| and ball |Br(x⃗)| do not

depend on a symbol vector x⃗. It is proposed by the following Proposition 5.1.

Proposition 5.1. |S(b)
h (x⃗)| = |S(b)

h (⃗0)|.

Proof. From Definition 4.1, S(b)
h (x⃗) and S(b)

h (⃗0) are written as follows:

S(b)
h (x⃗) ≜ {y⃗ ∈ Σn|Db(x⃗, y⃗) = h},

S(b)
h (⃗0) ≜ {y⃗ ∈ Σn|Db(⃗0, y⃗) = h}.

It is enough to show that there exists one-to-one correspondence between S(b)
h (x⃗) and

S(b)
h (⃗0).
Think of bijection between alphabet Σ and Σq = {0, 1, 2, ..., q} which maps 0 of Σ to

0 of Σq. Then we can regard a word in Σn as a word in Σn
q and addition and subtraction

between words in Σn are defined as the operation over Σn
q .

Then we show there exists one-to-one correspondence between S(b)
h (x⃗) and S(b)

h (⃗0).

(i) Define f : S(b)
h (x⃗) → S(b)

h (⃗0) as f(y⃗) = y⃗ − x⃗ ∈ S(b)
h (⃗0). Then f is injective: for

y⃗1, y⃗2 ∈ S(b)
h (x⃗), if y⃗1 ̸= y⃗2, then y⃗1 − x⃗ ̸= y⃗2 − x⃗. Therefore |S(b)

h (x⃗)| ≤ |S(b)
h (⃗0)|.

(ii) Define g : S(b)
h (⃗0) → S(b)

h (x⃗) as g(z⃗) = z⃗ + x⃗ ∈ S(b)
h (x⃗). Then g is injective: for

z⃗1, z⃗2 ∈ S(b)
h (x⃗), if z⃗1 ̸= z⃗2, then z⃗1 + x⃗ ̸= z⃗2 + x⃗. Therefore |S(b)

h (⃗0)| ≤ |S(b)
h (x⃗)|.

Thus we get |S(b)
h (⃗0)| = |S(b)

h (x⃗)|.

From Proposition 5.1, we calculate |S(b)
h (⃗0)| instead of |S(b)

h (x⃗)| throughout Section 5.

5.2 Calculation of b-Symbol Weight

|S(b)
h (⃗0)| is the number of vectors whose b-symbol weight is h. We suggest a convenient way

for calculating b-symbol weight and this helps the calculation of the size of the b-symbol

ball |S(b)
h (⃗0)|.

In this subsection, we only think binary words.
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5.2.1 Calculation of 2-Symbol Weight

The way of calculating 2-symbol weight is mentioned in [2]. Let us review the result of [2]

before we generalize this result.

Theorem 5.1 (Calculation of 2-Symbol Weight). Let w be the number of coordinates that
the symbol is 1 and L be the number of runs of 1s in y⃗. Then 2-symbol weight of y⃗ ∈ Σn

is calculated as w2(y⃗) = w + L.

Proof. 2-symbol weight of y⃗ is the number that the coordinate of π(y⃗) is 11, 10, or 01.
When y⃗ is y0...yn−1, π(y⃗) is [y0y1, ..., yny0] from the defintion. Therefore, if we note on the
former symbols in π(y⃗), the number of coordinates 11 or 10 is the same as the number of
1s in y⃗.

Then the remaining is the number of coordinates that b-symbols are 01. A b-symbol
is 01 if and only if it is a b-symbol in the coordinate before a run of 1s in y⃗. Therefore the
number of 01s in π(y⃗) is the same as the number of runs of 1s.

Example 5.1. Consider 2-symbol weight of the word y⃗ = 001100111. We arrange y⃗ and
π(y⃗) by each coordinate. We express the coordinates that y⃗’s symbol is 1 with underline,
and those that π(y⃗)’s symbol is 01 with double underline.

y⃗ = 0 0 1 1 0 0 1 1 1

π(y⃗) = 00 01 11 10 00 01 11 11 10

From above equations, we can confirm that every run of 1s in y⃗ generates a blue coordinate
01. As a result, 2-symbol weight of y⃗ is w2(y⃗) = 5 + 2.

5.2.2 Calculation of b-Symbol Weight

In Section 5.2.1, 2-symbol weight is calculated in terms of runs of 1s. However, even if

we change the definition of L to ”the number of runs of 0s in y⃗”, 2-symbol weight w2(y⃗)

is the same as w + L. Noting on how runs of 0s contribute b-symbol weight, we obtain

an equation for b-symbol weight as following Theorem 5.2. Before giving the theorem, we

define parameters for a word and then see an example.

Definition 5.1. For a word y⃗, parameters w, zk, L, Z is defined as follows:
w: Hamming weight of y⃗,
zk: the number of runs of 0s whose lengths are k,
L =

∑n
k=b−1 zk,

Z =
∑b−2

k=1 kzk.

We will represent b-symbol weight wb(y⃗) in terms of w,L and Z.

Example 5.2. Consider b-symbol weight wb(y⃗) when b = 3. Suppose y⃗ is defined as
y⃗ = 1 1 1 0 0 1 1 1 0 0 0 0

π3(y⃗) = 111 110 100 001 011 111 110 100 000 000 001 011
The coordinates of nonzero 3-symbols in π3(y⃗) are the coordinates at which the symbol

of y⃗ is 1, the coordinates of length 2 run of 0s, and last two coodinates of length 4 run of
0s. Therefore w3(y⃗) is w + Z + L(b− 1) = 6 + 2 + 1(3− 1) = 10.
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From Example 5.2, we can understand how symbol 1s and runs of 0s contribute to

b-symbol weight. Then, we can represent b-symbol weight in terms of w,L and Z.

Theorem 5.2 (Calculation of b-Symbol Weight). For a word y⃗ ∈ Σn, b-symbol weight
wb(y⃗) is w + Z + (b− 1)L.

Proof. b-symbol weight of y⃗ is the number of b-symbols which are not 0b, called nonzero.
To count how many b-symbols are nonzero, we seperate y⃗ = y1y2...yn into three sorts of
parts: (i) 1, (ii) a run of 0s whose length is at most b− 2, (iii) a run of 0s whose length is
greater than b− 2.

Then, we count how many b-symbols are counted as nonzero for a part (i),(ii), and
(iii).

(i) Suppose yi is 1. Then the b-symbol πb(y⃗)i is nonzero because in πb(y⃗)i = yi...yi+b−1,
yi = 1.

(ii) Let the coordinate this run starts be s and ends be e. Then all b-symbols in this
run πb(y⃗)s, ..., πb(y⃗)e are nonzero because the symbol ye+1 is 1 and this symbol is
included in all b-symbols of this run πb(y⃗)s, ..., πb(y⃗)e.

(iii) Let the coordinate this run starts be s and that ends be e. Then last b−1 b-symbols
πb(y⃗)e−(b−2), ..., πb(y⃗)e are nonzero because the symbol ye+1 is 1 and this symbol is

included in πb(y⃗)e−(b−2), ..., πb(y⃗)e. The other b-symbols πb(y⃗)s, ..., πb(y⃗)e−(b−1) is 0
b.

Therefore b− 1 is added for each run of this sort when calculating b-symbol weight.

From above, it is confirmed that all coordinates are nonzero for a part of (i) and (ii)
and b − 1 coordinates are not for a part of (iii). The number of coordinates of parts in
(i) is w and in (ii) is Z =

∑b−2
k=1 kzk, and the number of parts in (iii) is L =

∑n
k=b−1 zk.

Therefore b-symbol weight wb(y⃗) is w + Z + (b− 1)L.

b-symbol weight wb(y⃗) is also derived as w + Z ′ + (b − 1)L′ with the notations Z ′ =∑b−1
k=1 kzk and L′ =

∑n
k=b zk considering that runs of 0s with length b−1 are counted same

regardless of whether they are treated as parts in (ii) or (iii) in proof of Theorem 5.2.

5.3 The Size of b-Symbol Sphere

Next, for the derivation of the size of b-symbol sphere, we partition b-symbol sphere S(b)
h (⃗0)

into subsets S(b)
h (L, z⃗) with two parameters L and z⃗.

Definition 5.2 (S(b)
h (L, z⃗)). S(b)

h (L, z⃗) is a set of words that satisfy the parameters h,L, z⃗
where h is b-symbol weight, L =

∑n
k=b−1 zk and z⃗ = (z1, ..., zb−2).

Z =
∑b−2

k=1 kzk of vectors in S(b)
h (L, z⃗) is determined by z⃗. And from Theorem 5.2,

Hamming weight w of vectors in S(b)
h (L, z⃗) is determined as h− Z − (b− 1)L.

Next we make it explicit the meaning of S(b)
h (L, z⃗) with an example.
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Example 5.3. Consider following y⃗ ∈ Σ19 when b = 4.

y⃗ = 1011100010110010000

L = 2, w = 8, z⃗ = {z1, z2} = {2, 1},
h = w + Z + (b− 1)L = 18.

Therefore, y⃗ is an element of S(4)
18 (2, {2, 1}).

S(b)
h (⃗0) is partitioned by S(b)

h (L, z⃗) as follows: for 1 ≤ h < n,

S(b)
h (⃗0) =

∪
(L,z⃗)∈K

S(b)
h (L, z⃗),

whereK = {(L, z⃗) = (L, z1, ..., zb−2) ∈ Nb−1|L ≥ 1, zi ≥ 0, w = h−Z−(b−1)L ≥
∑n

k=1 zk}.
In the set K, the condition of w is derived considering the number of 1s in a vector should

be at least the number of runs of 0s. By the condition of w, parameters z1, ..., zb−2 and L

are bounded above.

The size of b-symbol sphere is written as follows: for a word x⃗ ∈ Σn and 1 ≤ h < n,

the size of b-symbol sphere is

|S(b)
h (x⃗)| = |S(b)

h (⃗0)| =
∑

(L,z⃗)∈K

|S(b)
h (L, z⃗)|.

Lemma 5.1. |S(b)
h (L, z⃗)| is derived as follows:

for 1 ≤ h < n,

|S(b)
h (L, z⃗)| = n

w

(
w

L, z1, . . . , zb−2

)(
n− h+ L− 1

L− 1

)
(q − 1)w,

where w = h− Z − (b− 1)L. Here, multinomial coefficient is defined as follows:(
n

k1, ..., km−1

)
≜ n!

k1! . . . km−1!(n−
∑m−1

i=1 ki)!
,

where k1, . . . , km are nonnegative integers and n is an integer at least
∑m−1

i=1 ki.

Proof. Define a subset Y of S(b)
h (L, z⃗),

Y = {y⃗ = (y0 . . . yn−1) ∈ Σn|y0 ̸= 0, y⃗ satisfies h,L, z⃗}.

Then, S(b)
h (L, z⃗) is rewritten as

S(b)
h (L, z⃗) = {σi(y⃗)|y⃗ ∈ Y, 0 ≤ i < n},

where σi(x⃗) is i-times cyclic right shift of x⃗.

We seperate the proof by two parts. |Y | is calculated in [Part I] and |S(b)
h (L, z⃗)| is in

[Part II]. Each part explains the multiplicands (q− 1)w
( w
L, z1, . . . , zb−2

)(
n−h+L−1

L−1
)
and n

w ,

respectively.
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Suppose qi(i = 1, . . . , w) is a nonzero symbol in Σ. Noting on Hamming weight of y⃗ is
w, every vector y⃗ in the set Y can be written as the following form

y⃗ = q10
i1q20

i2 . . . qw0
iw .

Here, 0i is a run of 0s whose length is i(≥ 0) and 00 is thought that there exists no symbol.
Part I: The Size of Y .
In [Part I], we calculate the number of ways to determine iks and qks(k = 0 . . . w) of

y⃗ = q10
i1q20

i2 . . . qw0
iw

to satisfy the given variables L, z1, . . . , zb−2.
For convenience, we extend the definition of zi, or the number of 0i, not only for i ≥ 1

but for i ≥ 0. Here, z0 means the number of iks that no symbol is inserted between two
neighbored qis. Then, z0 is determined as z0 = w − L−

∑b−2
i=1 zi.

(i) The number of ways to determine q1, . . . , qw is (q − 1)w.

(ii) Each ik takes a value in {0, . . . , n}. Define i′k which takes a value in {0, . . . , b− 2, l}:

i′k ≜
{
ik if ik ≤ b− 2

l if ik > b− 2.
(32)

The process of determining i′k is the same as distributing w members of i′k into b
distinct groups, of sizes z0, z1, . . . , zb−2, L respectively. The number of ways of this
distribution is

( w
L, z1, . . . , zb−2

)
.

(iii) The values of ik where i′k = ik ≤ b − 2 are determined in (i). The remianing
task is determining the L values of ik greater than b − 2 so that code length of
y⃗ = q10

i1q20
i2 . . . qw0

iw becomes n.

Of n symbols of y⃗, the number of nonzero symbols is w and the number of 0s in the
runs with length at most b − 2 is Z =

∑b−2
k=1 kzk. Therefore n − (w + Z) symbols

construct L values of ik greater than b− 2. Therefore
∑

ik>b−2 ik = n− (w + Z).

From combinatorics, the number of ways to distribute m identical objects into k
distinct groups given that each group contains at least t objects is

(
m−(p−1)t−1

p−1
)
.

Because each ik greater than b − 2 has at least b − 1 symbols, the number of ways
for allocating n− (w + Z) to iks greater than b− 2 is(

n− (w + Z)− (b− 2)L− 1

L− 1

)
=

(
n− h+ L− 1

L− 1

)
.

Finally, we get the size of Y :

|Y | = (q − 1)w
(

w

L, z1, . . . , zb−2

)(
n− h+ L− 1

L− 1

)
.

Part II: The Size of S(b)
h (L, z⃗)

In [Part II], we (i) construct a multiset Sm of cyclically shifted vectors from Y and (ii)

calculate the size of S(b)
h (L, z⃗) by relieving multiplicity of multiset Sm.
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(i) First define multiset Sm:

Sm = {σi(y⃗)|y⃗ ∈ Y, 0 ≤ i < n}.

Multiplicity of elements is allowed in Sm whereas it is prohibited in S(b)
h (L, z⃗). The

size of Sm is n|Y | because each element of Y generates n shifted vectors.

(ii) Every vector y⃗ in Y can be written as a repetition of a short vector. Let y⃗s be the
shortest vector generating y⃗ by r times repetition(r ≥ 1). Then all y⃗ in Y can be
written uniquely with y⃗s as below:

y⃗ = (y⃗s)
r = (q10

i1 · · · qwr0
iwr )r.

In n cyclically shifted vectors of y⃗, same vector appears r times.

On the other hand, each of following wr(=
w
r ) vectors, y⃗1, y⃗2, . . . , y⃗wr ∈ Y , generates

same vectors by n cyclic shifts:

y⃗1 = (q10
i1q20

i2 · · · qwr0
iwr )r

y⃗2 = (q20
i2q30

i3 · · · q10i1)r

...

y⃗wr = (qwr0
iwr q10

i1 · · · qwr−10
iwr−1)r.

Therefore every distinct element of Sm appears w(= r · wr) times. Finally,

|S(b)
h (L, z⃗)| = 1

w
|Sm| = n

w
|Y |.

By results of [Part I] and [Part II], |S(b)
h (L, z⃗)| is derived as

|S(b)
h (L, z⃗)| = n

w

(
w

L, z1, . . . , zb−2

)(
n− h+ L− 1

L− 1

)
(q − 1)w.

When b = 1, Lemma 5.1 corresponds to the size of Hamming sphere and when b = 2,

Lemma 5.1 corresponds to the result of [2].

5.4 Sphere Packing Bound and G-V Bound for b-Symbol Read Channels

The size of the b-symbol sphere directly leads to sphere packing bound and Gilbert-

Varshamov bound for b-symbol read channels as discussed in Section 4.

The size of the b-symbol ball B(b)
r (x⃗) should be calculated before.

Theorem 5.3 (the Size of the b-Symbol Ball). Let (Σn, Db) be a metric space. Then for
a symbol vector x⃗ ∈ Σn and 1 ≤ r < n,

B(b)
r (x⃗) =

r∪
h=0

S(b)
h (x⃗), (33)

|B(b)
r (x⃗)| = 1 +

r∑
h=1

|S(b)
h (x⃗)|. (34)
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Table 1: b-symbol weight distribution(2 ≤ b ≤ 8) with code length n = 20

h |S(2)
h (x⃗)| |S(3)

h (x⃗)| |S(4)
h (x⃗)| |S(5)

h (x⃗)| |S(6)
h (x⃗)| |S(7)

h (x⃗)| |S(8)
h (x⃗)|

1 0 0 0 0 0 0 0
2 20 0 0 0 0 0 0
3 20 20 0 0 0 0 0
4 190 20 20 0 0 0 0
5 340 40 20 20 0 0 0
6 1270 210 40 20 20 0 0
7 2680 380 80 40 20 20 0
8 6585 810 270 80 40 20 20
9 13220 1980 500 160 80 40 20
10 25694 3940 1030 410 160 80 40
11 44820 7780 2080 780 320 160 80
12 72095 14915 4260 1570 710 320 160
13 105100 26820 8180 3120 1380 640 320
14 138250 45930 15420 6120 2750 1330 640
15 161824 74184 28220 11880 5440 2620 1280
16 165490 111915 49965 22560 10680 5210 2590
17 143580 155720 85100 42160 20800 10320 5140
18 100590 195400 138590 77280 40160 20360 10230
19 51680 212180 213420 138600 76800 40000 20320

Theorem 5.4 (b-Symbol Sphere-Packing Bound). If a q-ary code C ⊂ Σn can correct all
t or less b-symbol errors, then

|C||B(b)
t (x⃗)| ≤ qn. (35)

Theorem 5.5 (b-Symbol Gilbert-Vashamov Bound). There exists a q-ary b-symbol code
C ∈ Σn with minimum distance db such that

|C||B(b)
db−1(x⃗)| ≥ qn. (36)
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6 Asymptotic b-Symbol Gilbert-Varshamov Bound

6.1 Asymptotic b-Symbol Gilbert-Varshamov Bound

In Section 5, we derived the equation for the size of b-symbol ball. With the size of

b-symbol ball, we derive asymptotic b-symbol G-V bound.

Before the proof of asymptotic b-symbol G-V bound, we give multinomial theorem.

Lemma 6.1 (Multinomial Theorem[15]).

(x1 + · · ·+ xm)n

=
∑
(∗)

(
n

k1, ..., km−1

)
xk11 . . . x

km−1

m−1 x
(n−

∑m
i=1 ki)

m

The symbol (∗) means all cases that n, k1, . . . , km−1 satisfy the condition of multinomial
coefficients.

If x1 = · · · = xm = 1,

(m)n =
∑
(∗)

(
n

k1, ..., km−1

)
. (37)

For proving asymptotic G-V bound, we reformulate G-V bound into the form related

with rate R(C). It follows from G-V bound that

R(C) =
logq |C|

n
≥ 1

n
logq

qn

|B(b)
db−1(x⃗)|

. (38)

Therefore G-V bound is stated by another way: there exists a b-symbol code C that

satisfies (38). Asymptotic G-V bound is obtained by taking limitation n → ∞ to the

left and right terms of (38). The remaining task is calculating |Bdb−1(x⃗)| and then taking

limitation to (38).

Lemma 6.2. For 1 ≤ r < n,

|B(b)
r (x⃗)| < nbr+1qnHq(

r
bn

)+b.

Proof. From Lemma 5.1,

|S(b)
h (x⃗)|

=
∑

(L,z⃗)∈K

|S(b)
h (L, z⃗)|

=
∑

(L,z⃗)∈K

n

w

(
w

L, z1, . . . , zb−2

)(
n− h+ L− 1

L− 1

)
(q − 1)w

whereK = {(L, z⃗) = (L, z1, ..., zb−2) ∈ Nb−1|L ≥ 1, zi ≥ 0, w = h−Z−(b−1)L ≥
∑n

k=1 zk}.
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We get the following inequalities of |S(b)
h (x⃗)|:

|S(b)
h (x⃗)|

=
∑

(L,z⃗)∈K

n

w

(
w

L, z1, . . . , zb−2

)(
n− (h− L+ 1)

L− 1

)
(q − 1)w

<
∑

(L,z⃗)∈K

n

w

(
w

L, z1, . . . , zb−2

)(
n

L− 1

)
(q − 1)w (39)

≤
∑

(L,z⃗)∈K

n

(
h

L, z1, . . . , zb−2

)(
n

L− 1

)
(q − 1)h (40)

=n(q − 1)h
∑

(L,z⃗)∈K

(
h

L, z1, . . . , zb−2

)(
n

L− 1

)

<n

(
n

⌊hb ⌋

)
(q − 1)h

∑
(L,z⃗)∈K

(
h

L, z1, . . . , zb−2

)
(41)

<nbh
(

n

⌊hb ⌋

)
(q − 1)h. (42)

(39) is from h− L+ 1 > 0 (by the inequality h = w + Z + (b− 1)L > L), (40) is derived
from w ≤ h, and (41) is derived from L− 1 ≤ ⌊hb ⌋ ≤

n
2 which we get from

w = h− Z − (b− 1)L ≥ L,

h ≥ h− Z ≥ bL,

h

b
≥ L. (43)

Considering L is an integer, (43) changes to ⌊hb ⌋ ≥ L. (42) is derived by K ⊂ (∗) and
multinomial theorem (37):∑

(L,z⃗)∈K

(
h

L, z1, . . . , zb−2

)
<

∑
(L,z⃗)∈(∗)

(
h

L, z1, . . . , zb−2

)
= bh.

Then we calculate the size of the b-symbol ball |Br(x⃗)|,

|Br(x⃗)| = 1 +
r∑

h=1

|Sh(x⃗)|

<

r∑
h=1

nbh
(

n

⌊hb ⌋

)
(q − 1)h

< nbr
r∑

h=1

(
n

⌊hb ⌋

)
(q − 1)h.

From
∑⌊pn⌋

j=0

(
n
j

)
(q − 1)j < qnHq(p) for p ≤ 1− 1

q ,

r∑
h=1

(
n

⌊hb ⌋

)
(q − 1)h < b

⌊ r
b
⌋∑

j=0

(
n

j

)
(q − 1)j+b < bqnHq(

r
bn

)+b.

24



Therefore

|B(b)
r (x⃗)| < nbr

r∑
h=1

(
n

⌊hb ⌋

)
(q − 1)h < nbr+1qnHq(

r
bn

)+b.

With Lemma 6.2, we can derive asymptotic b-symbol G-V bound.

Theorem 6.1 (Asymptotic b-Symbol G-V Bound). For b ≥ 2 and 0 ≤ δ ≤ 1 , there exist
q-ary b-symbol codes Cδ with fractional minimum b-symbol distance δ(= db/n) and rate

R(Cδ) > 1−Hq(δ/b)− δ logq b.

Proof. To calculate (38), we derive the following inequality:

logq
qn

|B(b)
db−1(x⃗)|

> n− (logq n+ db logq b+ nHq

(db − 1

bn

)
+ b).

Then, we take limitation to (38) and get asymptotic G-V bound:

R(Cδ) ≥ lim
n→∞

1

n
logq

qn

|B(b)
db−1(x⃗)|

> 1−Hq

(δ
b

)
− δ logq b.

When b = 2, Theorem 6.1 coincides with asymptotic symbol-pair G-V bound in [2]. If

the range of δ is narrowed to 0 ≤ δ ≤ 1− 1
q , we can extend Theorem 6.1 to b ≥ 1 because

asymptotic G-V bound for Hamming metric(Theorem 4.4) coincides with asymptotic 1-

symbol G-V bound.

We also note that it is not confirmed whether the asymptotic bound given above is

the tight bound or not. If this bound is not the tight form of asymptotic b-symbol G-V

bound, there are possiblities to improve this bound. Considering inequalities in the proof,

especially (42), are not tight, it is rather probable that asymptotic b-symbol G-V bound

proved in this article is not tight. Of course, there are possiblities that this bound is

tight. For showing the tightness of this bound, we should prove the RHS inequality of

(44) should be equality.

6.2 The Best b for The Asymptotic G-V b-Symbol Bound with respect to
Fractional Minimum Distance

In this subsection, we analyze the derived asymptotic b-symbol Gilbert-Varshamov bound.

To be specific, we find the symbol-read number b that leads to the best asymptotic b-

symbol G-V bound when the size of alphabet q and relative minimum distance δ are fixed.
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When we observe the traces of asymptotic b-symbol G-V bounds where b = 1, 2, 3 and

q = 2(Figure 6), it is confirmed the bound for b = 2 achieves the highest bound between

the two intersections of bounds, 0.19 < δ < 0.27. If this tendency that the mid-value

achieves the highest bound continues for arbitrary three consecutive bs, the bound for

b = 2 achieves the highest bound in the range 0.19 < δ < 0.27 compared to any other bs,

because (2-symbol bound) > (3-symbol bound) > (4-symbol bound) > · · · in the range.

We will show this tendency is true for asymptotic b-symbol G-V bounds for bs larger than

a certain number s and explore related properties of asymptotic b-symbol G-V bounds.

0.19 0.27
0

0.2

0.4

0.6

0.8

1

δ

R
(δ
)

asymp. 1-symbol GV bound

asymp. 2-symbol GV bound

asymp. 3-symbol GV bound

(q = 2)

Figure 6: Asymptotic G-V bounds when b = 1(dashed),2(solid),and 3(dash-dotted) (q =
2).

Let RHS of asymptotic Gilbert-Varshamov bound be a function

fb(δ) = 1−Hq(δ/b)− δ logq b. (44)

Theorem 6.2. For b ≥ 3 and 0 < δ ≤ 1, the equation fb(δ) = fb−1(δ) has at most one
solution, a unique solution δ = δb or no solution.

Proof. Define a function gb(δ) on 0 ≤ δ ≤ 1,

gb(δ) = fb(δ)− fb−1(δ). (45)

Then the equation fb(δ) = fb−1(δ) is equivalent to gb(δ) = 0. We prove the following
three equation and inequalities. Here, limδ→0+ means right side limit of 0.

gb(0) = 0 (46)

lim
δ→0+

g′b(δ) > 0 (47)

g′′b (δ) < 0. (48)
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The trace (δ, gb(δ)) starts at (0, 0) from (46) and the gradient at δ = 0 is positive from
(47). Considering gb(δ) is concave function from (48), the trace of gb(δ) is shown like
Figure 7. Therefore these directly lead to gb(δ) = 0 has at most one solution on 0 < δ ≤ 1.

(i) We get the following from the definition of fb(δ),

gb(δ) = Hq

( δ

b− 1

)
−Hq

(δ
b

)
+ δ logq

b− 1

b
. (49)

(ii) From defintion of entropy (26),

Hq(x) = x logq (q − 1)− x logq x− (1− x) logq (1− x) (50)

H ′q(x) = logq (q − 1)− logq x+ logq (1− x) (51)

H ′′q (x) =
1

x(x− 1)
. (52)

(iii) Considering 0 log 0 = 0 from Definition 4.3 of entorpy function, it is trivial that
gb(0) = 0.

(iv) Next, we show limδ→0+ g′b(δ) > 0. g′b(δ) is calculated from gb(δ):

g′b(δ) =
1

b− 1
H ′q

( δ

b− 1

)
− 1

b
H ′q

(δ
b

)
+ δ logq

b− 1

b
(53)

In H ′q(x) (51), a non-convergent term when x → 0 is only (− logq x). Therefore when
δ → 0+, non-convergent terms of g′b(δ) are

− 1

b− 1
logq

δ

b− 1
+

1

b
logq

δ

b
(54)

=
1

b(b− 1)
logq

(b− 1

δ

)b(δ
b

)b−1
. (55)

By taking δ → 0+ to (55),

lim
δ→0+

1

b(b− 1)
logq

(b− 1

δ

)b(δ
b

)b−1
= ∞. (56)

Therefore we get

lim
δ→0+

g′b(δ) = ∞ > 0. (57)

(v) Then we show (48).

g′′b (x) =
1

(b− 1)2
H ′q

( δ

b− 1

)
− 1

b2
H ′q

(δ
b

)
=

1

δ(δ − (b− 1))
− 1

δ(δ − b)

=
1

δ(δ − (b− 1))(δ − b)
(58)

< 0.
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Figure 7: The trace of g2(δ) (q = 2). gb(δ)s have the similar shape in 0 < δ ≤ 1.

For the equation gb(δ) = fb(δ) − fb+1(δ) = 0, if a solution on 0 < δ ≤ 1 exists, we

denote the unique solution as δb. From the trace of the graph of gb(δ)(Figure 7), we can

understand the following properties of fb(δ).

(i) if a unique solution δ = δb exists,

fb(δ) > fb−1(δ), for 0 < δ < δb, (59)

fb(δ) ≤ fb−1(δ), for δb ≤ δ ≤ 1. (60)

(ii) if there is no solution, for 0 < δ ≤ 1,

fb(δ) > fb−1(δ). (61)

Therefore we understand that for b ≥ 3, b-symbol codes achieve higher rate codes compared

to (b− 1)-symbol codes in the range (i) 0 < δ ≤ δb or (ii) 0 < δ ≤ 1.

δb for 3 ≤ b ≤ 7 and 2 ≤ q ≤ 8 is shown in Table 6.2

Theorem 6.3. For b ≥ 3, when δ = δb is the unique solution of fb(δ) = fb−1(δ) in the
range 0 < δ ≤ 1 − 1

q , then the unique solution δ = δb+1 of fb+1(δ) = fb(δ) exists in the

range 0 < δ ≤ 1− 1
q and

δb+1 < δb. (62)
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Table 2: δb for 3 ≤ b ≤ 7 and 2 ≤ q ≤ 8.
q δ3 δ4 δ5 δ6 δ7
2 1.9× 101 1.1× 101 5.1× 102 2.3× 102 1.0× 102

3 3.6× 101 2.0× 101 1.0× 101 4.6× 102 2.0× 102

4 5.0× 101 3.0× 101 1.5× 101 6.8× 102 3.0× 102

5 6.3× 101 3.9× 101 2.0× 101 9.1× 102 4.0× 102

6 7.3× 101 4.7× 101 2.4× 101 1.1× 101 5.0× 102

7 8.3× 101 5.5× 101 2.9× 101 1.3× 101 5.9× 102

8 9.2× 101 6.2× 101 3.3× 101 1.6× 101 6.9× 102

0 0.1 0.2 0.3 0.4 0.5

-0.2

-0.1

0

0.1

0.2

δ

g b
(δ
) δ2δ3

g2(δ)

g3(δ)

Figure 8: g2(δ)(solid), g3(δ)(dashed), and δ2, δ3 (q = 2). we can confirm g3(δ2) < 0 and
δ3 < δ2.

Proof. We prove that for 0 < δb ≤ 1− 1
q such that gb(δb) = fb(δb)− fb−1(δb) = 0,

gb+1(δb) = fb+1(δb)− fb(δb) < 0. (63)

From Theorem 6.2 and the shape of graphs gb(δ) and gb+1(δ) shown in Figure 8, (63) leads
to the result that δb+1 exists and δb+1 < δb.

gb+1(δb) is written with a function hδ(x) ≜ Hq

(
δ
x

)
,

gb+1(δb) = Hq

(δb
b

)
−Hq

( δb
b+ 1

)
+ δb logq

b

b+ 1
(64)

= hδb(b)− hδb(b+ 1) + δb logq
b

b+ 1
. (65)

As 0 < δb ≤ 1− 1
q , hδb(x) is convex function from Lemma B.1 and thus

hδb(b)− hδb(b+ 1) < hδb(b− 1)− hδb(b). (66)
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Therefore

(65) < hδb(b− 1)− hδb(b) + δb logq
b

b+ 1
(67)

= −δb logq
b− 1

b
+ δb logq

b

b+ 1
(68)

= δb logq
b2

b2 − 1
(69)

< 0. (70)

(68) is derived from gb(δb) = hδb(b− 1)− hδb(b) + δb logq
b−1
b = 0.

Therefore, we get gb+1(δb) < 0 and therefore δb > δb+1.

Corollary 6.1. For b ≥ 3, if the unique solution δ = δb of fb(δ) = fb−1(δ) on 0 < δ ≤ 1− 1
q

exists, for all b′ ≥ b, the unique solution δ = δb′ of fb′(δ) = fb′−1(δ) on 0 < δ ≤ 1 − 1
q

exists. And the following inequalities are satisfied.

δb > δb+1 > δb+2 > δb+3 > · · · . (71)

Corollary 6.2. Let s ≥ 3 be the smallest integer such that the solution δ = δs of fs(δ) =
fs−1(δ) on 0 < δ ≤ 1− 1

q exists. Then compared to all b-symbol codes with b ≥ 2,

(i) (s− 1)-symbol codes achieve the highest asymptotic G-V bound on δs < δ ≤ 1− 1
q .

(ii) for t ≤ s, t-symbol codes achieve the highest asymptotic G-V bound on δt+1 < δ ≤ δt.

(iii) on the range 1 − 1
q < δ ≤ 1, integers b that achieve the highest asymptotic b-symbol

G-V bounds are less than s.

Theorem 6.4. Let s ≥ 3 be the smallest integer such that the solution δ = δs of fs(δ) =
fs−1(δ) on 0 ≤ δ ≤ 1− 1

q exists. Then for a sequence {δs, δs+1, δs+2, · · · },

lim
b→∞

δb = 0. (72)

Proof. From Corollary 6.1, it is enough to prove the following proposition: for sufficiently
small ϵ > 0, there exists B such that δB < ϵ. Instead of δB < ϵ, we show gB(ϵ) < 0. Then,
from the shape of the graph(Figure 8), δB < ϵ.

Hq(x) and gb(δ) is written as follows:

Hq(x) =x logq (q − 1)− logq (1− x) + x logq

(1− x

x

)
(73)

gb(δ) =fb(δ)− fb−1(δ)

=Hq

( δ

b− 1

)
−Hq

(δ
b

)
+ δ logq

b− 1

b

=
δ

b(b− 1)
logq (q − 1) + logq

(
1− δ

b

1− δ
b−1

)

+ logq

{( δ
b

1− δ
b

) δ
b
(
1− δ

b−1
δ

b−1

) δ
b−1(b− 1

b

)δ
}

(74)
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If we take B such that 1
ϵ ≤ B < 1

ϵ + 1. Then 1
B is written with ϵ and ∆:

1

B
≤ ϵ <

1

B − 1
≤ ϵ

1− ϵ
(75)

1

B
= ϵ−∆. (76)

Here, ∆ follows inequalities below:

0 < ∆ = ϵ− 1

B

<
1

B − 1
− 1

B
=

1

B(B − 1)

<
1

(B − 1)2

≤
( ϵ

1− ϵ

)2

≪ ϵ.

Then 1
B and 1

B−1 are also approximated:

1

B
= ϵ−∆ ≃ ϵ, (77)

1

B − 1
=

1
B

1− 1
B

≃ ϵ

1− ϵ
. (78)

Then, gb(δ) is approximated:

gb(ϵ) ≃
ϵ3

1− ϵ
logq (q − 1) + logq

(
1− ϵ2

1− ϵ2

1−ϵ

)
+ logq

{(
ϵ2

1− ϵ2

)ϵ2(1− ϵ2

1−ϵ
ϵ2

1−ϵ

) ϵ2

1−ϵ

(1− ϵ)ϵ
}

(79)

≃ logq (1− ϵ)ϵ < 0. (80)

From (79) to (80), we take ϵ3 = 0 and ϵ2 = 0 from ϵ3 ≪ ϵ2 ≪ ϵ and use following
inequalities: (

ϵ2

1− ϵ2

)ϵ2(1− ϵ2

1−ϵ
ϵ2

1−ϵ

) ϵ2

1−ϵ

=

(
ϵ2

1− ϵ2

) ϵ2

1−ϵ
(1−ϵ)(1− ϵ2

1−ϵ
ϵ2

1−ϵ

) ϵ2

1−ϵ

=

(
ϵ2

1− ϵ2

)−ϵ3

1−ϵ
(

ϵ2

1− ϵ2
·
1− ϵ2

1−ϵ
ϵ2

1−ϵ

) ϵ2

1−ϵ

≃ 1.

Therefore, for an integer B satisfying 1
ϵ ≤ B < 1

ϵ + 1, the solution δ = δB of fB(δ) =
fB−1(δ) exists. Finally, from Corollary 6.1, we get that for b ≥ B, the solution δb exists.
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Corollary 6.3. For all δ ∈ (0, 1], there exists a finite integer k such that k-symbol codes
achieve the highest asymptotic G-V bound compared to all other b-symbol codes with b ≥ 2.

Corollary 6.3 implies that larger b for b-symbol codes does not nessesarily bring out

better asymptotic b-symbol G-V bound. In other words, at least in the view of asymptotic

b-symbol G-V bound, the most suitable number of read-symbol b is determined depen-

dently on relative minimum distance δ.

On the other hand, we can also interprete these analysis that there exist b-symbol

codes with strictly higher rates in δ ∈ (0, δb) than best known codes with symbol-read

numbers less than b. Therefore, the performance of b-symbol codes are partially improved

as b becomes larger in terms of asymptotic G-V bound.
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7 Conclusions

In this report we derived sphere packing bound, Gilbert-Varshamov bound, and asymptotic

Gilbert-Varshamov bound for b-symbol read channels. We calculated the size of b-symbol

sphere and b-symbol ball and these sizes led to the bounds for b-symbol read channels.

When b = 1, the bounds obtained here coincide with bounds for Hamming metric and

when b = 2, with symbol-pair codes. We also showed that for the asymptotic G-V bound

proved in this report, when relative minimum distance δ and the size of alphabet q are

given, there exists a finite symbol-read number b such that asymptotic b-symbol G-V

bounds achieve the best rate than other symbol-read numbers. It means that higher b

may not guarantee higher rate code for a given relative minimum distance.

There are lots of remaing tasks related to this research.

Most of all, asymptotic b-symbol G-V bounds proved in this article should be improved

or the tightness of these bounds should be proved. With the enhanced bounds, the possi-

bilities and limitations of b-symbol read channel will be more clear. For the improvement

of asymptotic b-symbol G-V bound, reference [3], which proved the improved asymptotic

G-V bound for b = 2, might be helpful reference. The analysis of error probability for

b-symbol codes is also a task for a comprehensive study. Though a perfect code, a code

satisfying sphere packing upper bound, for 2-symbol read code was suggested in [2], it is

also unknown whether perfect codes for b-symbol read channel exists or not, Furthermore,

it is an open question how to construct a code achieving b-symbol Gilbert-Varshamov

bound.
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Appendix

A The Proof of Theorem 4.3

Theorem 4.3 is written as follows.

Let q be an integer and p be a real number such that q ≥ 2 and 0 ≤ p ≤ 1− 1
q . Then

the following inequality holds.

pn∑
j=0

(
n

j

)
(q − 1)j ≤ qHq(p)n. (81)

Proof. We can derive the following inequalities:

1 = {p+ (1− p)}n

=
n∑

j=0

pj(1− p)n−j

=

pn∑
j=0

pj(1− p)n−j +

n∑
j=pn+1

pj(1− p)n−j

≥
pn∑
j=0

pj(1− p)n−j

= (1− p)n
pn∑
j=0

(q − 1)j
( p

(1− p)(q − 1)

)j

≥
( p

(1− p)(q − 1)

)pn
(1− p)n

pn∑
j=0

(q − 1)j (82)

= q−H(p)n
pn∑
j=0

(q − 1)j . (83)

Inequality (82) is obtained from p
(1−p)(q−1) < 1 which is derived from the condition 0 ≤

p ≤ 1− 1
q .

Then from (83),

pn∑
j=0

(
n

j

)
(q − 1)j ≤ qHq(p)n. (84)

37



B Convex Function

A function f(x) definend on an interval [a, b] is called convex function if the following

inequality is satisfied for all x1, x2 ∈ [a, b] and t ∈ (0, 1],

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2). (85)

Theorem B.1. f(x) is twice-diffrentiable and convex on the interval [a, b] ⇔ f ′′(x) > 0
for a ≤ x ≤ b.

Lemma B.1. Define a function hδ(x) as follows: For 0 ≤ δ ≤ 1− 1
q ,

hδ(x) ≜ Hq

( δ

x

)
. (86)

Then hδ(x) is convex function on x ≥ 2.

Proof. From Theorem B.1, we show h′′δ (x) > 0 on x ≥ 2.
First, we get h′δ(x) and h′′δ (x) simply by differentiating hδ(x):

hδ(x) = Hq

( δ

x

)
=

δ

x
logq (q − 1)− δ

x
logq

δ

x
−
(
1− δ

x

)
logq

(
1− δ

x

)
(87)

h′δ(x) =
δ

x2 log q

{
log

δ

(q − 1)(x− δ)

}
(88)

h′′δ (x) = − δ

x3(x− δ)

{
logq

( δ

(q − 1)(x− δ)

)2(x−δ)
ex
}

(89)

From 0 < δ ≤ 1− 1
q and x ≥ 2,

δ

x− δ
<

1− 1
q

2−
(
1− 1

q

) ≤ q − 1

q + 1
, (90)

δ

(q − 1)(x− δ)
<

q − 1

(q − 1)(q + 1)
=

1

q + 1
≤ 1

3
. (91)

And we get the inequialities:( δ

(q − 1)(x− δ)

)2(x−δ)
<

(1
3

)2(x−δ)

<
(1
3

)2x

<
(1
9

)x
, (92)( δ

(q − 1)(x− δ)

)2(x−δ)
ex <

(e
9

)x
< 1. (93)

By applying (93) to (89),

h′′δ (x) = − δ

x3(x− δ)

{
logq

( δ

(q − 1)(x− δ)

)2(x−δ)
ex
}

> 0. (94)

Therefore, hδ(x) is convex function on x ≥ 2.
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